Contiguity and Asymptotics

John Duchi

Stats 300b - Winter Quarter 2021

Outline

- Absolute continuity and contiguity
- Le Cam's Lemmas
- Distances between distributions

Reading:

- van der Vaart, Asymptotic Statistics Ch. 6
- Lehmann \& Romano, Testing Statistical Hypothesis Ch. 12.3

Recapitulation and motivation

- in asymptotic testing, we assumed locally "uniform" convergence guarantee

$$
\sqrt{n} \frac{T_{n}-\mu\left(\theta_{n}\right)}{\sigma\left(\theta_{n}\right)} \xrightarrow{d} \mathcal{N}(0,1) \quad \text { where } \theta_{n} \rightarrow 0
$$

- gave power of a test rejecting $\theta=0$ for large $T_{n}-\mu(0)$
- slope $\mu^{\prime}(0) / \sigma(0)$ governed (relative) efficiencies

goal:

- understand how distributions get "close" to one another
- perform power and level calculations simultaneously

The Portmanteau Lemma

Lemma

The following are all equivalent definitions of convergence in distribution $X_{n} \xrightarrow{d} X$:
(i) $\mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded continuous f
(ii) $\mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ for all bounded Lipschitz f
(iii) $\liminf _{n} \mathbb{E}\left[f\left(X_{n}\right)\right] \geq \mathbb{E}[f(X)]$ for all nonnegative continuous f
(iv) $\liminf _{n} P\left(X_{n} \in G\right) \geq P(X \in G)$ for all open sets G
(v) $\liminf _{n} P\left(X_{n} \in C\right) \leq P(X \in C)$ for all closed sets C

Absolute Continuity

Definition

A distribution Q is absolutely continuous with respect to P, $Q \ll P$, if $P(A)=0$ implies $Q(A)=0$
consequence: if $Q \ll P$, Radon-Nikodym density $g=\frac{d Q}{d P}$ exists

- can compute means $Q f=P f g$
- likelihood ratio g and P characterize Q

Changing measures with likelihood ratios

Observation
Let M be joint measure of the pair $(X, L)=\left(X, \frac{d Q}{d P}\right)$ under P, where $Q \ll P$. Then

- $L \geq 0$ and $\mathbb{E}_{M}[L]=1$
- $Q(X \in B)=\mathbb{E}_{P}[1\{X \in B\} L]=\int_{B \times \mathbb{R}_{+}} r d M(x, r)$
- $\mathbb{E}_{Q}[f(X) L]=\mathbb{E}_{p}[f(X)]=\int_{\mathcal{X} \times \mathbb{R}_{+}} f(x) r d M(x, r)$
said differently, knowing

$$
\begin{aligned}
\mathcal{L}(X \mid P) & =\text { law of } X \text { under } P \\
\mathcal{L}(L \mid P) & =\text { law of } \frac{d Q}{d P} \text { under } P
\end{aligned}
$$

means we know $\mathcal{L}(X \mid Q)$

An asymptotic version of absolute continuity

idea: transfer "power" calculations under null P_{0} to (local)
alternatives $Q_{n} \rightarrow P_{0}$ in some way
Definition
A sequence Q_{n} is contiguous with respect to P_{n}, written $Q_{n} \triangleleft P_{n}$, if

$$
P_{n}\left(A_{n}\right) \rightarrow 0 \quad \text { implies } \quad Q_{n}\left(A_{n}\right) \rightarrow 0
$$

They are mutually contiguous, $P_{n} \triangleleft \triangleright Q_{n}$, if $P_{n} \triangleleft Q_{n}$ and $Q_{n} \triangleleft P_{n}$

Asymptotics of the likelihood ratio

- let μ_{n} dominate P_{n}, Q_{n} and $p_{n}=\frac{d P_{n}}{d \mu_{n}}$ and $q_{n}=\frac{d Q_{n}}{d \mu_{n}}$
- define likelihood ratio $L_{n}=\frac{q_{n}}{p_{n}}$
- likelihood ratio is tight under P_{n}

Lemma (Le Cam's First Lemma)

The limits of L_{n} determine contiguity: the following are equivalent.
(1) $Q_{n} \triangleleft P_{n}$
(2) If $L_{n}^{-1} \xrightarrow{d} Q_{n} U$ along a subsequence, then $\mathbb{P}(U>0)=1$
(3) If $L_{n} \xrightarrow{d} P_{n} L$, then $\mathbb{E}[L]=1$
(4) If $T_{n} \xrightarrow{p} P_{n} 0$, then $T_{n} \xrightarrow{p} Q_{n} 0$

Asymptotic log normality

An important special case: asymptotic normality when

$$
\log \frac{d P_{n}}{d Q_{n}} \xrightarrow[Q_{n}]{d} \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- certainly $Q_{n} \triangleleft P_{n}$ as $U=\exp \left(\mathcal{N}\left(\mu, \sigma^{2}\right)\right)>0$

Lemma
$Q_{n} \triangleleft \triangleright P_{n}$ if and only if $\mu=-\frac{1}{2} \sigma^{2}$

Asymptotic log normality for smooth likelihoods

- \log likelihood $\ell_{\theta_{0}}:=\log p_{\theta_{0}}, \theta_{0} \in \mathbb{R}^{d}$
- assume sufficiently smooth around θ_{0}, and let $h \in \mathbb{R}^{d}$

Lemma
For $X_{1}^{n} \stackrel{\text { iid }}{\sim} P_{\theta_{0}}$,
$\log \frac{d P_{\theta_{0}+h / \sqrt{n}}}{d P_{\theta_{0}}}\left(X_{1}, \ldots, X_{n}\right)=h^{T}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\theta_{0}}\left(X_{i}\right)\right)-\frac{1}{2} h^{T} I_{\theta_{0}} h+o_{P}(1)$

Asymptotically changing measure

Theorem (Le Cam; Theorem 6.6 in van der Vaart) Let P_{n}, Q_{n} be distributions on a $X_{n} \in \mathcal{X}$ and $L_{n}=\frac{d Q_{n}}{d P_{n}}$. If $Q_{n} \triangleleft P_{n}$ and

$$
\left(X_{n}, L_{n}\right) \xrightarrow[P_{n}]{d}(X, L)
$$

where (X, L) has joint measure M on $\mathcal{X} \times \mathbb{R}_{+}$. Then

$$
X_{n} \xrightarrow[Q_{n}]{d} Z \text { where } \mathbb{P}(Z \in B)=\mathbb{E}_{M}[1\{X \in B\} L]
$$

i.e. $\mathbb{P}(Z \in B)=\int_{B \times \mathbb{R}_{+}} r d M(x, r)$

Changing measures with asymptotic normality
Lemma (Le Cam's Third Lemma)
Assume

$$
\left(X_{n}, \log \frac{d Q_{n}}{d P_{n}}\right) \xrightarrow[P_{n}]{d} \mathcal{N}\left(\left[\begin{array}{c}
\mu \\
-\frac{1}{2} \sigma^{2}
\end{array}\right],\left[\begin{array}{cc}
\Sigma & \tau \\
\tau^{T} & \sigma^{2}
\end{array}\right]\right) .
$$

Then $X_{n} \xrightarrow[Q_{n}]{d} \mathcal{N}(\mu+\tau, \Sigma)$.

Asymptotically linear statistics and smooth likelihoods

Assume typical likelihood expansions:

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) & =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{\theta_{0}}\left(X_{i}\right)+o P_{\theta_{0}}(1) \\
\log \frac{d P_{\theta_{0}+h / \sqrt{n}}}{d P_{\theta_{0}}}\left(X_{1}, \ldots, X_{n}\right) & =\frac{h^{T}}{\sqrt{n}} \sum_{i=1}^{n} \dot{e}_{\theta_{0}}\left(X_{i}\right)-\frac{1}{2} h^{T} l_{\theta_{0}} h+o P_{\theta_{0}}(1)
\end{aligned}
$$

where $P_{\theta_{0}} \psi_{\theta_{0}}=0, \operatorname{Cov}\left(\psi_{\theta_{0}}\right)=\Sigma$
Corollary
Under the above conditions,

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) \xrightarrow[{P_{\theta_{0}+h / \sqrt{n}}}]{d} \mathcal{N}\left(\operatorname{Cov}\left(\psi_{\theta_{0}}, h^{T} \dot{\ell}_{\theta_{0}}\right), \Sigma\right) .
$$

