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Motivation

I we have seen

E[‖Pn − P‖F | X
n
1 ] ≤ O(1)

∫ ∞
0

√
σ2n,∗
n

logN(F , L2(Pn), ε)dε

where

σ2n,∗ := sup
f ∈F

1

n

n∑
i=1

f (Xi )
2 = sup

f ∈F
Pnf

2.

I today: develop some techniques for giving bounds on

sup
Q

logN(F , Lp(Q), ε)
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Complexities of finite sets

I let F(xn1 ) = {(f (x1), . . . , f (xn))}f ∈F
I some classes take only finitely many values, i.e.

card(F(xn1 )) <∞

Lemma
For Rademacher complexity
Rn(F | xn1 ) = E[supf ∈F |

∑n
i=1 εi f (xi )|],

Rn(F | xn1 ) ≤ O(1)
√

nσ2n,∗ log card(F(xn1 )),

where σ2n,∗ = supf ∈F Pnf
2.
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Polynomial discrimination

I class has polynomial discrimination of order d if

card(F(xn1 )) ≤ C (n + 1)d

where C <∞ is a constant

I some classes only grow polynomially as n→∞

Corollary

If F has order d polynomial discrimination and ‖f ‖∞ ≤ b for
f ∈ F , then

E[‖Pn − P‖F ] ≤ O(1)b

√
d log(Cn)

n
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Vapnik-Chervonenkis Classes: Shattering

I collection of classes that enjoy uniform laws, covering
numbers, and polynomial discrimination

Definition (Shattering)

Let C be a collection of sets and xn1 = {x1, . . . , xn} a collection of
points. A labeling of xn1 is a vector y ∈ {±1}n. The collection C
shatters xn1 if for all labelings y , there exists A ∈ C s.t.{

xi ∈ A if yi = 1

xi 6∈ A if yi = −1.
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Examples of shattering

I let C be half-spaces in R2

I C shatters any 3 non-collinear points x31 ⊂ R2
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Vapnik-Chervonenkis (VC) Dimension

Definition
For C ⊂ 2X the shattering number of C on xn1 is

∆n(C, xn1 ) := card {A ∩ {x1, . . . , xn} s.t. A ∈ C}

i.e. the number of labelings C realizes on xn1

Definition (Vapnik-Chervonenkis (VC) Dimension)

The VC-dimension of C is

VC(C) := sup

{
n ∈ N : sup

xn1∈X n
∆n(C, xn1 ) = 2n

}
.
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Sauer-Shelah Lemma

I amazing fact: VC classes have polynomial discrimination

Lemma (Sauer-Shelah)

For any collection of sets C ⊂ 2X ,

sup
xn1∈X n

∆n(C, xn1 ) ≤
VC(C)∑
j=0

(
n

j

)
= O(nVC(C)).

consequence: whenever maxxn1 ∆n(C, xn1 ) < 2n, then VC(C) < n
and

∆n(C, xn1 ) = O(nVC(C)).

(Proofs on course webpage)
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Examples of VC classes

I For C = lower left boxes in Rd ,

VC(C) = O(d)

I For C = halfspaces in Rd ,

VC(C) = O(d)
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Uniform covering numbers with VC-classes

I define Lr (P) norm on sets A ⊂ X by

‖1A − 1B‖rLr (P) :=

∫
|1 {x ∈ A} − 1 {x ∈ B} |rdP(x)

Theorem
There exists constant K <∞ such that for any C ⊂ 2X , for all
ε > 0

sup
P

N(C, Lr (P), ε) ≤ K · VC(C)(4e)VC(C)
(

1

ε

)VC(C)·r
.

intuition: only realizing polynomially many boxes allows us to
cover with ε-separated “boxes” of probability
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VC function classes

Definition
The subgraph of a function f : X → R at level t is the set
Sf ,t := {x | f (x) ≤ t}. The subgraph class of a collection F is the
collection

S(F) := {Sf ,0}f ∈F .

The collection F ⊂ X → R has VC-dimension VC(S(F)).

I linear discriminators F = {f (x) = sign(xT θ)}
I ellipsoidal discriminators
F = {f (x) = sign((x − x0)TΣ−1(x − x0)− b)}
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Preservation of VC-dimension

I often useful to build up VC classes from smaller ones

Proposition (van der Vaart and Wellner 1996, Lemma 2.6.17)

Let C,D be VC-classes of sets. The following are VC-classes:

(i) Cc = {C c | C ∈ C}, and VC(Cc) = VC(C)

(ii) C u D := {C ∩ D | C ∈ C,D ∈ D}, and
VC(C u D) . VC(C) + VC(D)

(iii) C t D := {C ∪ D | C ∈ C,D ∈ D}, and
VC(C t D) . VC(C) + VC(D)
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VC classes from vector spaces

Proposition (Finite-dimensional vector spaces)

Let G be a d-dimensional vector space of functions X → R. Then
the subgraph class S(G) has VC(S(G)) ≤ d .
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