Achieving Local Asymptotic Bounds and Extensions

John Duchi

Stats 300b - Winter Quarter 2021

Achieving Local Asymptotic Bounds and Extensions

Outline

- Regular estimands and estimators
- Hájek's convolution theorem
- Optimality (achieving the local asymptotic minimax bound) for regular estimands
- Semi (non)-parametric efficiency (quite cursory)

Reading:

▶ van der Vaart, Asymptotic Statistics, Chapters 8, 25.1–25.3

Regular estimands

- parametric family $\{P_{\theta}\}_{\theta \in \Theta}, \Theta \subset \mathbb{R}^d$
- estimand $\psi(\theta)$, $\psi : \mathbb{R}^d \to \mathbb{R}^k$ of interest
- estimand is *regular* at θ_0 if it is differentiable at θ_0 , derivative $\dot{\psi}(\theta_0) \in \mathbb{R}^{k \times d}$

more generality possible: (but we won't do this)

- sequence of estimands $\psi_n : \mathbb{R}^d \to \mathbb{R}^k$
- estimands are *regular* for rate $r_n \rightarrow \infty$ if

$$r_n(\psi_n(\theta_0 + h/r_n) - \psi_n(\theta_0)) \rightarrow \dot{\psi}(\theta_0)h$$

for any *h*, where
$$\dot{\psi}(heta_0) \in \mathbb{R}^{k imes d}$$

Definition

An estimator sequence T_n is *regular* at θ_0 for estimating $\psi(\theta_0)$ if for each $h \in \mathbb{R}^d$,

$$\sqrt{n}\left(T_n - \psi(\theta_0 + h/\sqrt{n})\right) \xrightarrow[\theta_0 + h/\sqrt{n}]{d} Z_{\theta_0}$$

where Z_{θ_0} is a random vector

Regular estimator examples

Example (Typical asymptotically linear estimators) Let family $\{P_{\theta}\}_{\theta \in \Theta}$ be QMD at θ_0 with score $\dot{\ell}_{\theta_0}$ and Fisher information I_{θ_0} . If

$$\widehat{ heta}_{n}- heta_{0}= extsf{P}_{n} extsf{I}_{ heta_{0}}^{-1}\dot{ extsf{\ell}}_{ heta_{0}}+ extsf{o}_{ extsf{P}_{ heta_{0}}}(1/\sqrt{n})$$

then it is regular (even more)

Example (the delta method and regular estimands) Let setting be as above. Then $\psi(\hat{\theta}_n)$ is regular for $\psi(\theta_0)$.

Achieving Local Asymptotic Bounds and Extensions

Hájek Convolution Theorem

Theorem (Hájek)

Let T_n be a regular estimator sequence for θ_0 in an LAN model $\{P_\theta\}_{\theta\in\Theta}$ with information I_{θ_0} . Then

$$\sqrt{n}(T_n-\theta_0) \stackrel{d}{\longrightarrow} Z_{\theta_0}+V_{\theta_0}$$

where $Z_{\theta_0} \sim \mathcal{N}(0, I_{\theta_0})$ and V_{θ_0} are independent

 almost-everywhere extensions exist (see Theorem 8.9 in van der Vaart)

Achieving the local asymptotic minimax bound

Theorem Let $\hat{\theta}_n$ be any estimator of θ_0 in LAN family with

$$\widehat{\theta}_n - \theta_0 = I_{\theta_0}^{-1} P_n \dot{\ell}_{\theta_0} + o_{P_{\theta_0}}(1/\sqrt{n}).$$

Then for any bounded continuous L,

$$\lim_{c\to\infty}\limsup_{n\to\infty}\sup_{\|h\|\leq c}\mathbb{E}_{\theta_0+h/\sqrt{n}}\left[L\left(\sqrt{n}(\widehat{\theta}_n-(\theta_0+h/\sqrt{n}))\right)\right]=\mathbb{E}[L(Z)]$$

where $Z \sim \mathcal{N}(0, I_{\theta_0}^{-1})$.

Lower bounds for functions of parameters

Corollary (to local asymptotic minimax bound)

Let $\{P_{\theta}\}_{\theta \in \Theta}$ be LAN at θ_0 with Fisher information I_{θ_0} and $\psi : \mathbb{R}^d \to \mathbb{R}^k$ be differentiable at θ_0 . If $L : \mathbb{R}^k \to \mathbb{R}$ is symmetric, quasiconvex, bounded, and Lipschitz continuous, then there exist prior π_c supported on $\{h : ||h|| \le c\}$ such that

$$\lim_{c \to \infty} \liminf_{n} \inf_{\widehat{\psi}_{n}} \int \mathbb{E}_{\theta_{0}+h/\sqrt{n}} \left[L\left(\sqrt{n}(\widehat{\psi}_{n}) - \psi(\theta_{0}+h/\sqrt{n})\right) \right] d\pi_{c}(h)$$
$$\geq \mathbb{E}[L(Z)] \quad \text{for } Z \sim \mathcal{N}\left(0, \dot{\psi}(\theta_{0})I_{\theta_{0}}^{-1}\dot{\psi}(\theta_{0})^{T}\right)$$

Best-regular estimators and the delta method

• estimator T_n of θ_0 satisfying $T_n = \theta_0 + I_{\theta_0}^{-1} P_n \dot{\ell}_{\theta_0} + o_{P_{\theta_0}}(1/\sqrt{n})$ is best regular

Corollary (Delta-method and best-regular estimators) If $\psi : \mathbb{R}^d \to \mathbb{R}^k$ is differentiable at θ_0 and T_n is best regular, then $\psi(T_n)$ achieves local asymptotic minimax bound

Nonparametric efficiency

- family \mathcal{P} of distributions on \mathcal{X}
- ▶ parameter $\theta : \mathcal{P} \to \mathbb{R}^d$
- Iower bound based on model subfamilies

Definition

A collection $\{P_h\}_{h\in\mathbb{R}^k} \subset \mathcal{P}$ (often take $||h|| \leq \epsilon$) is a *quadratic* mean differentiable subfamily (QMD) at $P_0 \in \mathcal{P}$ if there exists a score $g : \mathcal{X} \to \mathbb{R}^k$, $g \in L^2(P_0)$, with

$$\int \left(\sqrt{dP_h} - \sqrt{dP_0} - \frac{1}{2}g^T h \sqrt{dP_0}\right)^2 = o(\|h\|^2)$$

Subfamily examples

Example (Parametric families) If $\mathcal{P} = \{P_{\theta}\}_{\theta \in \Theta}$ is a (usual) QMD family, we have score $\dot{\ell}_{\theta}$

Example (Nonparametric families)

Let $\phi : \mathbb{R} \to \mathbb{R}_+$ be bounded, differentiable at 0, with $\phi(0) = \phi'(0) = 1$. For $g \in L^2(P_0)$, $g : \mathcal{X} \to \mathbb{R}^k$ with $P_0g = 0$, model family $\{P_h\}$ with

$$dP_h(x) = c(h)\phi(h^Tg(x))dP_0(x)$$

is QMD at P_0 with score g

The "basic" idea

 Look at parameter differentiable relative to submodel with score g, θ(P_h) = θ(P₀) + θ_{P₀}(g)h + o(||h||) where θ_{P₀}(g) ∈ ℝ^{d×k}

 corollary on page 15–8 suggests asymptotic lower bound E [L(√n(θ̂_n - θ(P)))] ≥ E[L(Z)], Z ~ N(0, θ̂_{P₀}(g)(P₀gg^T)⁻¹θ̂_{P₀}(g)^T)

choose "worst" sub-model g

Tangent sets

Definition

The *tangent set* $\dot{\mathcal{P}}_P$ to \mathcal{P} at P is the collection of score functions $g: \mathcal{X} \to \mathbb{R}^d$ as we vary QMD subfamilies

- often just one-dimensional subfamilies (higher-dimensional easier for us)
- ▶ always a subset of $L^2(P_0) = \{g : \mathcal{X} \to \mathbb{R}^d \mid \int \|g\|_2^2 dP_0 < \infty\}$
- often linear, so becomes a tangent space

Influence functions and derivatives

interested in "appropriately smooth" functions of distribution

Definition

A parameter $\theta: \mathcal{P} \to \mathbb{R}^d$ is differentiable at P_0 relative to tangent set $\dot{\mathcal{P}}_{P_0}$ if for each QMD submodel $\{P_h\}$ with score $g \in \dot{\mathcal{P}}_{P_0}$, $g: \mathcal{X} \to \mathbb{R}^k$, if $t_n \to 0$ and $h_n \to h \in \mathbb{R}^d$ imply

$$\frac{\theta(P_{t_nh_n}) - \theta(P_0)}{t_n} \to D_{P_0}(g^T h)$$

for a continuous linear mapping $D_{P_0}: L^2(P_0) o \mathbb{R}^d$

Influence functions

Observation

There exists a mean-zero influence function $\dot{\theta}_0 : \mathcal{X} \to \mathbb{R}^d$, $\dot{\theta}_0 \in L^2(P_0)$, such that

$$D_{P_0}(f) = \int \dot{\theta}_0(x) f(x) dP_0(x)$$

for each $f:\mathcal{X}\rightarrow \mathbb{R}$ with $P_0f^2<\infty$

Influence function examples

Example (Parametric families) For parametric family $\{P_{\theta}\}_{\theta \in \Theta}$, influence function is $I_{\theta_0}^{-1} \dot{\ell}_{\theta_0}$

Example (Nonparametric mean estimation) For $\theta(P) = PX$, influence function is $\dot{\theta}_0(x) = x - P_0X$.

Influence function examples (continued)

Example (M-estimation)

Let $\ell : \mathbb{R}^d \times \mathcal{X} \to \mathbb{R}$ be convex, sufficiently smooth and integrable. Let $L(\theta) = P\ell(\theta, X)$. For $\theta(P) := \operatorname{argmin}_{\theta} P\ell(\theta, X)$, influence is

$$\dot{\theta}_0(x) = -(\nabla^2 L(\theta_0))^{-1} \nabla \ell(\theta_0, x)$$

Local asymptotic minimax bound

Theorem

Let $L : \mathbb{R}^d \to \mathbb{R}$ be bounded, quasiconvex, symmetric, and Lipschitz and $\dot{\mathcal{P}}_{P_0} \subset L^2(P_0) \subset \mathcal{X} \to \mathbb{R}^k$ be a tangent space. Assume θ is differentiable relative to $\dot{\mathcal{P}}_{P_0}$. Then there exist priors π_c supported on $\{h \in \mathbb{R}^k : \|h\| \le c\}$ such that

$$\lim_{c \to \infty} \liminf_{n \to \infty} \inf_{\widehat{\theta}_n} \int \mathbb{E}_{h/\sqrt{n}} \left[L \left(\sqrt{n} (\widehat{\theta}_n - \theta(P_{h/\sqrt{n}})) \right) \right] d\pi_c(h)$$

$$\geq \mathbb{E}[L(Z)] \quad \text{for } Z \sim \mathcal{N} \left(0, \operatorname{Cov}_0(\dot{\theta}_0, g^T) (P_0 g g^T)^{-1} \operatorname{Cov}_0(g, \dot{\theta}_0^T) \right)$$

Comments on nonparametric local minimax bound

often consider only 1-dimensional submodels, look at

$$\lim_{t\downarrow 0} \frac{\theta(P_{tg}) - \theta(P_0)}{t} = D_{P_0}(g)$$

• equivalent if $\psi(h) := \theta(P_{g^T h})$ locally Lipschitz in h for $g : \mathcal{X} \to \mathbb{R}^d$

Types of differentiability: Gateaux, Hadamard, and Fréchet

Let $f : X \to V$ for Banach spaces X, V. Then f is

Gateaux differentiable at x if directional derivatives exist:

$$f'(x;v) := \lim_{t\downarrow 0} \frac{f(x+tv) - f(x)}{t}$$

► Hadamard (compactly) differentiable if the directional derivative is linear, f'(x; v) = D_xv, and for all v_t → v,

$$\lim_{t\downarrow 0}\frac{f(x+tv_t)-f(x)}{t}=D_xv$$

Fréchet differentiable if

$$f(x + v) - f(x) - D_x v = o(||v||)$$
 as $||v|| \to 0$.

Finite dimensional equivalence differentiability

Proposition

Let $f : \mathbb{R}^n \to \mathbb{R}^k$, i.e., in finite dimensions and assume its Gateaux derivative at x exists and is linear. Then

- ▶ If f is locally Lipschitz, it is Hadamard differentiable at x
- Hadamard and Fréchet differentiability coincide.

The largest lower bound

Corollary

Assume conditions of Theorem on page 15–18. Then $g = \dot{\theta}_0$ maximizes the lower bound, yielding asymptotic lower bound

$$\mathbb{E}\left[L\left(\mathcal{N}(0, P_0 \dot{\theta}_0 \dot{\theta}_0^T)\right)\right].$$

Achieving the bound

regular estimator with efficient influence function

$$\widehat{\theta}_n - \theta_0 = P_n \dot{\theta}_0 + o_{P_0}(1/\sqrt{n}) \tag{1}$$

Corollary

Any regular estimator of the form (1) achieves the local asymptotic minimax lower bound.