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Outline

I Sub-gaussian processes

I Rademacher complexities

I Chaining and Dudley’s entropy integral

I Comparison inequalities

Reading:

I Wainwright, High Dimensional Statistics, Chapters 5.1–5.3,
5.4–5.6 for extra perspective

I Vershynin, High Dimensional Probability, Chapters 8.1–8.4.
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Motivation

I multiple examples of bounded supremum with expectation

I always have

E [‖Pn − P‖F ] ≤ 2E

[
E

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

εi f (Xi )

∣∣∣∣∣ | X n
1

]]

I question today: bound processes like f 7→ 1
n

∑n
i=1 εi f (xi )

(fixing xi )

I naive idea: just discretize F , then use maxima
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Sub-Gaussian Processes

Definition
Any collection {Xt}t∈T of R-valued random variables is a
stochastic process.

I we always assume the process is separable, so there exists a
countable T ′ ⊂ T such that

sup
s,t∈T ′

|Xt − Xs | = sup
s,t∈T

|Xt − Xs |

Definition
The process {Xt}t∈T is a sub-Gaussian-process for a metric ρ on
T if

E[exp(λ(Xs − Xt))] ≤ exp

(
λ2ρ(s, t)2

2

)
for λ ∈ R, s, t ∈ T .
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Examples of sub-Gaussian processes
Example (Gaussian process)

Let T = Rd and Z ∼ N (0, Id×d). Then Xt := 〈Z , t〉 satisfies

E[exp(λ(Xs − Xt))] = E [exp(λ〈Z , s − t〉)] = exp

(
λ2 ‖s − t‖2

2

2

)

so ρ(s, t) = ‖s − t‖2

Example (Rademacher processes)

Let T ⊂ V, vector space with norm ‖·‖, and ` : T ×X → R be

M(x)-Lipschitz in its first argument. For xn1 ∈ X n and εi
iid∼ {±1},

Zt :=
n∑

i=1

εi`(t, xi )

is sub-Gaussian with ρ(s, t)2 =
∑n

i=1 M(xi )
2 ‖s − t‖2.
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Another example: the symmetrized process

Example (Symmetrized process)

Fix xn1 . The process f 7→ 1√
n

∑n
i=1 εi f (xi ) is ‖·‖L2(Pn)

sub-Gaussian.
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Chaining

I saw covering numbers allowed “one” discretization

I chaining: a multi-scale (all scales) discretization of set

Let {Xt}t∈T be a mean-zero separable ρ-sub-Gaussian process

Idea: approximate supt∈T Xt by finer and finer approximations

I let diam(T ) = sups,t∈T ρ(s, t)

I take increasing sequence of covers

T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ T

I Tk is the minimal 2−k diam(T ) cover of T
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Chaining sequences

I assume w.l.o.g. that T is finite

I for t ∈ T define

πi (t) := argmin
ti∈Ti

ρ(ti , t)

I for fixed k ∈ N also define composed “projection”

π(i)(t) := πi ◦ πi+1 ◦ · · · ◦ πk−1(t)

Observation
For any k and t ∈ Tk , we have

Xt =
k∑

i=1

(Xπ(i)(t) − Xπ(i−1)(t)) + Xπ(0)(t)
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A little counting

max
t∈Tk

Xt ≤
k∑

i=1

max
t∈Tk

(
Xπ(i)(t) − Xπ(i−1)(t)

)
︸ ︷︷ ︸

How many points?

+Xt0

Lemma
For D = diam(T ) and k ∈ N,

E
[

max
t∈Tk

Xt

]
≤

k∑
i=1

√
8 · 2−2iD2 logN(T , ρ, 2−iD)

Processes 7–9



Dudley’s entropy integral

Theorem (Dudley)

For any ρ-sub-Gaussian process {Xt}t∈T ,

E
[

sup
t∈T

Xt

]
≤ C

∫ ∞
0

√
logN(T , ρ, u)du.
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A refined entropy integral bound

Corollary

For any ρ-sub-Gaussian process {Xt}t∈T and δ > 0,

E
[

sup
t∈T

Xt

]
≤ C

(
E

[
sup

ρ(s,t)≤δ
(Xt − Xs)

]
+ J(δ,T )

)

where

J(δ,T ) :=

∫ ∞
δ

√
logN(T , ρ, u)du
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Absolute values in suprema

I need to recenter process to work out

I for any t0 ∈ T , obtain

E[sup
t∈T
|Xt |] ≤ E[sup

t∈T
Xt ] + E[sup

t∈T
(−Xt)] + E[|Xt0 |]

I for a symmetric process,

E[sup
t∈T
|Xt |] ≤ 2E[sup

t∈T
Xt ] + inf

t0∈T
E[|Xt0 |].
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Finite sample bounds for Lipschitz functions

I function class F = {`(θ, ·)}θ∈Θ

I t 7→ `(t, x) is M(x)-Lipschitz

I know that logN(Θ, ‖·‖2 , ε) . d log diam(Θ)
ε

Proposition

For this class,

E [‖Pn − P‖F ] .
1√
n

diam(Θ)
√
PM2

√
d .
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A uniform concentration bound for Lipschitz functions

I as in previous slide, except M(x) ≤ M <∞ for all x

Corollary

There exists a (numerical) constant C such that for all t ≥ 0,

P

(
sup
θ∈Θ
|Pn`(θ,X )− P`(θ,X )| ≥ CM diam(Θ)

√
d + t

n

)
≤ exp(−t).
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Comparison inequalities

I sometimes nice to compare expectation of complicated
quantity to a simpler one

I e.g. compare function class φ ◦ F = {φ ◦ f }f ∈F to F

Example (Rademacher complexities of norm balls)

Say Θ = {θ ∈ Rd | ‖θ‖2 ≤ r}, X ⊂ Rd . Then function class
F = {f (x) = θT x}θ∈Θ satisfies

1

n
Rn(F | xn1 ) ≤ r√

n

√√√√1

n

n∑
i=1

‖xi‖2
2
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An ordering inequality

I mean-zero Gaussian vectors X ∈ Rn,Y ∈ Rn, with

E[X 2
i ] = E[Y 2

i ], i = 1, . . . , n

and disjoint index sets A,B ⊂ [n]× [n] with

E[XiXj ] ≤ E[YiYj ] for (i , j) ∈ A

E[XiXj ] ≥ E[YiYj ] for (i , j) ∈ B

E[XiXj ] = E[YiYj ] for (i , j) 6∈ A ∪ B

Theorem
Let F : Rn → R be C2 with ∇2

ijF (x) ≥ 0 for all (i , j) ∈ A and

∇2
ijF (x) ≤ 0 for (i , j) ∈ B. Then

E[F (X )] ≤ E[F (Y )].
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Slepian’s inequality

Corollary (Slepian’s inequality)

Let X ,Y be mean-zero Gaussian vectors with
E[(Xi − Xj)

2] ≤ E[(Yi − Yj)
2] and E[X 2

i ] = E[Y 2
i ]. Then

E[max
i≤n

Xi ] ≤ E[max
i≤n

Yi ].
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Proof of Gaussian ordering inequality

I Starting point: rotating Gaussians,

Z (θ) := X cos θ + Y sin θ

so Z (0) = X and Z (π/2) = Y

I show that function

h(θ) := E[F (Z (θ))]

satisfies h′(θ) ≥ 0, all θ ∈ [0, π/2]

I notation: X ∼ N (0,Σ) and Y ∼ N (0, Γ),
Ż (θ) = −X sin θ + Y cos θ, ρij(θ) = (sin θ cos θ)(Γij − Σij)

[
Zi (θ)

Żj(θ)

]
∼ N

(
0,

[
Σii ρij(θ)
ρij(θ) Σjj

])
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Proof of Gaussian ordering inequality continued

Lemma
If [

V1

V2

]
∼ N

(
0,

[
σ2 ρ
ρ σ2

])
then V2 = ρ

σ2V1 + W for W ∼ N (0, (1− ρ2

σ4 )σ2).

Processes 7–19



Finalizing proof of Gaussian ordering inequality

Lemma
For random vectors U(i) ∈ Rn that may depend on θ and Z,

h′(θ) =
n∑

j=1

n∑
i=1

E
[
∇2

ijF (U(i))
ρij(θ)

Σii
Żj(θ)2

]
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Gaussian contraction
Theorem (Sudakov-Fernique)

Let X ,Y be mean-zero Gaussian vectors with
E[(Xi − Xj)

2] ≤ E[(Yi − Yj)
2] for all i , j . Then

E[max
i≤n

Xi ] ≤ E[max
i≤n

Yi ].

Example (Gaussian complexity)

Gaussian complexity of a set T ⊂ Rn is

Gn(T ) := E
[

sup
t∈T
〈t, g〉

]
for g ∼ N (0, In).

Let φi : R→ R be non-expansive. Then for φ(t) = (φi (ti ))ni=1

Gn(φ(T )) ≤ Gn(T )
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Rademacher contraction

Theorem (Ledoux-Talagrand contraction)

For a bounded set T ⊂ Rn with Rademacher complexity

Rn(T ) := E
[

sup
t∈T
|〈ε, t〉|

]
,

if φi : R→ R are M-Lipschitz and φi (0) = 0, then

E
[

sup
t∈T
|〈φ(t), ε〉|

]
≤ 2MRn(T ).

I some consequences in exercises

I important in generalization guarantees for machine learning
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