VC Classes and Uniform Metric Entropies

John Duchi

Stats 300b - Winter Quarter 2021

Outline

VC Classes

- Sauer-Shelah lemma
- Uniform covering numbers

Reading:

- Wainwright, High Dimensional Statistics, Chapter 4.3
- van der Vaart, Asymptotic Statistics, Chapter 19.2

Motivation

we have seen

$$\mathbb{E}[\|P_n - P\|_{\mathcal{F}} \mid X_1^n] \le O(1) \int_0^\infty \sqrt{\frac{\sigma_{n,*}^2}{n} \log N(\mathcal{F}, L^2(P_n), \epsilon)} d\epsilon$$

where

$$\sigma_{n,*}^2 := \sup_{f\in\mathcal{F}} \frac{1}{n} \sum_{i=1}^n f(X_i)^2 = \sup_{f\in\mathcal{F}} P_n f^2.$$

today: develop some techniques for giving bounds on

$$\sup_{Q} \log N(\mathcal{F}, L^p(Q), \epsilon)$$

Complexities of finite sets

• let
$$\mathcal{F}(x_1^n) = \{(f(x_1), \dots, f(x_n))\}_{f \in \mathcal{F}}$$

Some classes take only finitely many values, i.e. card(𝓕(𝑥ⁿ)) < ∞</p>

Lemma

For Rademacher complexity $R_n(\mathcal{F} \mid x_1^n) = \mathbb{E}[\sup_{f \in \mathcal{F}} |\sum_{i=1}^n \varepsilon_i f(x_i)|],$ $R_n(\mathcal{F} \mid x_1^n) \le O(1)\sqrt{n\sigma_{n,*}^2 \log \operatorname{card}(\mathcal{F}(x_1^n))},$ where $\sigma_{n,*}^2 = \sup_{f \in \mathcal{F}} P_n f^2.$

Polynomial discrimination

class has polynomial discrimination of order d if

$\operatorname{card}(\mathcal{F}(x_1^n)) \leq C(n+1)^d$

where $C < \infty$ is a constant

▶ some classes only grow polynomially as $n \to \infty$

Corollary

If ${\mathcal F}$ has order d polynomial discrimination and $\|f\|_\infty \leq b$ for $f \in {\mathcal F},$ then

$$\mathbb{E}[\|P_n - P\|_{\mathcal{F}}] \le O(1)b\sqrt{\frac{d\log(Cn)}{n}}$$

Vapnik-Chervonenkis Classes: Shattering

 collection of classes that enjoy uniform laws, covering numbers, and polynomial discrimination

Definition (Shattering)

Let C be a collection of sets and $x_1^n = \{x_1, \ldots, x_n\}$ a collection of points. A *labeling* of x_1^n is a vector $y \in \{\pm 1\}^n$. The collection C shatters x_1^n if for all labelings y, there exists $A \in C$ s.t.

$$\begin{cases} x_i \in A & \text{if } y_i = 1 \\ x_i \notin A & \text{if } y_i = -1 \end{cases}$$

Examples of shattering

- ▶ let C be half-spaces in \mathbb{R}^2
- C shatters any 3 non-collinear points $x_1^3 \subset \mathbb{R}^2$

Vapnik-Chervonenkis (VC) Dimension

Definition For $\mathcal{C} \subset 2^{\mathcal{X}}$ the *shattering number* of \mathcal{C} on x_1^n is

$$\Delta_n(\mathcal{C}, x_1^n) := \mathsf{card} \left\{ A \cap \{x_1, \dots, x_n\} \text{ s.t. } A \in \mathcal{C} \right\}$$

i.e. the number of labelings C realizes on x_1^n

Definition (Vapnik-Chervonenkis (VC) Dimension) The VC-dimension of C is

$$\mathsf{VC}(\mathcal{C}) := \sup \left\{ n \in \mathbb{N} : \sup_{\mathbf{x}_1^n \in \mathcal{X}^n} \Delta_n(\mathcal{C}, \mathbf{x}_1^n) = 2^n \right\}.$$

Sauer-Shelah Lemma

• amazing fact: VC classes have polynomial discrimination Lemma (Sauer-Shelah) For any collection of sets $C \subset 2^{\mathcal{X}}$.

$$\sup_{x_1^n \in \mathcal{X}^n} \Delta_n(\mathcal{C}, x_1^n) \leq \sum_{j=0}^{\mathsf{VC}(\mathcal{C})} \binom{n}{j} = O(n^{\mathsf{VC}(\mathcal{C})}).$$

consequence: whenever $\max_{x_1^n} \Delta_n(\mathcal{C}, x_1^n) < 2^n,$ then $\mathsf{VC}(\mathcal{C}) < n$ and

$$\Delta_n(\mathcal{C}, x_1^n) = O(n^{\mathsf{VC}(\mathcal{C})}).$$

(Proofs on course webpage)

VC Dimension

Examples of VC classes

For
$$C$$
 = lower left boxes in \mathbb{R}^d ,

$$VC(\mathcal{C}) = O(d)$$

For
$$C$$
 = halfspaces in \mathbb{R}^d ,

$$VC(\mathcal{C}) = O(d)$$

Uniform covering numbers with VC-classes

• define
$$L^r(P)$$
 norm on sets $A \subset \mathcal{X}$ by
 $\|1_A - 1_B\|_{L^r(P)}^r := \int |1\{x \in A\} - 1\{x \in B\} |^r dP(x)$

Theorem

There exists constant $K < \infty$ such that for any $\mathcal{C} \subset 2^{\mathcal{X}}$, for all $\epsilon > 0$

$$\sup_{P} N(\mathcal{C}, L^{r}(P), \epsilon) \leq K \cdot \mathsf{VC}(\mathcal{C})(4e)^{\mathsf{VC}(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{\mathsf{VC}(\mathcal{C}) \cdot r}$$

intuition: only realizing polynomially many boxes allows us to cover with ϵ -separated "boxes" of probability

VC function classes

Definition

The subgraph of a function $f : \mathcal{X} \to \mathbb{R}$ at level t is the set $S_{f,t} := \{x \mid f(x) \leq t\}$. The subgraph class of a collection \mathcal{F} is the collection

$$\mathcal{S}(\mathcal{F}) := \{S_{f,0}\}_{f\in\mathcal{F}}.$$

The collection $\mathcal{F} \subset \mathcal{X} \to \mathbb{R}$ has VC-dimension VC($\mathcal{S}(\mathcal{F})$).

- linear discriminators $\mathcal{F} = \{f(x) = \operatorname{sign}(x^T\theta)\}$
- ellipsoidal discriminators $\mathcal{F} = \{f(x) = \operatorname{sign}((x - x_0)^T \Sigma^{-1} (x - x_0) - b)\}$

Preservation of VC-dimension

often useful to build up VC classes from smaller ones

Proposition (van der Vaart and Wellner 1996, Lemma 2.6.17) Let C, D be VC-classes of sets. The following are VC-classes: (i) $C^c = \{C^c \mid C \in C\}$, and $VC(C^c) = VC(C)$ (ii) $C \sqcap D := \{C \cap D \mid C \in C, D \in D\}$, and $VC(C \sqcap D) \lesssim VC(C) + VC(D)$ (iii) $C \sqcup D := \{C \cup D \mid C \in C, D \in D\}$, and $VC(C \sqcup D) \lesssim VC(C) + VC(D)$

VC classes from vector spaces

Proposition (Finite-dimensional vector spaces)

Let \mathcal{G} be a d-dimensional vector space of functions $\mathcal{X} \to \mathbb{R}$. Then the subgraph class $\mathcal{S}(\mathcal{G})$ has $VC(\mathcal{S}(\mathcal{G})) \leq d$.