Uniform Central Limit Theorems and Convergence in Distribution in Metric Spaces

John Duchi

Stats 300b - Winter Quarter 2021

Distributional convergence

Outline

- Convergence in distribution in metric spaces
- Compactness in function spaces
- Equi-continuity, finite dimensional convergence, and uniform limits in distribution
- Donsker classes

Reading: van der Vaart, *Asymptotic Statistics*, Chapter 18, 19.1–19.2

Weak convergence

Definition (Convergence in distribution) Random variables $X_n \xrightarrow{d} X$ if

 $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded, continous f.

- ▶ definition is the same whether X_n are ℝ-valued or metric-space valued
- sometimes measurability issues for metric-space valued RVs, which we ignore

Tightness

• metric space (\mathbb{D}, ρ)

Definition (Tightness)

A \mathbb{D} -valued random variable is *tight* if for all $\epsilon > 0$, there exists a compact $K \subset \mathbb{D}$ such that

$$\mathbb{P}(X \in K) \geq 1 - \epsilon.$$

Definition (Asymptotic tightness)

A sequence $X_n \in \mathbb{D}$ of such random variables is *asymptotically tight* if for all $\epsilon > 0$ there exists a compact $K \subset \mathbb{D}$ such that

$$\limsup_{n \to \infty} \mathbb{P}(X_n \notin K^{\delta}) < \epsilon \text{ for all } \delta > 0,$$

$$K^{\delta} := \{ y \in \mathbb{D} \mid \mathsf{dist}(y, K) < \delta \}$$

Prohorov's Theorem

Theorem

Let X_n be \mathbb{D} -valued random variables

- (i) If $X_n \xrightarrow{d} X$ where X is a tight random variable, then $\{X_n\}$ is asymptotically tight
- (ii) If X_n is asymptotically tight, there exists a subsequence $n_k \subset \mathbb{N}$ and a tight \mathbb{D} -valued random variable X such that $X_{n_k} \stackrel{d}{\to} X$

The idea of Prohorov's theorem

Continuous Functions on Compacta

- ► (*T*, *d*) is a compact metric space
- $L^{\infty}(T)$ is bounded measurable $f: T \to \mathbb{R}$
- Continuous function $\ell : T \times \mathcal{X} \to \mathbb{R}$, and $X_i \stackrel{\text{iid}}{\sim} P$

The empirical process is

$$Z_n(\cdot) := \frac{1}{\sqrt{n}} \sum_{i=1}^n \ell(\cdot, X_i) - P\ell(\cdot, X) = \sqrt{n}(P_n - P)\ell(\cdot, X)$$

- $\blacktriangleright Z_n \in L^{\infty}(T)$
- Z_n is continuous
- For any finite set t_1, \ldots, t_k ,

$$(Z_n(t_1),\ldots,Z_n(t_k)) \stackrel{d}{\rightarrow} \mathcal{N}\left(0,\operatorname{Cov}(\ell(t_i,X),\ell(t_j,X))_{i,j=1}^k\right)$$

Compactness in Function Spaces

Would like to talk about compactness in L[∞](T)
 our limits will be in

 $\mathcal{C}(T,\mathbb{R}) := \{ \text{continuous } f : T \to \mathbb{R} \}$

with metric
$$\left\|f-g\right\|_{\infty} = \sup_{t\in\mathcal{T}}\left|f(t)-g(t)\right|$$

Arzelà-Ascoli theorem key to compactness in C(T, R)

Uniform continuity

Definition (Modulus of continuity)

For $f : T \to \mathbb{R}$, the modulus of continuity of f is

$$\omega_f(\delta) := \sup \left\{ |f(t) - f(s)| : d(s, t) \le \delta \right\}$$

Definition (Uniform equicontinuity)

A collection $\mathcal{F} \subset \mathcal{C}(\mathcal{T}, \mathbb{R})$ is uniformly equicontinuous if

 $\lim_{\delta \downarrow 0} \sup_{f \in \mathcal{F}} \omega_f(\delta) = 0.$

The Arzelà-Ascoli Theorem

Theorem

Let (T, d) be a compact metric space. The following are equivalent for $\mathcal{F} \subset \mathcal{C}(T, \mathbb{R})$:

- (i) *F* is relatively compact (i.e., cl *F* is compact in the supremum norm topology)
- (ii) \mathcal{F} is uniformly equicontinuous and there exists $t_0 \in T$ such that $\sup_{f \in \mathcal{F}} |f(t_0)| < \infty$

 showing asymptotic tightness will roughly be a stochastic analogue of (ii), uniform equicontinuity

Uniform limits in distribution

Definition (Stochastic equi-continuity)

Let $X_n \in L^{\infty}(T)$ be random variables. The X_n are asymptotically stochastically equicontinuous if for all $\varepsilon, \eta > 0$ there is a partition T_1, \ldots, T_k of T such that

$$\limsup_{n\to\infty}\mathbb{P}\left(\max_{i}\sup_{s,t\in\mathcal{T}_{i}}|X_{n,s}-X_{n,t}|\geq\varepsilon\right)\leq\eta.$$

Two examples

Example (Linear functions in \mathbb{R}^d) Let $X_i \in \mathbb{R}^d$, $X_i \stackrel{\text{iid}}{\sim} P$ with $P ||X||_2^2 < \infty$. Then for $T = \{t \in \mathbb{R}^d \mid ||t||_2 \leq M\}$, the process $Z_{n,t} := \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i^\top t$ is asymptotically stochastically equicontinuous.

Example (Generalized linear models)

Let $(X_i, Y_i) \stackrel{\text{iid}}{\sim} P$ and consider losses $\ell(\theta; x, y) = h(\theta^\top x, y)$ for some Lipschitz *h* with $\mathbb{E}[|h(0, Y)|^2] < \infty$ and $P ||X||_2^2 < \infty$, $\theta \in \Theta$ compact. Then $Z_{n,t} := \frac{1}{\sqrt{n}} \sum_{i=1}^n \ell(\theta; X_i, Y_i)$ is A.S.E.

Weak convergence of functions

Theorem

For a process $X_n \in L^{\infty}(T)$, the following are equivalent. (i) $X_n \xrightarrow{d} X \in L^{\infty}(T)$, where X is tight (ii) we have both (a) Finite dimensional convergence (FIDI): for all $t_1^k = (t_1, \dots, t_k) \subset T$, there exists $Z_{t_1^k}$ such that $(X_{n,t_1}, \dots, X_{n,t_k}) \xrightarrow{d} Z_{t_1^k}$

(b) The X_n are asymptotically stochastically equicontinuous

1. Constructing a separable subset of T

2. Extending the process to continuous functions

3. Demonstrating convergence proper

Discussion

showed that limit {Z_t}_{t∈T} has uniformly continuous sample paths for a metric ρ on T for which (T, ρ) is a totally bounded metric space

From continuity to a limit distribution

Corollary

Let (T, d) be a totally bounded metric space. Then if

$$\lim_{\delta\downarrow 0}\limsup_{n\to\infty}\mathbb{P}\left(\sup_{d(s,t)\leq\delta}|X_{n,s}-X_{n,t}|\geq\varepsilon\right)=0, \quad \text{all } \varepsilon>0,$$

and X_n has finite dimensional convergence, $X_n \xrightarrow{d} X \in L^{\infty}(T)$ and X is tight

Donsker classes

A collection $\mathcal{F} \subset \mathcal{X} \to \mathbb{R}$ is *P*-Donsker if the processes

$$\left[\sqrt{n}(P_n-P)f\right]_{f\in\mathcal{F}}$$

converge in distribution to a tight limit in $L^\infty(\mathcal{F})$

this limit must be a *Gaussian process* $\mathbb{G} = \mathbb{G}_P \in L^{\infty}(\mathcal{F})$, i.e., \mathbb{G} is a random mapping $\mathbb{G} : \mathcal{F} \to \mathbb{R}$ with

(i)
$$\mathbb{E}[\mathbb{G}f] = 0$$

(ii) $\mathbb{E}[(\mathbb{G}f)^2] = Pf^2 - (Pf)^2$
(iii) $\mathbb{E}[\mathbb{G}f\mathbb{G}g] = \operatorname{Cov}_P(f,g) = Pfg - (Pf)(Pg)$
(iv) Equivalently to (i)-(iii), for any $f_1, \ldots, f_k \in \mathcal{F}$,

$$(\mathbb{G}f_1,\ldots,\mathbb{G}f_k)\sim \mathcal{N}\left(0,\operatorname{Cov}_P(f_i,f_j)_{i,j=1}^k\right).$$

Distributional convergence

Brownian bridges

Example (*P*-Brownian bridge) For $F_n(t) = P_n(X \le t)$ and $F(t) = P(X \le t)$, $\sqrt{n}(F_n(t) - F(t))_{t \in \mathbb{R}} \xrightarrow{d} \mathbb{G}_P$ in $L^{\infty}(\mathbb{R})$ and $(\mathbb{G}_t)_{t \in \mathbb{R}}$ has

$$\mathsf{Cov}(\mathbb{G}_t,\mathbb{G}_s)=P(X\leq s\wedge t)-P(X\leq s)P(X\leq t)$$

and Gaussian increments

Limiting Gaussian for Lipschitz losses

Example

Let $\Theta \subset \mathbb{R}^d$ be compact, $\ell : \Theta \times \mathcal{X} \to \mathbb{R}$ be a loss, where $\ell(\cdot, x)$ is M(x)-Lipschitz on Θ with $M \in L^2(P)$. Then

$$\sqrt{n}(P_n\ell(\cdot,X)-P\ell(\cdot,X)) \stackrel{d}{\rightarrow} \mathbb{G} \in \mathcal{C}(\Theta,\mathbb{R})$$

with $Cov(\mathbb{G}_{\theta_0},\mathbb{G}_{\theta_1}) = Cov(\ell(\theta_0,X),\ell(\theta_1,X))$

Why is this useful?

- ▶ let $\hat{\theta}_n$ be continuous w.r.t. supremum norm on T
- ▶ assume $\sqrt{n}(P_n P) \xrightarrow{d} \mathbb{G}$ in $L^{\infty}(T)$
- the continuous mapping theorem gives limit distributions of $\hat{\theta}_n(P_n)$

From entropies to Donsker classes

Theorem Let $\mathcal{F} \subset \{\mathcal{X} \to \mathbb{R}\}$ have envelope $F : \mathcal{X} \to \mathbb{R}_+$ and assume

$$\int_0^\infty \sup_Q \sqrt{\log N(\mathcal{F}, L^2(Q), (PF^2)^{1/2}\epsilon)} d\epsilon < \infty$$

where the supremum is over finitely supported Q. If $PF^2 < \infty$, then \mathcal{F} is P-Donsker.

Finalizing proof sketch

Examples

Example (VC classes)

If \mathcal{F} is a VC-class with envelope F, then $\log N(\mathcal{F}, L^r(Q), (PF^r)^{1/r}\epsilon) \lesssim r \mathsf{VC}(\mathcal{F}) \log \frac{1}{\epsilon}$, so

$$\sqrt{n}(P_n-P) \stackrel{d}{\to} \mathbb{G}$$

in $L^{\infty}(\mathcal{F})$

Example (Brownian bridge) By above, $\sqrt{n}[F_n(t) - F(t)]_{t \in \mathbb{R}} \xrightarrow{d} \mathbb{G}$, where $Cov(\mathbb{G}_t, \mathbb{G}_s) = F(t \wedge s) - F(t)F(s)$