Asymptotic testing: basics and relative efficiencies

John Duchi

Stats 300b - Winter Quarter 2021

Outline

- Power and level of tests
- Sequences of local alternatives
- Comparison of tests

Reading: This previews some of what comes after, but

- van der Vaart, Asymptotic Statistics Ch. 14
- Lehmann & Romano, Testing Statistical Hypothesis Ch. 13.1, 13.2

Asymptotic level of a test

- Parameter θ of interest in family $\{P_{\theta}\}_{\theta \in \Theta}$
- Testing null $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$

Definition (Power function)

Given a sequences of test statistics T_n and critical regions K_n , (test rejects H_0 if $T_n \in K_n$), the *power function* is

$$\pi_n(\theta) := P_{\theta}(T_n \in K_n)$$

Definition

The uniform asymptotic and pointwise asymptotic levels of T_n for null H_0 are

$$\limsup_{n \to \infty} \sup_{\theta_0 \in \Theta_0} \pi_n(\theta_0) \quad \text{and} \quad \sup_{\theta_0 \in \Theta_0} \limsup_{n \to \infty} \pi_n(\theta_0)$$

How should we compare tests?

Idea 1: compare all powers

Let tests T_n⁽ⁱ⁾ have powers π_n⁽ⁱ⁾. Then T_n⁽¹⁾ is uniformly more powerful than T_n⁽²⁾ for testing H₀ : θ₀ ∈ Θ₀ against H₁ : θ₁ ∈ Θ₁ if

$$\begin{aligned} \pi_n^{(1)}(\theta) &\leq \pi_n^{(2)}(\theta) \ \text{ for all } \theta \in \Theta_0 \\ \pi_n^{(1)}(\theta) &\geq \pi_n^{(2)}(\theta) \ \text{ for all } \theta \in \Theta_1 \end{aligned}$$

unfortunately, way too strong

Idea 2: look at asymptotic power and level?

unfortunately, all reasonable tests have asymptotic power 1.

Example: the sign test for location

- $X_i \stackrel{\text{iid}}{\sim} P(\cdot \theta)$, P has symmetric density, $\theta \in \mathbb{R}$
- sign test of $H_0: \theta = 0$ against $H_1: \theta > 0$:

$$S_n := \frac{1}{n} \sum_{i=1}^n \operatorname{sign}(X_i), \text{ so } \operatorname{sign}(X_i) \stackrel{\text{iid}}{\sim} \operatorname{Uni}\{\pm 1\} \text{ under } H_0$$

while $\mu(\theta) := \mathbb{E}_{\theta}[S_n]$ satisfies $\mu(\theta) > 0$ under H_1

▶ reject H_0 if $\sqrt{n}S_n \ge z_{1-\alpha}$, where $\Phi(z_{1-\alpha}) = 1 - \alpha$ for standard normal CDF

Observation

$$\lim_{n \to \infty} \pi_n(\theta) = \begin{cases} \alpha & \text{if } \theta = 0\\ 1 & \text{if } \theta > 0 \end{cases}$$

Large deviations?

Idea 3: let's use large deviations and information theory

- developed by Hoeffding and Chernoff
- study limits of

$$\frac{1}{n}\log\pi_n(\theta)$$

• if cumulant generating function $\varphi(\lambda) = \log(\mathbb{E}[e^{\lambda X}])$ exists,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(\overline{X}_n\geq t)=\inf_{\lambda\geq 0}\left\{\varphi(\lambda)-\lambda t\right\}$$

issue: doesn't readily generalize to estimation

Local alternatives

Idea: study problems getting *closer* to one another as $n \to \infty$, so H_0, H_1 are harder to distinguish

local perturbation of

$$H_0: \theta = \theta_0$$
 to $H_1: \theta = \theta_0 + \frac{h}{\sqrt{n}}$

where h is fixed will give "right" behavior

Example (Gaussian mean shifts) Let $H_0: X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ and $H_1: X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(h/\sqrt{n}, 1)$

$$T_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \stackrel{\text{dist}}{=} \begin{cases} \mathcal{N}(0,1) & \text{under } H_0 \\ \mathcal{N}(h,1) & \text{under } H_1 \end{cases}$$

General idea

suppose there exists increasing mean function μ and variance σ s.t.

$$\sqrt{n} \frac{T_n - \mu(\theta_n)}{\sigma(\theta_n)} \xrightarrow[\theta]{d} \mathcal{N}(0, 1) \text{ where } \theta = \frac{h}{\sqrt{n}}$$

• then $\sqrt{n}(T_n - \mu(0)) \xrightarrow{d} \mathcal{N}(0, \sigma^2(0))$ for $\theta_n = 0$

▶ asymptotic level α test of $H_1: \theta = 0$ against $H_1: \theta > 0$

reject if
$$\sqrt{n}(T_n - \mu(0)) \ge \sigma(0)z_{1-\alpha}$$

Theorem

Assume $\mu'(0)$ exists and σ is continuous at 0. Then

$$\pi_n(\theta_n) \to 1 - \Phi\left(z_{1-\alpha} - h \frac{\mu'(0)}{\sigma(0)}\right) = \Phi\left(z_{\alpha} + h \frac{\mu'(0)}{\sigma(0)}\right)$$

Proof of theorem

Example: exponential families

exponential family model with density

$$p_{\theta}(x) = \exp(\theta^{T} x - A(\theta))$$

Observation If $\theta_n \to \theta_0 \in \text{int dom } A$, then for $X_i^n \stackrel{\text{iid}}{\sim} P_{\theta_n}$ and $\mu_n = \mathbb{E}[X_i^n] = \nabla A(\theta_n)$,

$$\sqrt{n}(\overline{X}_n^n-\mu_n)\overset{d}{\longrightarrow}\mathcal{N}(0,\nabla^2A(\theta_0))$$

Proposition For $\hat{\theta}_n = \operatorname{argmin}_{\theta} \{-P_n \log p_{\theta}(X)\} = (\nabla A)^{-1}(\overline{X}_n^n),$ $\sqrt{n}(\hat{\theta}_n - \theta_n) \xrightarrow{d}_{\theta_n} \mathcal{N}(0, \nabla^2 A(\theta_0)^{-1})$

Slope of a test

Definition

The *slope* of a sequence of tests T_n is $\mu'(0)/\sigma(0)$

idea: if slope is big, test is powerful:

$$1 - \Phi\left(z_{1-\alpha} - h\frac{\mu'(0)}{\sigma(0)}\right) = \Phi\left(z_{\alpha} + h\frac{\mu'(0)}{\sigma(0)}\right)$$
$$= \alpha + h\frac{\mu'(0)}{\sigma(0)}\phi(z_{\alpha}) + O(h^{2})$$

Relative efficiency of tests

• indices
$$\nu \in \mathbb{N}$$
, $\nu \to \infty$

• tests
$$H_0: \theta = 0$$
 vs. $H_1: \theta = \theta_{\nu}$

• for level α and power β , define

$$n_{\nu} := n_{\nu}(\alpha, \beta) = \inf \left\{ n \in \mathbb{N} : \pi_n(0) \le \alpha, \ \pi_n(\theta_{\nu}) \ge \beta \right\},\$$

smallest number of observations to distinguish $\theta=0$ from $\theta=\theta_{\nu}$

Definition (Asymptotic relative efficiency / Pitman efficiency) For tests $T_n^{(1)}$ and $T_n^{(2)}$ with distinguishing numbers $n_{\nu}^{(i)}$, the asymptotic relative efficiency of $T^{(1)}$ w.r.t. $T^{(2)}$ is

$$\lim_{\nu\to\infty}\frac{n_{\nu}^{(2)}}{n_{\nu}^{(1)}}.$$

An exact calculation of error

Definition

The total variation distance between distributions P and Q is

$$\|P - Q\|_{\mathsf{TV}} := \sup_{A} |P(A) - Q(A)| = \frac{1}{2} \int |p - q| d\mu$$

Lemma (Le Cam) The optimal test $\Psi : \mathcal{X} \to \{0,1\}$ of P against Q satisfies

$$\inf_{\Psi} \left\{ P(\Psi \neq 0) + Q(\Psi \neq 1) \right\} = 1 - \left\| P - Q \right\|_{\mathsf{TV}}$$

Asymptotic relative efficiency via slopes

Theorem (14.19 in van der Vaart, 13.2.1 in TSH) Let models $\{P_{n,\theta}\}$ satisfies $\lim_{\theta\to 0} \|P_{n,\theta} - P_{n,0}\|_{TV} = 0$. Assume

$$\sqrt{n}\frac{T_n^{(i)}-\mu_i(\theta_n)}{\sigma_i(\theta_n)} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

when $\theta_n \to 0$ and σ_i is continuous with $\mu'_i(0) > 0$. Then the ARE of $T^{(1)}$ against $T^{(2)}$, rejecting $H_0: \theta = 0$ when T_n is large, is

$$\left(rac{\mu_1'(0)/\sigma_1(0)}{\mu_2'(0)/\sigma_2(0)}
ight)^2$$
 for any $heta_n o 0, lpha < eta$

Location tests, revisited

Symmetric distribution with cdf F, $X_i \stackrel{\text{iid}}{\sim} F(\cdot - \theta_n)$ for $\theta_n > 0$ Example (The sign test) For test rejecting if $\sqrt{n}S_n \ge z_{1-\alpha}$,

$$\mu(\theta) = \mathbb{E}_{\theta}[S_n] = 2F(\theta) - 1, \quad \sigma^2(\theta) = 1 - (2F(\theta) - 1)^2$$

 $\mu'(0) = 2f(0)$ and $\sigma^2(0) = 1$. Asymptotic power for $\theta_n = h/\sqrt{n}$:

$$\pi_n(\theta_n) \rightarrow \Phi(z_\alpha + 2hf(0))$$

Example (T-tests) Rejects if $\overline{X}_n/\widehat{\sigma}_n$ large, $\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$. Asymptotics:

$$\sqrt{n}\left(rac{\overline{X}_n}{\widehat{\sigma}_n}-rac{h/\sqrt{n}}{\sigma}
ight) \xrightarrow[h/\sqrt{n}]{d} \mathcal{N}(0,1)$$

and
$$\sigma^2(heta) = 1$$
, $\mu(heta) = rac{ heta}{\sigma}$

Comparing the sign and T-test

Symmetric density $x \mapsto f(x - \theta)$, testing $H_0: \theta = 0$ vs. $H_1: \theta > 0$

Slope of sign: slope of
$$T$$
:
 $2f(0)$ $\operatorname{Var}_{f}(X)^{-1/2} = \frac{1}{\sqrt{\int x^{2}f(x)dx}}$

some cases:

- ▶ standard normal: slopes $\sqrt{\frac{2}{\pi}}$ versus 1, so *T*-test has relative efficiency $\pi/2 \approx 1.57$
- ► Laplace: f(x) = ¹/₂e^{-|x|}, slopes 1 versus ¹/_{√2} so sign test has relative efficiency 2

rough takeaway: fatter tails make the T-test worse and sign test more "robust"