Local Asymptotics and Optimality

John Duchi

Stats 300b - Winter Quarter 2021

Outline

- Motivation with testing
- Quadratic mean differentiability and local asymptotic normality
- Asymptotically most powerful tests
- Limiting Gaussian experiments
- Local asymptotic minimax theorems

Reading:

- ▶ van der Vaart, Asymptotic Statistics Chs. 6–8
- ► Lehmann & Romano, *Testing Statistical Hypothesis* Ch. 12.3, 13.1–13.3

Recapitulation

- Measures Q_n are contiguous w.r.t. P_n , $Q_n \triangleleft P_n$, if $Q_n(A_n) \rightarrow 0$ whenever $P_n(A_n) \rightarrow 0$
- ▶ Le Cam's third lemma states that

$$\left(X_n, \log \frac{dQ_n}{dP_n}\right) \xrightarrow[P_n]{d} \mathcal{N}\left(\begin{bmatrix} \mu \\ -\frac{1}{2}\sigma^2 \end{bmatrix}, \begin{bmatrix} \Sigma & \tau \\ \tau^T & \sigma^2 \end{bmatrix}\right)$$

implies
$$X_n \xrightarrow{d}_{Q_n} \mathcal{N}(\mu + \tau, \Sigma)$$

▶ asymptotic change of measure from $P_n \triangleleft \triangleright Q_n$ as $\log \frac{dQ_n}{dP_n}$ has mean $-\frac{1}{2}\sigma^2$

Goal: understand limits of random experiments to get optimality

Testing motivation

idea: look at optimal pairs of tests and parameterize them

some distances on distributions:

$$||P - Q||_{\mathsf{TV}} := \sup_{A} |P(A) - Q(A)| = \frac{1}{2} \int |p - q| d\mu$$

$$d_{\mathsf{hel}}^2(P, Q) := \frac{1}{2} \int (\sqrt{dP} - \sqrt{dQ})^2 = \frac{1}{2} \int (\sqrt{p} - \sqrt{q})^2 d\mu$$

$$d_{\mathsf{hel}}^2(P, Q) \le ||P - Q||_{\mathsf{TV}} \le d_{\mathsf{hel}}(P, Q) \sqrt{2 - d_{\mathsf{hel}}^2(P, Q)}$$

and optimal test error

$$\inf_{\psi} \left\{ P_0(\psi(X) \neq 0) + P_1(\psi(X) \neq 1) \right\} = 1 - \|P_0 - P_1\|_{\mathsf{TV}}$$

Asymptotics in pairwise tests

Lemma (Asymptotically non-trivial testing)

For any sequence of distributions $P_{0,n}$ vs. $P_{1,n}$, we have

$$\liminf_{n} \inf_{\psi_{n}} \{ P_{0,n}(\psi_{n} \neq 0) + P_{1,n}(\psi_{n} \neq 1) \} > 0$$

if and only if

$$\limsup_{n} d_{\text{hel}}(P_{0,n}, P_{1,n}) < 1.$$

Why Hellinger distances? they work well with i.i.d. sampling:

$$d_{\text{hel}}^2(P^n, Q^n) = 1 - (1 - d_{\text{hel}}^2(P, Q))^n$$

▶ tests asymptotically non-trivial when $d_{hel}^2(P_{0,n},P_{1,n}) \approx \frac{1}{n}$

Quadratic mean differentiability

lacktriangle expectation: if $\{p_{\theta}\}$ is "smooth" family of densities,

$$\sqrt{p_{\theta+h}} = \sqrt{p_{\theta}} + \frac{1}{2\sqrt{p_{\theta}}} \dot{p}_{\theta}^{\mathsf{T}} h + O(\|h\|^2) = \sqrt{p_{\theta}} + \frac{1}{2} h^{\mathsf{T}} \dot{\ell}_{\theta} \sqrt{p_{\theta}} + O(\|h\|^2)$$

lacksquare using $\sqrt{p_{ heta}}\in L^2(P_0)$ can make this hold in mean square sense

Definition

A family $\{P_{\theta}\}_{\theta \in \Theta}$ is quadratic mean differentiable (QMD) at $\theta \in \operatorname{int} \Theta$ if there exists a score $\dot{\ell}_{\theta} : \mathcal{X} \to \mathbb{R}^d$ such that

$$\int \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h^T\dot{\ell}_{\theta}\sqrt{p_{\theta}}\right)^2 d\mu = o(\|h\|^2) \quad \text{as } h \to 0.$$

Existence of information and Hellinger distance

Proposition

If $\{P_{\theta}\}$ is QMD at θ with score $\dot{\ell}_{\theta}$, then

- $ightharpoonup P_{\theta}\dot{\ell}_{\theta}=0$ and the Fisher information $I_{\theta}:=P_{\theta}\dot{\ell}_{\theta}\dot{\ell}_{\theta}^{T}$ exists
- ▶ the Hellinger distance is $d_{\text{hel}}^2(P_{\theta+h}, P_{\theta}) = \frac{1}{8}h^T I_{\theta}h + o(\|h\|^2)$

Quadratic mean differentiability is typical

- typical case: p_{θ} is a μ -probability density in a neighborhood of θ_0
- lacktriangle elements of $I_{ heta}=\int rac{\dot{p}_{ heta}}{p_{ heta}}rac{\dot{p}_{ heta}^T}{p_{ heta}}p_{ heta}d\mu$ are continuous in heta

Lemma

Under above conditions, $\{P_{\theta}\}$ is QMD near θ_0

Exponential families are QMD

Example (Exponential families) Let $p_{\theta}(x) = \exp(\theta^T x - A(\theta))$, $A(\theta) = \log \int e^{\theta^T x} d\mu(x)$. Then $\{P_{\theta}\}$ is QMD with score

$$\dot{\ell}_{\theta}(x) = \nabla \log p_{\theta}(x) = x - \nabla A(\theta) = x - \mathbb{E}_{\theta}[X]$$

Local asymptotic normality

idea: for "nice" families, log-likelihood ratios should look locally quadratic (and give a CLT)

Definition (LAN families)

A family $\{P_{\theta,n}\}_{\theta\in\Theta}$ is locally asymptotically normal (LAN) at $\theta\in \operatorname{int}\Theta$ if there exists a sequence of random variables $\Delta_n\in\mathbb{R}^d$ and information (or precision) matrix $K\succeq 0$ such that

$$\log \frac{dP_{\theta+h/\sqrt{n},n}}{dP_{\theta,n}} = h^T \Delta_n - \frac{1}{2} h^T Kh + o_{P_{\theta,n}}(\|h\|)$$

where
$$\Delta_n \stackrel{d}{\longrightarrow}_{P_{\theta,n}} \mathcal{N}(0,K)$$

Gaussian shift families

Example (Gaussian shifts)

Let $P_{h,n}$ be distributions

$$Y_i = h + \xi_i, \quad \xi_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \Sigma), \ i = 1, \dots, n.$$

Then

$$\log \frac{dP_{h/\sqrt{n},n}}{dP_{0,n}}(Y_1^n) = \sqrt{n}h^T \Sigma^{-1} \overline{Y}_n - \frac{1}{2}h^T \Sigma^{-1}h$$

Quadratic mean differentiable families

Proposition (QMD families are LAN)

If
$$\{P_{\theta}\}$$
 is QMD at θ with score $\dot{\ell}_{\theta}$ and $P_n = P_{\theta+h/\sqrt{n}}^n$, $P = P_{\theta}^n$,

$$\log \frac{dP_n}{dP}(X_1^n) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \dot{\ell}_{\theta}(X_i)^T h - \frac{1}{2} h^T l_{\theta} h + o_P(1)$$

Optimal testing in a LAN family

- ▶ testing $H_0: P_{0,n}$ vs. $H_1: P_{h/\sqrt{n},n}$ as $n \to \infty$
- Neyman-Pearson (likelihood ratio) test is optimal: for $L_n := \frac{dP_h/\sqrt{n},n}{dP_0}$

$$\phi_{n,h} = \begin{cases} 1 & \text{if } \log L_n > c_{n,h} \\ \gamma_{n,h} & \text{if } \log L_n = c_{n,h} \\ 0 & \text{if } \log L_n < c_{n,h} \end{cases}$$

limits and alternatives:

$$(\log L_n, \log L_n) \xrightarrow{d} \mathcal{N} \left(\begin{bmatrix} -\frac{1}{2}h^T Kh \\ -\frac{1}{2}h^T Kh \end{bmatrix}, \begin{bmatrix} h^T Kh & h^T Kh \\ h^T Kh & h^T Kh \end{bmatrix} \right)$$

$$\log L_n \xrightarrow{d} \mathcal{N} \left(\frac{1}{2}h^T Kh, h^T Kh \right)$$

Levels and power for the Neyman-Pearson test

some observations on $\phi_{n,h}$:

$$\alpha = \mathbb{E}_{P_0}[\phi_{n,h}] = P_0(\log L_n > c_{n,h}) + o(1)$$
$$= \mathbb{P}\left(\mathcal{N}\left(-\frac{1}{2}h^T Kh, h^T Kh\right) > c_{n,h}\right) + o(1)$$

 \triangleright direct computation of thresholds $c_{n,h}$

$$c_{n,h} = (1 - \alpha)$$
 quantile of $\mathcal{N}\left(-\frac{1}{2}h^TKh, h^TKh\right) + o(1)$
= $-\frac{1}{2}h^TKh + z_{1-\alpha}\sqrt{h^TKh} + o(\|h\|^2)$

Observation (Neyman-Pearson power under local alternatives) Under the above conditions, the power of $\phi_{n,h}$ is

$$\mathbb{E}_{h/\sqrt{n}}[\phi_{n,h}] \to 1 - \Phi\left(z_{1-\alpha} - \sqrt{h^T K h}\right) = \Phi\left(z_\alpha + \sqrt{h^T K h}\right)$$

Asymptotically optimal tests

Definition

A sequence $\{\phi_n\}$ of tests of θ_0 against θ_n is asymptotically most powerful (AMP) if

- i. $\limsup_{n} \mathbb{E}_{\theta_0}[\phi_n] \leq \alpha$
- ii. for any sequence of tests ψ_n with $\limsup_n \mathbb{E}_{\theta_0}[\psi_n] \leq \alpha$,

$$\limsup_{n} \left\{ \mathbb{E}_{\theta_n}[\psi_n] - \mathbb{E}_{\theta_n}[\phi_n] \right\} \leq 0.$$

Theorem

Let $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}}$ be LAN at θ_0 . Then $\phi_n = \phi_n(X_1^n)$, $X_i \stackrel{\text{iid}}{\sim} P_{\theta}$ is AMP against local alternatives at level α iff $\mathbb{E}_{\theta_0}[\phi_n] \to \alpha$ and

$$\limsup_n \mathbb{E}_{\theta_0 + h/\sqrt{n}}[\phi_n] = 1 - \Phi(z_{1-\alpha} - h\sqrt{K}) = \Phi(z_\alpha + h\sqrt{K}).$$

Estimation lower bounds

idea: if we can show everything is Gaussian in the limit, we can get estimation lower bounds

Example

In model $X \sim \mathcal{N}(\theta, \Sigma)$, $\theta \in \mathbb{R}^d$ the minimax ℓ_2^2 risk is

$$\inf_{\widehat{\theta}} \sup_{\theta} \mathbb{E}_{\theta}[\|\widehat{\theta} - \theta\|_2^2] = \mathbb{E}_{\theta}[\|X - \theta\|_2^2] = \text{tr}(\Sigma).$$

Local asymptotic normality and sufficiency

▶ locally asymptotically normal family $\{P_{\theta,n}\}_{\theta\in\Theta}$ with

$$\log \frac{dP_{\theta+h/\sqrt{n},n}}{dP_{\theta,n}} = h^T \Delta_n - \frac{1}{2} h^T K h + o_{P_{\theta,n}}(\|h\|),$$
$$\Delta_n \xrightarrow[P_{\theta,n}]{d} \mathcal{N}(0,K)$$

Le Cam's third lemma:

$$\Delta_n \underset{P_{\theta+h/\sqrt{n},n}}{\xrightarrow{d}} \mathcal{N}(Kh,K) \quad \text{i.e.} \quad Z_n := K^{-1} \Delta_n \underset{P_{\theta+h/\sqrt{n},n}}{\xrightarrow{d}} \mathcal{N}(h,K^{-1})$$

idea: asymptotically, Δ_n should be sufficient for h

Heuristics: limiting Gaussianity

goal: show "local" experiments $P_{h/\sqrt{n},n}$ look like Gaussian shifts **heuristic:** estimate h in a Bayesian model

$$h \sim \underbrace{\mathcal{N}(0,\Gamma)}_{-:\pi}$$
 and $X^n \sim P_{h/\sqrt{n},n}$

posterior on h is approximately

$$\pi(h \mid X^n)$$

$$\propto \exp\left(-\frac{1}{2}(h - (K + \Gamma^{-1})^{-1}\Delta_n)^T(K + \Gamma^{-1})(h - (K + \Gamma^{-1})^{-1}\Delta_n)\right)$$

Notation for asymptotic Gaussian Posteriors

For $K \succeq 0$, $\Gamma \succ 0$ define

$$\mathsf{G}_{\mathsf{K},\Gamma}(\cdot\mid z) = \mathcal{N}\left((\mathsf{K}+\Gamma^{-1})^{-1}\mathsf{K}z,(\mathsf{K}+\Gamma^{-1})^{-1}\right)$$

p posterior of $h \mid z$ in model

$$h \sim \mathcal{N}(0,\Gamma), \quad Z \mid h \sim \mathcal{N}(h,K^{-1})$$

▶ idea: for $Z_n := K^{-1}\Delta_n$, $h \mid Z_n$ should be almost $G_{K,\Gamma}(\cdot \mid Z_n)$

Asymptotic Gaussian Posteriors

- ▶ prior $\pi^{\Gamma,c}$ is $\mathcal{N}(0,\Gamma)$ truncated to $\{h \in \mathbb{R}^d : ||h|| \le c\}$
- ► model:

$$h \sim \pi^{\Gamma,c}, \quad X^n \mid h \sim P_{h/\sqrt{n},n}, \quad \pi^{\Gamma,c}(\cdot \mid X^n) := \text{posterior on } h \mid X^n$$

- marginal $\overline{P}_n(\cdot) = \int P_{h/\sqrt{n},n}(\cdot) d\pi^{\Gamma,c}(h)$
- define $Z_n := K^{-1}\Delta_n(X^n) = K^{-1}\Delta_n$

Theorem (Le Cam)

Let above conditions hold. Then for all $\epsilon > 0$, there exist $C < \infty$ and $N < \infty$ such that $c \geq C$ and $n \geq N$ imply

$$\int \left\| \mathsf{G}_{K,\Gamma}(\cdot \mid Z_n(x^n)) - \pi^{\Gamma,c}(\cdot \mid x^n) \right\|_{\mathsf{TV}} d\overline{P}_n(x^n) \leq \epsilon.$$

Remarks

- ▶ for LAN families, the *true* posterior under truncated Gaussian prior is (on average) Gaussian conditional on $Z_n = K^{-1}\Delta_n$
- other notions in which limits must be Gaussian

Theorem (van der Vaart Thm. 7.10)

Let $\{P_{\theta,n}\}$ be LAN at θ with information I_{θ} . If T_n converge in distribution under $P_{\theta+h/\sqrt{n},n}$ for each h, then

$$T_n \xrightarrow[P_{\theta+h/\sqrt{n},n}]{d} T$$

where T is a (randomized) statistic in $\{\mathcal{N}(h, I_{\theta}^{-1})\}_{h \in \mathbb{R}^d}$

Local Minimax Theorems

insight: we can reduce everything to estimation in Gaussian shift experiments $\mathcal{N}(h, K^{-1})$

Definition (Quasi-convexity)

A function $L: \mathbb{R}^d \to \mathbb{R}$ is *quasi-convex* if for each $\alpha \in \mathbb{R}$, the sublevel sets $\{x: L(x) \leq \alpha\}$ are convex

Anderson's Lemma

Lemma (Anderson)

Let L be symmetric and quasi-convex, $A \in \mathbb{R}^d \times \mathbb{R}^k$, and $X \sim \mathcal{N}(\mu, \Sigma)$. Then

$$\inf_{v} \mathbb{E}[L(AX - v)] = \mathbb{E}[L(A(X - \mu))] = \mathbb{E}[L(A\Sigma^{1/2}W)]$$

for $W \sim \mathcal{N}(0, I)$

The local asymptotic minimax theorem

Theorem

Let $L: \mathbb{R}^d \to \mathbb{R}$ be quasi-convex, symmetric, and bounded, and $\{P_{\theta,n}\}$ be LAN at θ_0 with precision (information) $K \succ 0$. Then

$$\begin{split} & \liminf_{c \to \infty} \inf_{n \to \infty} \inf_{\widehat{\theta}_n} \sup_{\|\theta - \theta_0\| \le \frac{c}{\sqrt{n}}} \mathbb{E}_{P_{\theta,n}} \left[L(\sqrt{n}(\widehat{\theta}_n(X^n) - \theta)) \right] \\ & \ge \mathbb{E}[L(K^{-1/2}W)], \quad W \sim \mathcal{N}(0, I). \end{split}$$

Local asymptotic minimax theorem for QMD families

Corollary

Let $\{P_{\theta}\}$ be QMD at θ_0 with Fisher information I_{θ_0} and $\pi_{c,n}$ be $\mathcal{N}(\theta_0, \frac{b(c)}{n}I)$, where $b(c) = \sqrt{c}$, truncated to $\|\theta - \theta_0\| \le c/\sqrt{n}$. Then

$$\liminf_{c\to\infty} \liminf_{n\to\infty} \inf_{\widehat{\theta}_n} \int \mathbb{E}_{P_{\theta}^n} \left[L(\sqrt{n}(\widehat{\theta}_n - \theta)) \right] d\pi_{c,n}(\theta) \geq \mathbb{E}[L(Z)]$$

for
$$Z \sim \mathcal{N}(0, I_{\theta_0}^{-1})$$
.

Proof of local asymptotic minimax theorem

• w.l.o.g. take $L(z) \in [0,1]$ and rescale to perturbations $\{h: ||h|| \le c\}$

Completing the proof: substitute in posteriors

▶ posterior $\pi(\cdot \mid x^n)$ on h similar to $G_{K,\Gamma}(\cdot \mid z_n(x^n))$

Extensions and Corollaries

• differentiable functions: estimating $\psi(\theta)$ for a smooth function ψ of θ

- ▶ non-parametric scenarios: we wish to estimate $\theta(P) \in \mathbb{R}^d$ for a "smooth" function θ
 - i. fix P_0 , construct sub-models

$$dP_h \propto (1 + hg)_+ dP_0$$

for function $g \in L^2(P_0)$, $P_0g = 0$

ii. evaluate derivatives

$$\lim_{h\downarrow 0}\frac{\theta(P_h)-\theta(P_0)}{h}$$