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Outline

I Sub-Gaussian and sub-exponential random variables

I Symmetrization

I Applications to uniform laws

I Azuma-Hoeffding inequalities

I Doob martingales and bounded differences inequality

Reading: (this is more than sufficient)

I Wainwright, High Dimensional Statistics, Chapters 2.1–2.2

I Vershynin, High Dimensional Probability, Chapters 1–2.

I Additional perspective: van der Vaart, Asymptotic Statistics,
Chapter 19.1–19.2
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Concentration inequalities

inequalities of the form

P(X ≥ t) ≤ φ(t)

where φ goes to zero (quickly) as t →∞

often, want to deal with sums, so instead (e.g.)

P(X n ≥ t) ≤ φn(t)

I underpin many ULLNs

I key in high-dimensional statistics (concentration of measure)
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The familiar Markov bounds

Proposition (Markov’s inequality)

If X ≥ 0, then P(X ≥ t) ≤ E[X ]
t for all t ≥ 0.

Proposition (Chebyshev’s inequality)

For any t ≥ 0, P(|X − E[X ]| ≥ t) ≤ Var(X )
t2
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Sub-gaussian random variables
A mean-zero random variable X is σ2-sub-Gaussian if

E[exp(λX )] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R.

(many equivalent definitions; see Vershynin or exercises)

Example

If X ∼ N (µ, σ2), then

E[exp(λ(X − E[X ]))] =

Example

If X ∈ [a, b], then

E[exp(λ(X − E[X ]))] ≤ exp

(
λ2(b − a)2

8

)
.
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Tensorization identities

I variance inequality familiar: if Xi are independent,

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi )

Proposition

If Xi are independent and σ2i -sub-Gaussian, then
∑n

i=1 Xi is∑n
i=1 σ

2
i sub-Gaussian.
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Chernoff and Hoeffding Inequalities
Corollary (Chernoff bounds for sub-Gaussian random variables)

Let X be σ2-sub-Gaussian. Then

P (X − E[X ] ≥ t) ≤ exp

(
− t2

2σ2

)
.

Corollary (Hoeffding bounds)

If Xi are independent σ2i -sub-Gaussian random variables,

P

(
1

n

n∑
i=1

(Xi − E[Xi ]) ≥ t

)
≤ exp

(
− nt2

2
n

∑n
i=1 σ

2
i

)
.

I usually stated as Xi ∈ [a, b], so bound is exp(− 2nt2

(b−a)2 )
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Maxima of sub-Gaussian random variables

I often want to control deviations of maximum (supremum in
ULLNs)

Proposition

Let {Zi}Ni=1 be σ2-sub-Gaussian (not necessarily independent).
Then

E
[

max
i

Zi

]
≤
√

2σ2 logN.
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Sub-exponential random variables

I more nuanced control if variance small, or sub-gaussian
parameter unavailable

Definition (Sub-exponential)

A random variable X is (τ2, b)-sub-exponential if

E[exp(λ(X − E[X ]))] ≤ exp

(
λ2τ2

2

)
for |λ| ≤ 1

b

Proposition (Tail bounds for sub-exponentials)

If X is (τ2, b)-sub-exponential, then

P (|X − E[X ]| ≥ t) ≤ 2 exp

(
−min

{
t2

2τ2
,
t

b

})
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Examples

Example (Bounded random variables)

If X ∈ [−b, b], E[X ] = 0, and Var(X ) = σ2, X is
(2σ2, b)-sub-exponential.

I see also Vershynin, Ch. 2
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Tensorization

Proposition (Tensorization)

Let Xi be independent (τ2i , bi )-sub-exponential. Then
∑n

i=1 Xi is
(
∑n

i=1 τ
2
i ,maxi≤n bi )-sub-exponential.

Corollary (Bernstein-type bounds)

If |Xi | ≤ b and Var(Xi ) ≤ σ2, then

P(|X n − E[X n]| ≥ t) ≤ 2 exp

(
−c min

{
nt2

σ2
,
nt

b

})
for t ≥ 0.
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Symmetrization

I important idea in uniform laws of large numbers and
concentration

I Banach space theory (surprisingly) develops many of these
ideas

motivation: for ULLNs, Markov’s inequality gives

P
(

sup
f ∈F

(Pn − P)f ≥ t

)
≤ E[supf ∈F (Pn − P)f ]

t

sometimes if Pn − P is symmetric, it’s easier to deal with
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Symmetrization in a vector space

I Xi are arbitrary vectors in a normed space with norm ‖·‖
I εi ∈ {±1} are i.i.d. uniform signs (Rademacher variables)

Theorem
Let F : R+ → R+ be convex, increasing, and Xi be independent.
Then

E

[
F

(∥∥∥∥∥
n∑

i=1

(Xi − E[Xi ])

∥∥∥∥∥
)]
≤ E

[
F

(
2

∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥
)]

.
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Consequences

Corollary

If E[Xi ] = 0, for any norm ‖·‖ and p ≥ 1, we have

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]
≤ 2pE

[∥∥∥∥∥
n∑

i=1

εiXi

∥∥∥∥∥
p]
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Consequences

I treat measures as vectors (linear mappings from F to R)

I norm ‖µ‖F = supf ∈F |
∫
fdµ|

I (ignore measurability, completeness, etc.)

Corollary

Let P0
n be shorthand for random measure

P0
n f :=

1

n

n∑
i=1

εi f (Xi ).

Then
E
[
‖Pn − P‖pF

]
≤ 2pE

[∥∥P0
n

∥∥
F
]
.
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Uses of symmetrization

I often easier to deal with symmetric random variables

I can give (much) more precise bounds on these quantities

I easy proofs of ULLNs

I quantity
∑n

i=1 εiXi is
∑n

i=1 X
2
i -sub-Gaussian (conditional on

Xi s)
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Rademacher complexities

Definition
The empirical Rademacher complexity of a class F is

Rn(F | X n
1 ) := E

[
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi f (Xi )

∣∣∣∣∣ | X n
1

]
= nE

[∥∥P0
n

∥∥
F | X

n
1

]
.

The Rademacher complexity is Rn(F) := E[Rn(F | X n
1 )].

Corollary

P
(

sup
f ∈F
|Pnf − Pf | ≥ t

)
≤ 2

nt
Rn(F),

so if Rn(F) = o(n) then ‖Pn − P‖F
p→ 0.
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Metric entropies and symmetrization give a ULLN

I typical to have an envelope function, i.e. if F ⊂ {X → R}
there exists F such that

|f (x)| ≤ F (x) for all f ∈ F and PF <∞

I Define truncated class for M ∈ R+ by

fM(x) :=

{
f (x) if |f (x)| ≤ M

0 otherwise

and FM := {fM : f ∈ F}

Theorem
Let F have envelope F ∈ L1(P). If logN(FM , L

1(Pn), ε) = o(n)

for all M <∞ and ε > 0, then ‖Pn − P‖F
p→ 0.
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Proof of ULLN

Lemma (Metric entropies bound Rademacher complexity)

For any class of functions G ⊂ {X → R}, for
σ2n = supg∈G

1
n

∑n
i=1 g(Xi )

2 we have

Rn(G | X n
1 ) .

√
nσ2n logN(G, L1(Pn), ε) + ε.
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Examples:

Example (Lipschitz functions)

If F is the collection of 1-Lipschitz functions on [0, 1] with
f (0) = 0, then

logN(F , ‖·‖∞ , ε) �
1

ε

and

E
[∥∥P0

n f
∥∥
F
]
. ε+

1√
nε

Concentration Inequalities 6–20



Revisiting concentration

goal: often we’d like to show concentration of more complex
objects than averages, e.g.

sup
f ∈F

1

n

n∑
i=1

f (Xi )

major tool: martingales
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Martingales

Definition (Non-measure theoretic version)

Let X1,X2, . . . be a sequence of random variables and Z1,Z2, . . .
be another, where Xi and Zi−1 are functions of Zi . Then Xi is a
martingale difference sequence adapted to Zi if

E[Xi | Zi−1] = 0 for all i ,

and Mn :=
∑n

i=1 Xi is the associated martingale

(converse definition: given Mn such that E[Mn | Zn−1] = Mn−1
and Mn is a function of Zn, Xn = Mn −Mn−1 is the difference
sequence)
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Sub-Gaussian Martingales

A martingale difference sequence {Xi} is σ2-sub-Gaussian if

E[exp(λXi ) | Zi−1] ≤ exp

(
λ2σ2

2

)
for all i ,Z i−1

1 .

Theorem (Azuma-Hoeffding)

Let Xi be σ2i -sub-Gaussian martingale differences. Then for t ≥ 0,

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.
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Doob martingales and functions of independent variables

I Xi ∈ X are independent random variables

I f : X n → R
I to control f (X n

1 )− E[f (X n
1 )] construct Doob martingale

construction: set Zi = {X i−1
1 } and define differences

Di := E[f (X n
1 ) | Zi ]− E[f (X n

1 ) | Zi−1],

so
n∑

i=1

Di = f (X n
1 )− E[f (X n

1 )]

observation: Di are martingale differences adapted to Zi
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Bounded differences (McDiarmid’s) inequality

Theorem (Bounded differences)

Let f : X n → R satisfy ci -bounded differences,

|f (x i−11 , xi , x
n
i+1)− f (x i−11 , x ′i , x

n
i+1)| ≤ ci all x , x ′ ∈ X n.

Then f − Pf is 1
4

∑n
i=1 c

2
i -sub-Gaussian.

Corollary

Let f : X n → R have ci -bounded differences and Xi be
independent. Then

P (f (X n
1 )− Pf ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
for t ≥ 0.
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Rademacher complexities and bounded differences

I the empirical process often satisfies bounded differences

Proposition

Let F ⊂ {X → R} satisfy |f (x)− f (x ′)| ≤ B for x , x ′ ∈ X . Then

sup
f ∈F

1

n

n∑
i=1

(f (Xi )−Pf ) and ‖Pn − P‖F = sup
f ∈F

∣∣∣∣1n
n∑

i=1

(f (Xi )−Pf )

∣∣∣∣
satisfy B

n bounded differences.
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Concentration of the empirical process

Corollary

Let F ⊂ {X → R} satisfy |f (x)− f (x ′)| ≤ B for all x , x ′ ∈ X .
Then

P
(

sup
f ∈F

(Pnf − Pf ) ≥ E[sup
f ∈F

(Pnf − Pf )] ≥ t

)
≤ exp

(
−2nt2

B2

)
P (‖Pn − P‖F ≥ E[‖Pn − P‖F ] + t) ≤ exp

(
−2nt2

B2

)
for all t ≥ 0.

Preview: by symmetrization,

E [‖Pn − P‖F ] ≤ 2E
[∥∥P0

n

∥∥
F
]

= 2
Rn(F)

n
,

so controlling expectations evidently important

Concentration Inequalities 6–27


