U Statistics

John Duchi

Stats 300b - Winter Quarter 2021

Outline

- Definitions and motivation
- Examples
- Two-sample U-statistics
- Variance decompositions
- Analysis: projections in Hilbert spaces and conditional expectations
- Hájek projections and asymptotic normality

Reading:

- van der Vaart, Asymptotic Statistics, Chapters 11-12, 14.1 (again)

The problem

- have a (permutation) symmetric function $h: \mathcal{X}^{k} \rightarrow \mathbb{R}$
- wish to estimate

$$
\theta:=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{k}\right)\right]
$$

Example (Some measures of dispersion)

- variance with $h(y, z)=\frac{1}{2}(y-z)^{2}$

$$
\theta=\operatorname{Var}(X)=\frac{1}{2} \mathbb{E}\left[\left(X_{1}-X_{2}\right)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- dispersion probabilities

$$
\theta=\mathbb{P}\left(X_{1} \geq X_{2}+t\right), \quad h(y, z)=\frac{1}{2} 1\{y \geq z+t\}+\frac{1}{2} 1\{z \geq y+t\}
$$

U-statistics

Definition (U-statistic)

Let $h: \mathcal{X}^{r} \rightarrow \mathbb{R}$ be a symmetric function (called the kernel) and $X_{i} \stackrel{\text { iid }}{\sim} P$. Define $\theta(P):=\mathbb{E}_{P}\left[h\left(X_{1}, \ldots, X_{r}\right)\right]$. Then

$$
U_{n}:=\binom{n}{r}^{-1} \sum_{|\beta|=r, \beta \subset[n]} h\left(X_{\beta}\right)
$$

is the associated U-statistic of order r, β ranging over (ordered) subsets of $[n]=\{1, \ldots, n\}$.

- unbiased estimator as $\mathbb{E}\left[U_{n}\right]=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{r}\right)=\theta(P)\right.$.

Why U-statistics?

- we could just use

$$
\frac{1}{n / r} \sum_{l=1}^{n / r} h\left(X_{l(r-1)+1}, \ldots, X_{l r}\right)
$$

- consider instead un-ordered sample $\left\{X_{(1)}, \ldots, X_{(n)}\right\}$ (order statistics, histogram, or type)

Rao-Blackwellization: statistic $\left\{X_{(1)}, \ldots, X_{(n)}\right\}$ is sufficient Observation (Rao-Blackwell)
If L is convex and $X_{i} \stackrel{\text { iid }}{\sim} P$, then

$$
U_{n}=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{r}\right) \mid X_{(1)}, \ldots, X_{(n)}\right]
$$

and for any $T_{n}=\operatorname{Conv}\left\{h\left(X_{\beta}\right)| | \beta \mid=r, \beta \subset[n]\right\}$,

$$
\mathbb{E}\left[L\left(U_{n}-\theta(P)\right)\right] \leq \mathbb{E}\left[L\left(T_{n}-\theta(P)\right)\right]
$$

Examples of U-statistics

- Variance: for $h(x, y)=\frac{1}{2}(x-y)^{2}$,

$$
\begin{aligned}
U_{n}=\binom{n}{2}^{-1} \sum_{i<j} h\left(X_{i}, X_{j}\right) & =\frac{1}{2 n(n-1)} \sum_{i, j=1}^{n}\left(X_{i}-X_{j}\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\end{aligned}
$$

- Gini's mean difference: $h(x, y)=|x-y|$, and

$$
\theta=\mathbb{E}\left[\left|X_{1}-X_{2}\right|\right]
$$

- Quantiles: $r=1$, and $h(x)=1\{x \leq t\}, \theta=P(X \leq t)$
- Signed rank statistic (gives location information): $h(x, y)=1\{x+y>0\}$, so $r=2$ and

$$
\theta(P)=P\left(X_{1}+X_{2}>0\right)
$$

Two-sample U-statistics

- samples $\left\{X_{1}, \ldots, X_{m}\right\}$ and $\left\{Y_{1}, \ldots, Y_{m}\right\}$
- function h symmetric in first r and second s inputs (not across all)

$$
U:=\binom{m}{r}^{-1}\binom{n}{s}^{-1} \sum_{|\alpha|=r,|\beta|=s} h\left(X_{\alpha}, Y_{\beta}\right)
$$

Example (Mann-Whitney statistic)
To test a difference in location, use $h(x, y)=1\{x \leq y\}$,

$$
U:=\frac{1}{n m} \sum_{i, j} 1\left\{X_{i} \leq Y_{j}\right\}
$$

with null $H_{0}: P(X \leq Y)=\frac{1}{2}$

Variance of U-statistics (Hoeffding)

idea: project out low order terms and use what's left for asymptotics

- for h an order r kernel, for $c<r$ define

$$
\begin{aligned}
h_{c}\left(x_{1}, \ldots, x_{c}\right): & =\mathbb{E}\left[h\left(x_{1}, \ldots, x_{c}, X_{c+1}, \ldots, X_{r}\right)\right] \\
& =\mathbb{E}\left[h\left(X_{1}^{c}, X_{c+1}^{r}\right) \mid X_{1}^{c}=x_{1}^{c}\right]
\end{aligned}
$$

- notice $h_{0}=\mathbb{E}\left[h\left(X_{1}^{r}\right)\right]=\theta(P)$ and $\mathbb{E}\left[h_{c}\left(X_{1}^{c}\right)\right]=\theta(P)$ for all c
- centered statistics $\widehat{h}_{c}=h_{c}-\theta(P)$

Variance of U-statistics

Define "intersection" covariances

$$
\zeta_{c}:=\mathbb{E}\left[\widehat{h}\left(X_{A}\right) \widehat{h}\left(X_{B}\right)\right]
$$

for $A, B \subset[n]$ with $|A|=|B|=r$ and $|A \cap B|=c \leq r$
Observation
These covariances satisfy $\zeta_{c}=\mathbb{E}\left[\widehat{h}_{c}\left(X_{1}^{c}\right)^{2}\right]$

The variance of a U-statistic (finally)

Proposition
Let h be a kernel of order r and $U_{n}=\binom{n}{r}^{-1} \sum_{|\beta|=r} h\left(X_{\beta}\right)$. Then

$$
\operatorname{Var}\left(U_{n}\right)=\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right)
$$

Hilbert spaces

Definition

A vector space \mathcal{H} is a Hilbert space if is a complete normed space with inner product $\langle\cdot, \cdot\rangle$, where

$$
\|u\|^{2}=\langle u, u\rangle \text { and }\langle x+y, u+v\rangle=\langle x, u\rangle+\langle x, v\rangle+\langle y, u\rangle+\langle y, v\rangle
$$

Example (Standard Hilbert spaces)

- \mathbb{R}^{n} with standard inner product $\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}$
- $L^{2}(P)=\left\{f: \mathcal{X} \rightarrow \mathbb{R}\right.$ with $\left.\int f(x)^{2} d P(x)<\infty\right\}$, with inner product $\langle f, g\rangle=\int f g d P$

Projections

- Let \mathcal{S} be a closed linear subspace of \mathcal{H}
- For $v \in \mathcal{H}$, define the projection

$$
\pi_{\mathcal{S}}(v):=\underset{s \in \mathcal{S}}{\operatorname{argmin}}\|v-s\|^{2}
$$

Theorem
The projection $\pi_{\mathcal{S}}(v)$ exists and is uniquely defined by

$$
\left\langle v-\pi_{\mathcal{S}}(v), s\right\rangle=0 \text { for all } s \in \mathcal{S}
$$

Projection examples

Example (Collections of random variables)

In $L^{2}(P)$, let \mathcal{S} be a collection of random variables (functions) with $\mathbb{E}\left[S^{2}\right]<\infty$, closed under linear combinations. Then \widehat{S} is the projection of a random variable T onto \mathcal{S} if and only if

$$
\mathbb{E}[(T-\widehat{S}) S]=0 \quad \text { for all } S \in \mathcal{S}
$$

Proposition (Moreau decomposition)
For any $v \in \mathcal{H},\|v\|^{2}=\|\pi(v)\|^{2}+\|v-\pi(v)\|^{2}$.

Conditional expectations as projections in $L^{2}(P)$

Let Y be a random variable and

$$
\mathcal{S}=\left\{\text { Linear span of } g(Y) \text { s.t. } g \text { measurable, } P g(Y)^{2}<\infty\right\}
$$

Definition
The conditional expectation of $X \in L^{2}(P)$ given Y is

$$
\mathbb{E}[X \mid Y]:=\text { Projection of } X \text { onto } \mathcal{S} .
$$

- $\mathbb{E}[X \mid Y]$ is random variable (function of Y) with

$$
\mathbb{E}[(X-\mathbb{E}[X \mid Y]) g(Y)]=0 \quad \text { all } g \text { integrable }
$$

Consequences of projections

- iterating expectations: $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$
- product properties: for all f,

$$
\mathbb{E}[f(Y) X \mid Y]=f(Y) \mathbb{E}[X \mid Y]
$$

- tower property: $\mathbb{E}[\mathbb{E}[X \mid Y, Z] \mid Y]=\mathbb{E}[X \mid Y]$

Why projections?

- ignore smaller-order terms!

Proposition

Let \mathcal{S}_{n} be a sequences of subspaces of $L^{2}(P)$ and T_{n} be random variables. Let $S_{n}=\pi_{\mathcal{S}_{n}}\left(T_{n}\right)$. If $\operatorname{Var}\left(T_{n}\right) / \operatorname{Var}\left(S_{n}\right) \rightarrow 1$, then

$$
\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sqrt{\operatorname{Var}\left(T_{n}\right)}}-\frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \xrightarrow{p} 0 .
$$

Hájek Projections

idea: project U-statistic U_{n} onto independent sums
Let X_{1}, \ldots, X_{n} be independent and

$$
\mathcal{S}:=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right) \mid g_{i} \in L^{2}(P)\right\}
$$

Lemma
Let $\mathbb{E}\left[T^{2}\right]<\infty$. Then

$$
\widehat{S}=\pi_{\mathcal{S}}(T)=\sum_{i=1}^{n} \mathbb{E}\left[T \mid X_{i}\right]-(n-1) \mathbb{E}[T]
$$

Projecting U_{n} onto i.i.d. sums

- recall $h_{1}(x)=\mathbb{E}\left[h\left(x, X_{2}^{r}\right)\right]-\theta$

Lemma (Hájek projection)
If

$$
\widehat{U}_{n}=\operatorname{Projection}\left(U_{n}-\theta \text { onto } \mathcal{S}=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right)\right\}\right)
$$

then

$$
\widehat{U}_{n}=\sum_{i=1}^{n} \mathbb{E}\left[U_{n}-\theta \mid X_{i}\right]=\frac{r}{n} \sum_{i=1}^{n} h_{1}\left(X_{i}\right)
$$

Asymptotic normality of U-statistics

Theorem
Let h be an order r symmetric kernel with $\zeta_{1}=\mathbb{E}\left[h_{1}(X)^{2}\right]$. Then

$$
\sqrt{n}\left(U_{n}-\theta-\widehat{U}_{n}\right) \xrightarrow{p} 0 \text { and } \sqrt{n}\left(U_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, r^{2} \zeta_{1}\right) .
$$

Projection of two-sample U-statistics

$$
U_{N}=\binom{m}{r}^{-1}\binom{n}{s}^{-1} \sum_{|\alpha|=r} \sum_{|\beta=s|} h\left(X_{\alpha}, Y_{\beta}\right)
$$

where for $N=m+n$, have $\frac{m}{N} \rightarrow \lambda \in(0,1)$
Lemma
Define

$$
\begin{aligned}
& h_{1,0}(x)=\mathbb{E}\left[h\left(x, X_{2}^{r}, Y_{1}^{s}\right)\right]-\theta \\
& h_{0,1}(x)=\mathbb{E}\left[h\left(X_{1}^{r}, y, Y_{2}^{s}\right)\right]-\theta
\end{aligned}
$$

Then the projection \widehat{U}_{N} onto $\sum_{i=1}^{m} f_{i}\left(X_{i}\right)+\sum_{j=1}^{n} g_{j}\left(Y_{j}\right)$ is

$$
\widehat{U}_{N}=\frac{r}{m} \sum_{i=1}^{m} h_{1,0}\left(X_{i}\right)+\frac{s}{n} \sum_{i=1}^{n} h_{0,1}\left(Y_{i}\right)
$$

Asymptotic normality of two-sample U-statistics

Theorem
Let $\mathbb{E}\left[h^{2}\left(X_{1}^{r}, Y_{1}^{s}\right)\right]<\infty$. Then
$\sqrt{N}\left(U_{N}-\theta-\widehat{U}_{N}\right) \xrightarrow{p} 0$ and $\sqrt{N}\left(U_{N}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, \frac{r^{2} \zeta_{1,0}}{\lambda}+\frac{s^{2} \zeta_{0,1}}{1-\lambda}\right)$
where

$$
\zeta_{c, d}=\operatorname{Cov}\left(h\left(X_{1}^{r}, Y_{1}^{s}\right), h\left(X_{1}^{c}, X_{c+1}^{\prime}, \ldots, X_{r}^{\prime}, Y_{1}^{d}, Y_{d+1}^{\prime}, \ldots, Y_{s}^{\prime}\right)\right)
$$

Pivotal quantities (robustness of U-statistics)

- often U-statistic has asymptotically pivotal distribution under null H_{0}

Example (Signed rank)
$U_{n}=\binom{n}{2}^{-1} \sum_{i<j} 1\left\{X_{i}+X_{j}>0\right\}$ is pivotal under null H_{0} that X has continuous cdf F symmetric about 0 .

Example: the Mann-Whitney statistic

- test "stochastically larger" statistic $\theta=P(X \leq Y)$ (or for a difference in location)
- kernel $h(x, y)=1\{x \leq y\}$

Example (Mann-Whitney)

Under $H_{0}: X \stackrel{\text { dist }}{=} Y$ with continuous distribution,

$$
U_{N}:=\frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} 1\left\{X_{i} \leq Y_{j}\right\}
$$

satisfies $\sqrt{12 m n / N}\left(U_{N}-\frac{1}{2}\right) \xrightarrow{d} \mathcal{N}(0,1)$

