Processes

Sub-Gaussian Processes and Chaining

John Duchi

Stats 300b — Winter Quarter 2021



Outline

» Sub-gaussian processes
» Rademacher complexities
» Chaining and Dudley’s entropy integral

» Comparison inequalities
Reading:
» Wainwright, High Dimensional Statistics, Chapters 5.1-5.3,

5.4-5.6 for extra perspective
» Vershynin, High Dimensional Probability, Chapters 8.1-8.4.
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Motivation

» multiple examples of bounded supremum with expectation

> always have

n

%Ze;f(x;)

i=1

E |sup | X7

E[l|Pn— Pllz] <2E
feF

> question today: bound processes like f — 1 57 | &;f(x;)
(fixing x;)

» naive idea: just discretize F, then use maxima

Processes 7-3



Sub-Gaussian Processes

Definition
Any collection {X;};c7 of R-valued random variables is a
stochastic process.

> we always assume the process is separable, so there exists a
countable 7" C T such that

sup | Xy — Xs| = sup | X¢ — X
siteT’ steT

Definition
The process {X;}tc1 is a sub-Gaussian-process for a metric p on
T if

2 2
Elexp(A(Xs — X¢))] < exp ()\'O(;t)> for A\eR, s,teT.
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Examples of sub-Gaussian processes
Example (Gaussian process)
Let T=R% and Z ~ N(0, lyxq). Then X; := (Z,t) satisfies

- oy — e [ Ml 23
E[exp(A(Xs — X¢))] = E [exp(A(Z,s — t))] = exp 5

so p(s, t) = [|s — tll

Example (Rademacher processes)

Let T C V, vector space with norm ||-||, and £: T x X — R be
M(x)-Lipschitz in its first argument. For x' € X" and ¢; s {1},

Zy = Z 6;€(t, X,')
i=1

is sub-Gaussian with p(s, t)2 = 37, M(x,)? s — t||*.
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Another example: the symmetrized process

Example (Symmetrized process)
Fix x{. The process f ﬁ 2 eif(xi) is [l 2(p,)
sub-Gaussian.
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Chaining

P saw covering numbers allowed “one” discretization

» chaining: a multi-scale (all scales) discretization of set

Let {X:}teT be a mean-zero separable p-sub-Gaussian process

Idea: approximate sup;c 1 X: by finer and finer approximations

> let diam(T) = sup; s 7 (5, t)
> take increasing sequence of covers

TocThcT,c---CT

» T, is the minimal 2% diam(T) cover of T
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Chaining sequences

» assume w.l.o.g. that T is finite
> for t € T define

mi(t) = a;gerr;inp(tz, )

> for fixed k € N also define composed “projection”

W(i)(t) = TMjOMjy10---0 ﬂ'k,l(t)

Observation
For any k and t € Ty, we have

k

Xe = (Xetoey = Xati-n(r)) + Xeo)(t)
i—1
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A little counting

k

mpce < 3 max (Xeogg ~ Xpi-aig) +e

= ~\"~

How many points?

Lemma
For D = dlam(T) and k € N,

k
E Xe| < \/8-2—2"D2I N(T,p,27'D
] < 3B 2o 270
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Dudley’s entropy integral

Theorem (Dudley)

For any p-sub-Gaussian process { Xt }tcT,

teT

o
E [supXt} < C/ VI0og N(T, p, u)du.
0
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A refined entropy integral bound

Corollary
For any p-sub-Gaussian process {X¢}te1 and 6 > 0,

E [supXt] <C (E
teT

J(6,T) = /500 V0og N(T, p, u)du

sup (Xt - Xs)
p(s,t)<o

+ J(9, T))

where
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Absolute values in suprema

» need to recenter process to work out
» for any tg € T, obtain

Efsup | X:|] < E[sup X¢] + E[sup(—X¢)] + E[| X,|]
teT teT teT

> for a symmetric process,

E[sup | X¢]] < 2E[sup X¢] + inf E[| Xy, |]-
teT teT toeT
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Finite sample bounds for Lipschitz functions

» function class F = {£(0,-)}sco
» t— {(t,x)is M(x)-Lipschitz
» know that log N(©, ||-||5,€) < dlog diamT(e)

Proposition
For this class,

E[||P,— Pl < dlam(@)\/ M2V/d.

~ U
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A uniform concentration bound for Lipschitz functions

» as in previous slide, except M(x) < M < oo for all x

Corollary
There exists a (numerical) constant C such that for all t > 0,

P <sup Pa0(0,X) — PU(6,X)| > CM diam(®©) d: t>
0O

< exp(—t).
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Comparison inequalities

P> sometimes nice to compare expectation of complicated
quantity to a simpler one

» e.g. compare function class p o F = {¢p o f}rcr to F

Example (Rademacher complexities of norm balls)

Say © = {# € R | ||0]|, < r}, X C RY. Then function class
F = {f(x) = 0" x}gco satisfies

3

1
Ro(F | 1) <

S|

2
[1xill2

Sl

Il
MR
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An ordering inequality

» mean-zero Gaussian vectors X € R" Y € R”, with
E[X?] =E[Y?], i=1,...,n
and disjoint index sets A, B C [n] x [n] with

EX:X)] < E[Y;Y;] for (i.)) € A

E[XiX;] > E[Y;Y;] for (i,j) € B

E[XiXj] = E[YiY]] for (i.j) ¢ AUB
Theorem
Let F:R" — R be C? with V,?jF(x) >0 for all (i,j) € A and
ViF(x) <0 for (i,j) € B. Then

E[F(X)] < E[F(Y)]-
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Slepian’s inequality

Corollary (Slepian’s inequality)

Let X,Y be mean-zero Gaussian vectors with
E[(X; — X))2] < E[(Y; — ¥;)?] and E[X?] = E[Y?]. Then

E[max Xj] < E[max Yj].
i<n i<n
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Proof of Gaussian ordering inequality

» Starting point: rotating Gaussians,
Z(0) := X cosf + Ysinf

so Z(0) =X and Z(7/2) =Y

» show that function
h(8) := E[F(Z(0))]

satisfies H'(0) > 0, all § € [0,7/2]
> notation: X ~ N(0,%) and Y ~ N(0,T),
Z(0) = —Xsinf + Y cosf, p;j(0) = (sinfcosd) (I — Xj)

-0 1)
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Proof of Gaussian ordering inequality continued

Lemma

(6L 2)

then Vo = 5 Vi + W for W ~ N(0, (1 — £)0?).
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Finalizing proof of Gaussian ordering inequality

Lemma
For random vectors U(i) € R" that may depend on 6 and Z,

#6) = Y- S | V3R L2 207

j=1 i=1

Processes

7-20



Gaussian contraction
Theorem (Sudakov-Fernique)

Let X, Y be mean-zero Gaussian vectors with
E[(X; — X;)2] <E[(Y; — Y;)?] for all i,j. Then

E[max X;] < E[max Y].
i<n i<n

Example (Gaussian complexity)
Gaussian complexity of a set T C R" is

Go(T) :=E [sup(t,g>] for g ~ N(0, Ip).
teT

Let ¢; : R — R be non-expansive. Then for ¢(t) = (¢i(t;))7_;

Gn(¢(T)) < Ga(T)
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Rademacher contraction

Theorem (Ledoux-Talagrand contraction)
For a bounded set T C R" with Rademacher complexity

Ro(T) =% [sup (e,

if ;i - R — R are M-Lipschitz and ¢;(0) = 0, then

E s (6(0).2) | < 2MRA(T).

teT

P> some consequences in exercises

P important in generalization guarantees for machine learning
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