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Outline

> Motivation with testing

v

Quadratic mean differentiability and local asymptotic
normality

> Asymptotically most powerful tests
» Limiting Gaussian experiments

» Local asymptotic minimax theorems
Reading:

» van der Vaart, Asymptotic Statistics Chs. 6—8

» Lehmann & Romano, Testing Statistical Hypothesis Ch. 12.3,

13.1-13.3
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Recapitulation

» Measures Q, are contiguous w.r.t. P,, Q,< Py, if Q,(A,) — 0
whenever P,(A,) — 0

» Le Cam’s third lemma states that

dQ, h
(o) ([ 4[5 2)

implies X, g, N (11 + 7, )

» asymptotic change of measure from P, <>@, as log zg: has

mean —%0'2

Goal: understand limits of random experiments to get optimality
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Testing motivation

idea: look at optimal pairs of tests and parameterize them

some distances on distributions:
P~ Qllry = sup |P(4) /|p ald

d2(P. Q) == / (VAP — \/dQ / VP — @) d
i (P, Q) < [IP = Qllry < dhei(P, Q)/2 — d,(P, Q)
and optimal test error

inf {Po(v(X) # 0) + Pu(v(X) # 1)} =1 [Po = Prliry
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Asymptotics in pairwise tests

Lemma (Asymptotically non-trivial testing)

For any sequence of distributions Py , vs. Py, we have
Iimninfilr;f{Po,n(q/Jn #0)+ P1o(¢n #1)} >0

if and only if
lim sup dhei(Po,n, P1,n) < 1.
n

Why Hellinger distances? they work well with i.i.d. sampling:

dﬁeI(Pn7 Qn) =1- (1 - dl%el(P7 Q))n

> tests asymptotically non-trivial when d(Po,n, P1,n) =< %
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Quadratic mean differentiability

> expectation: if {pg} is “smooth” family of densities,

1 . 1+
VPorh = \/%+2\/FepeTh+O(HhH2) = \/179+§hTﬁa\//79+0(llhll2)

» using \/pg € L?(Py) can make this hold in mean square sense
Definition
A family {Py}oce is quadratic mean differentiable (QMD) at
0 € int © if there exists a score ¢y : X — RY such that

1+ 2
/ (\m ﬁGQh%ﬁe) dyi = o(lIhl]?) as h—0.
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Existence of information and Hellinger distance

Proposition
If {Py} is QMD at 0 with score £y, then
» Pyly = 0 and the Fisher information ly := PgégéGT exists
> the Hellinger distance is d2.;(Pp+n, Ps) = §h" lph + o(||h[|?)
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Quadratic mean differentiability is typical

> typical case: py is a u-probability density in a neighborhood of
to

. [5T

> elements of [y = [ B2Z

o p ppdys are continuous in 6

Lemma
Under above conditions, {Py} is QMD near 6,
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Exponential families are QMD

Example (Exponential families)
Let pp(x) = exp(87x — A(6)), A(0) = log [ € *du(x). Then
{Py} is QMD with score

lo(x) = Vlog py(x) = x — VA() = x — Eg[X]
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Local asymptotic normality

idea: for “nice” families, log-likelihood ratios should look locally
quadratic (and give a CLT)

Definition (LAN families)

A family {Py n}toce is locally asymptotically normal (LAN) at
6 € int © if there exists a sequence of random variables A, € RY
and information (or precision) matrix K > 0 such that

dP9+h/ﬁ,n

|
& 4Py

1
= hT A, — ShTKh -+ op, ,(|1h])

where A, i>p97n N(0, K)
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Gaussian shift families

Example (Gaussian shifts)
Let Py, , be distributions

Yi=h+&, &SNOE),i=1,...n

Then

dP _
log T AVER (yny _ /a1y, — LpTs o1y,
dPo.., 2

Local Asymptotics and Optimality 14-11



Quadratic mean differentiable families

Proposition (QMD families are LAN)

If {Pg} is QMD at § with score g and Py = P§,, . P =P},
dPn
log — = WZ@ X)Th—= ththroP(l)
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Optimal testing in a LAN family

> testing Ho : Po,n vs. Hi: Py jmnas n— o0

» Neyman-Pearson (likelihood ratio) test is optimal: for
[ — 4Py /5.
n

dP, ,
1 if logl, > chp
¢n,h = N Un,h if |0g L,= Cn,h
0 if logL, < cpn

» limits and alternatives:

1pT T T
d —5h" Kh h'Kh h' Kh
(Iog Ln,log Ln) Po,,i N <|:—§hTKh:| ) |:hTKh hTKh

1
log L, L5 N(hTKh,hTKh)
Py Jin 2
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Levels and power for the Neyman-Pearson test
some observations on ¢, 4:

a = EP0[¢n,h] = Po(|0g L, > Cn,h) + O(].)
=P (/\/ (—;hTKh, hTKh> > c,,7h) + 0(1)

» direct computation of thresholds c,
—_(1_ . 1.7 T
cn.h = (1 — @) quantile of N 2h Kh,h' Kh | + o(1)

1
— —ihTKh + 21 oVhTKh 4 o(||h])?)

Observation (Neyman-Pearson power under local alternatives)
Under the above conditions, the power of ¢, is

Ep/aldns] = 1— @ (zl,a - \/hTKh) - (za v \/hTKh)
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Asymptotically optimal tests

Definition
A sequence {¢,} of tests of 6y against 6, is asymptotically most
powerful (AMP) if

i. limsup,Eg,[¢n] <
ii. for any sequence of tests ¢, with limsup, Eg,[¢n] < a,

|imnSUp {EHn[wn] - EGn [¢n]} <0.

Theorem )
Let {Py}ococr be LAN at 6. Then ¢, = ¢n(X]), Xi iid Py is
AMP against local alternatives at level o iff Eg,[¢n] — « and

limsupEqg, 4/ /mlén] = 1 — ®(z1-0 — hVK) = &z + hVK).
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Estimation lower bounds

idea: if we can show everything is Gaussian in the limit, we can
get estimation lower bounds

Example
In model X ~ N(0,%), 6 € RY the minimax /3 risk is

igfsm;pEe[llg — 0]3] = B[ X — 0]3] = tr(%).
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Local asymptotic normality and sufficiency

» locally asymptotically normal family {Py ,}oco with

1
= hTA, — 5hTKh + op, , (IIA11),

» Le Cam’s third lemma:

An - N(KhK) e Zy=Ka, -5 N KD
Poth)/an Posh/mn

idea: asymptotically, A, should be sufficient for h
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Heuristics: limiting Gaussianity

goal: show “local” experiments Py, r , look like Gaussian shifts
heuristic: estimate h in a Bayesian model

h~N(,F) and X"~ Py o,

P posterior on h is approximately
m(h|X")

o exp (—i(h —(K+THA)(K+TH)(h— (K + Fl)lAn))
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Notation for asymptotic Gaussian Posteriors

For K > 0, I = 0 define

Grr(-|2) =N (K+T Y Kz, (K+T7H)71)

» posterior of h | z in model
h~N(0,T), Z|h~N(h K™

> idea: for Z, := KA, h| Z, should be almost Gk r(- | Z,)
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Asymptotic Gaussian Posteriors

» prior 7 is N'(0,T) truncated to {h € RY : ||h|| < c}

» model:

hen € XM | b~ Ph//m,ns 7€(- | X™) := posterior on h | X"
» marginal P,(-) = fPh/\/Rn(-)dT['r’C(h)

> define Z, := K~ 1A,(X") = K714,

Theorem (Le Cam)

Let above conditions hold. Then for all € > 0, there exist C < o0
and N < oo such that ¢ > C and n > N imply

/ |G- 1 Zaxm) = a"(- | x7)

dP,(x") < e.
TV (X)ie
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Remarks

» for LAN families, the true posterior under truncated Gaussian
prior is (on average) Gaussian conditional on Z, = K~1A,

» other notions in which limits must be Gaussian

Theorem (van der Vaart Thm. 7.10)

Let {Pyn} be LAN at 6 with information ly. If T, converge in
distribution under Py, s , for each h, then

T, & T

P0+h/ﬁ,n

where T is a (randomized) statistic in {N'(h, ;") } hero
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Local Minimax Theorems

insight: we can reduce everything to estimation in Gaussian shift
experiments N (h, K1)
Definition (Quasi-convexity)

A function L: R - R is quasi-convex if for each o € R, the
sublevel sets {x : L(x) < a} are convex
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Anderson’s Lemma

Lemma (Anderson)

Let L be symmetric and quasi-convex, A € RY x R* and
X ~ N(u,X). Then

inf E[L(AX — v)] = E[L(A(X — p))] = E[L(AZY2W)]

for W ~ N(0,1)
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The local asymptotic minimax theorem

Theorem
Let L : RY — R be quasi-convex, symmetric, and bounded, and
{Po,n} be LAN at 0y with precision (information) K > 0. Then

liminfliminfinf sup Ep,, [L(ﬁ(gn()(”) - 0))

CcC—00 nN—oo 0, HG*OOHS%

> E[L(K™Y2W)], W ~N(0,]).
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Local asymptotic minimax theorem for QMD families

Corollary
Let {Py} be QMD at 0y with Fisher information lg, and 7¢ , be
N (0o, b(c)l), where b(c) = +/c, truncated to ||0 — 0y < c/+/n.

n

Then

lim inf lim inf igf/u«ng [L(ﬁ(én - 9))] d7e.n(0) > E[L(Z)]

Cc— 00 n—oo )
n

for Z ~ N(0, I, %).
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Proof of local asymptotic minimax theorem

> w.l.o.g. take L(z) € [0, 1] and rescale to perturbations
{h: Al < c}
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Completing the proof: substitute in posteriors

» posterior 7(- | x™) on h similar to Gk (- | za(x"))
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Extensions and Corollaries

» differentiable functions: estimating () for a smooth
function v of 0

> non-parametric scenarios: we wish to estimate 8(P) € R for
a “smooth” function 6

i. fix Py, construct sub-models
dPh X (1 + hg)+ dPo

for function g € L2(P,), Pog =0
ii. evaluate derivatives

lim 0(Pn) — 0(Po)
hl0 h
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