Basics of Concentration Inequalities

John Duchi

Stats 300b - Winter Quarter 2021

Outline

- Sub-Gaussian and sub-exponential random variables
- Symmetrization
- Applications to uniform laws
- Azuma-Hoeffding inequalities
- Doob martingales and bounded differences inequality

Reading: (this is more than sufficient)

- ▶ Wainwright, High Dimensional Statistics, Chapters 2.1–2.2
- ▶ Vershynin, High Dimensional Probability, Chapters 1–2.
- Additional perspective: van der Vaart, Asymptotic Statistics, Chapter 19.1–19.2

Concentration inequalities

inequalities of the form

 $\mathbb{P}(X \ge t) \le \phi(t)$

where ϕ goes to zero (quickly) as $t \to \infty$

often, want to deal with sums, so instead (e.g.)

$$\mathbb{P}(\overline{X}_n \geq t) \leq \phi_n(t)$$

underpin many ULLNs

key in high-dimensional statistics (concentration of measure)

The familiar Markov bounds

Proposition (Markov's inequality) If $X \ge 0$, then $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}$ for all $t \ge 0$.

Proposition (Chebyshev's inequality) For any $t \ge 0$, $\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le \frac{Var(X)}{t^2}$

Sub-gaussian random variables

A mean-zero random variable X is σ^2 -sub-Gaussian if

$$\mathbb{E}[\exp(\lambda X)] \leq \exp\left(rac{\lambda^2\sigma^2}{2}
ight) \ \ ext{for all} \ \lambda \in \mathbb{R}.$$

(many equivalent definitions; see Vershynin or exercises)

Example

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\mathbb{E}[\exp(\lambda(X - \mathbb{E}[X]))] =$$

Example

If $X \in [a, b]$, then

$$\mathbb{E}[\exp(\lambda(X-\mathbb{E}[X]))] \leq \exp\left(rac{\lambda^2(b-a)^2}{8}
ight).$$

Tensorization identities

variance inequality familiar: if X_i are independent,

$$\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i)$$

Proposition

If X_i are independent and σ_i^2 -sub-Gaussian, then $\sum_{i=1}^n X_i$ is $\sum_{i=1}^n \sigma_i^2$ sub-Gaussian.

Chernoff and Hoeffding Inequalities

Corollary (Chernoff bounds for sub-Gaussian random variables) Let X be σ^2 -sub-Gaussian. Then

$$\mathbb{P}\left(X - \mathbb{E}[X] \ge t
ight) \le \exp\left(-rac{t^2}{2\sigma^2}
ight)$$

Corollary (Hoeffding bounds) If X_i are independent σ_i^2 -sub-Gaussian random variables,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mathbb{E}[X_{i}])\geq t\right)\leq \exp\left(-\frac{nt^{2}}{\frac{2}{n}\sum_{i=1}^{n}\sigma_{i}^{2}}\right)$$

• usually stated as
$$X_i \in [a, b]$$
, so bound is $\exp(-\frac{2nt^2}{(b-a)^2})$

Maxima of sub-Gaussian random variables

often want to control deviations of maximum (supremum in ULLNs)

Proposition

Let $\{Z_i\}_{i=1}^{N}$ be σ^2 -sub-Gaussian (not necessarily independent). Then

$$\mathbb{E}\left[\max_{i} Z_{i}\right] \leq \sqrt{2\sigma^{2}\log N}.$$

Sub-exponential random variables

more nuanced control if variance small, or sub-gaussian parameter unavailable

Definition (Sub-exponential)

A random variable X is (τ^2, b) -sub-exponential if

$$\mathbb{E}[\exp(\lambda(X - \mathbb{E}[X]))] \leq \exp\left(rac{\lambda^2 au^2}{2}
ight) \;\; ext{ for } |\lambda| \leq rac{1}{b}$$

Proposition (Tail bounds for sub-exponentials) If X is (τ^2, b) -sub-exponential, then

$$\mathbb{P}\left(|X - \mathbb{E}[X]| \ge t
ight) \le 2 \exp\left(-\min\left\{rac{t^2}{2 au^2}, rac{t}{b}
ight\}
ight)$$

Examples

Example (Bounded random variables) If $X \in [-b, b]$, $\mathbb{E}[X] = 0$, and $Var(X) = \sigma^2$, X is

 $(2\sigma^2, b)$ -sub-exponential.

see also Vershynin, Ch. 2

Tensorization

Proposition (Tensorization)

Let X_i be independent (τ_i^2, b_i) -sub-exponential. Then $\sum_{i=1}^n X_i$ is $(\sum_{i=1}^n \tau_i^2, \max_{i \le n} b_i)$ -sub-exponential.

Corollary (Bernstein-type bounds)
If
$$|X_i| \le b$$
 and $Var(X_i) \le \sigma^2$, then
 $\mathbb{P}(|\overline{X}_n - \mathbb{E}[\overline{X}_n]| \ge t) \le 2 \exp\left(-c \min\left\{\frac{nt^2}{\sigma^2}, \frac{nt}{b}\right\}\right)$ for $t \ge 0$.

Symmetrization

- important idea in uniform laws of large numbers and concentration
- Banach space theory (surprisingly) develops many of these ideas

motivation: for ULLNs, Markov's inequality gives

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}(P_n-P)f\geq t\right)\leq \frac{\mathbb{E}[\sup_{f\in\mathcal{F}}(P_n-P)f]}{t}$$

sometimes if $P_n - P$ is symmetric, it's easier to deal with

Symmetrization in a vector space

X_i are arbitrary vectors in a normed space with norm ||·||
 ε_i ∈ {±1} are i.i.d. uniform signs (*Rademacher variables*)

Theorem

Let $F:\mathbb{R}_+\to\mathbb{R}_+$ be convex, increasing, and X_i be independent. Then

$$\mathbb{E}\left[F\left(\left\|\sum_{i=1}^{n}(X_{i}-\mathbb{E}[X_{i}])\right\|\right)\right] \leq \mathbb{E}\left[F\left(2\left\|\sum_{i=1}^{n}\varepsilon_{i}X_{i}\right\|\right)\right].$$

Consequences

Corollary If $\mathbb{E}[X_i] = 0$, for any norm $\|\cdot\|$ and $p \ge 1$, we have

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}\right\|^{p}\right] \leq 2^{p} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \varepsilon_{i} X_{i}\right\|^{p}\right]$$

Consequences

• treat measures as vectors (linear mappings from $\mathcal F$ to $\mathbb R$)

• norm
$$\|\mu\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\int f d\mu|$$

(ignore measurability, completeness, etc.)

Corollary

Let P_n^0 be shorthand for random measure

$$P_n^0 f := \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i).$$

Then

$$\mathbb{E}\left[\left\|P_{n}-P\right\|_{\mathcal{F}}^{p}\right] \leq 2^{p}\mathbb{E}\left[\left\|P_{n}^{0}\right\|_{\mathcal{F}}\right].$$

Uses of symmetrization

- often easier to deal with symmetric random variables
- can give (much) more precise bounds on these quantities
- easy proofs of ULLNs
- quantity $\sum_{i=1}^{n} \varepsilon_i X_i$ is $\sum_{i=1}^{n} X_i^2$ -sub-Gaussian (conditional on X_i s)

Rademacher complexities

Definition

The empirical Rademacher complexity of a class $\mathcal F$ is

$$R_n(\mathcal{F} \mid X_1^n) := \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left|\sum_{i=1}^n \varepsilon_i f(X_i)\right| \mid X_1^n\right] = n\mathbb{E}\left[\left\|P_n^0\right\|_{\mathcal{F}} \mid X_1^n\right].$$

The Rademacher complexity is $R_n(\mathcal{F}) := \mathbb{E}[R_n(\mathcal{F} \mid X_1^n)].$ Corollary

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}|P_nf-Pf|\geq t\right)\leq \frac{2}{nt}R_n(\mathcal{F}),$$

if $R_n(\mathcal{F})=o(n)$ then $\|P_n-P\|_{\mathcal{F}}\stackrel{p}{\to}0.$

50

Metric entropies and symmetrization give a ULLN

► typical to have an envelope function, i.e. if F ⊂ {X → ℝ} there exists F such that

 $|f(x)| \leq F(x)$ for all $f \in \mathcal{F}$ and $PF < \infty$

• Define truncated class for $M \in \mathbb{R}_+$ by

$$f_M(x) := egin{cases} f(x) & ext{if } |f(x)| \leq M \ 0 & ext{otherwise} \end{cases}$$

and $\mathcal{F}_M := \{f_M : f \in \mathcal{F}\}$

Theorem

Let \mathcal{F} have envelope $F \in L^1(P)$. If $\log N(\mathcal{F}_M, L^1(P_n), \epsilon) = o(n)$ for all $M < \infty$ and $\epsilon > 0$, then $\|P_n - P\|_{\mathcal{F}} \xrightarrow{P} 0$.

Proof of ULLN

Lemma (Metric entropies bound Rademacher complexity) For any class of functions $\mathcal{G} \subset {\mathcal{X} \to \mathbb{R}}$, for $\sigma_n^2 = \sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n g(X_i)^2$ we have

$$R_n(\mathcal{G} \mid X_1^n) \lesssim \sqrt{n\sigma_n^2 \log N(\mathcal{G}, L^1(P_n), \epsilon) + \epsilon}.$$

Examples:

Example (Lipschitz functions)

If $\mathcal F$ is the collection of 1-Lipschitz functions on [0,1] with f(0) = 0, then

$$egin{aligned} \mathsf{log} \ \mathsf{N}(\mathcal{F}, \left\| \cdot
ight\|_{\infty}, \epsilon) arpropto rac{1}{\epsilon} \end{aligned}$$

and

$$\mathbb{E}\left[\left\|P_{n}^{0}f\right\|_{\mathcal{F}}\right] \lesssim \epsilon + \frac{1}{\sqrt{n\epsilon}}$$

goal: often we'd like to show concentration of more complex objects than averages, e.g.

$$\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n f(X_i)$$

major tool: martingales

Martingales

Definition (Non-measure theoretic version)

Let X_1, X_2, \ldots be a sequence of random variables and Z_1, Z_2, \ldots be another, where X_i and Z_{i-1} are functions of Z_i . Then X_i is a martingale difference sequence adapted to Z_i if

 $\mathbb{E}[X_i \mid Z_{i-1}] = 0 \text{ for all } i,$

and $M_n := \sum_{i=1}^n X_i$ is the associated martingale

(converse definition: given M_n such that $\mathbb{E}[M_n | Z_{n-1}] = M_{n-1}$ and M_n is a function of Z_n , $X_n = M_n - M_{n-1}$ is the difference sequence)

Sub-Gaussian Martingales

A martingale difference sequence $\{X_i\}$ is σ^2 -sub-Gaussian if

$$\mathbb{E}[\exp(\lambda X_i) \mid Z_{i-1}] \leq \exp\left(rac{\lambda^2 \sigma^2}{2}
ight) ~~ ext{for all}~~i, Z_1^{i-1}.$$

Theorem (Azuma-Hoeffding)

Let X_i be σ_i^2 -sub-Gaussian martingale differences. Then for $t \ge 0$,

$$P\left(\sum_{i=1}^n X_i \ge t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n \sigma_i^2}\right).$$

Doob martingales and functions of independent variables

• $X_i \in \mathcal{X}$ are independent random variables

•
$$f: \mathcal{X}^n \to \mathbb{R}$$

▶ to control $f(X_1^n) - \mathbb{E}[f(X_1^n)]$ construct Doob martingale

construction: set $Z_i = \{X_1^{i-1}\}$ and define *differences*

$$D_i := \mathbb{E}[f(X_1^n) \mid Z_i] - \mathbb{E}[f(X_1^n) \mid Z_{i-1}],$$

so

$$\sum_{i=1}^n D_i = f(X_1^n) - \mathbb{E}[f(X_1^n)]$$

observation: D_i are martingale differences adapted to Z_i

Bounded differences (McDiarmid's) inequality

Theorem (Bounded differences)

Let $f : \mathcal{X}^n \to \mathbb{R}$ satisfy c_i -bounded differences,

$$|f(x_1^{i-1}, x_i, x_{i+1}^n) - f(x_1^{i-1}, x_i', x_{i+1}^n)| \le c_i \text{ all } x, x' \in \mathcal{X}^n.$$

Then f - Pf is $\frac{1}{4} \sum_{i=1}^{n} c_i^2$ -sub-Gaussian.

Corollary

Let $f : \mathcal{X}^n \to \mathbb{R}$ have c_i -bounded differences and X_i be independent. Then

$$\mathbb{P}\left(f(X_1^n) - Pf \ge t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right) \quad \text{for } t \ge 0.$$

Rademacher complexities and bounded differences

▶ the empirical process often satisfies bounded differences Proposition Let $\mathcal{F} \subset {\mathcal{X} \to \mathbb{R}}$ satisfy $|f(x) - f(x')| \le B$ for $x, x' \in \mathcal{X}$. Then $\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf)$ and $||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Pf) \right|$

satisfy $\frac{B}{n}$ bounded differences.

Concentration of the empirical process

Corollary Let $\mathcal{F} \subset {\mathcal{X} \to \mathbb{R}}$ satisfy $|f(x) - f(x')| \le B$ for all $x, x' \in \mathcal{X}$. Then

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}(P_nf-Pf)\geq \mathbb{E}[\sup_{f\in\mathcal{F}}(P_nf-Pf)]\geq t\right)\leq \exp\left(-\frac{2nt^2}{B^2}\right)$$
$$\mathbb{P}\left(\|P_n-P\|_{\mathcal{F}}\geq \mathbb{E}[\|P_n-P\|_{\mathcal{F}}]+t\right)\leq \exp\left(-\frac{2nt^2}{B^2}\right)$$

for all $t \geq 0$.

Preview: by symmetrization,

$$\mathbb{E}\left[\left\|P_n-P\right\|_{\mathcal{F}}\right] \leq 2\mathbb{E}\left[\left\|P_n^0\right\|_{\mathcal{F}}\right] = 2\frac{R_n(\mathcal{F})}{n},$$

so controlling expectations evidently important