Contiguity and Asymptotics

John Duchi

Stats 300b - Winter Quarter 2021

Contiguity and Asymptotics

Outline

Absolute continuity and contiguity

- Le Cam's Lemmas
- Distances between distributions

Reading:

- van der Vaart, Asymptotic Statistics Ch. 6
- Lehmann & Romano, Testing Statistical Hypothesis Ch. 12.3

Recapitulation and motivation

 in asymptotic testing, we assumed locally "uniform" convergence guarantee

$$\sqrt{n} rac{T_n - \mu(heta_n)}{\sigma(heta_n)} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1) \quad ext{where } heta_n o 0$$

gave power of a test rejecting θ = 0 for large T_n - μ(0)
slope μ'(0)/σ(0) governed (relative) efficiencies

goal:

- understand how distributions get "close" to one another
- perform power and level calculations simultaneously

The Portmanteau Lemma

Lemma

The following are all equivalent definitions of convergence in distribution $X_n \xrightarrow{d} X$:

(i) $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded continuous f

(ii) $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded Lipschitz f

(iii) $\liminf_{n} \mathbb{E}[f(X_n)] \ge \mathbb{E}[f(X)]$ for all nonnegative continuous f

(iv)
$$\liminf_n P(X_n \in G) \ge P(X \in G)$$
 for all open sets G

(v) $\liminf_n P(X_n \in C) \le P(X \in C)$ for all closed sets C

Absolute Continuity

Definition

A distribution Q is absolutely continuous with respect to P, $Q \ll P$, if P(A) = 0 implies Q(A) = 0

consequence: if $Q \ll P$, Radon-Nikodym density $g = \frac{dQ}{dP}$ exists

- can compute means Qf = Pfg
- likelihood ratio g and P characterize Q

Changing measures with likelihood ratios

Observation

Let M be joint measure of the pair $(X, L) = (X, \frac{dQ}{dP})$ under P, where $Q \ll P$. Then

►
$$L \ge 0$$
 and $\mathbb{E}_M[L] = 1$
► $Q(X \in B) = \mathbb{E}_P[1 \{X \in B\} L] = \int_{B \times \mathbb{R}_+} r dM(x, r)$

$$\blacktriangleright \mathbb{E}_Q[f(X)L] = \mathbb{E}_P[f(X)] = \int_{\mathcal{X} \times \mathbb{R}_+} f(x) r dM(x, r)$$

said differently, knowing

$$\mathcal{L}(X \mid P) =$$
law of X under P
 $\mathcal{L}(L \mid P) =$ law of $\frac{dQ}{dP}$ under P

means we know $\mathcal{L}(X \mid Q)$

Contiguity and Asymptotics

An asymptotic version of absolute continuity

idea: transfer "power" calculations under null P_0 to (local) alternatives $Q_n \rightarrow P_0$ in some way

Definition

A sequence Q_n is *contiguous* with respect to P_n , written $Q_n \triangleleft P_n$, if

 $P_n(A_n) \to 0$ implies $Q_n(A_n) \to 0$.

They are *mutually contiguous*, $P_n \triangleleft \triangleright Q_n$, if $P_n \triangleleft Q_n$ and $Q_n \triangleleft P_n$

Asymptotics of the likelihood ratio

- ▶ let μ_n dominate P_n , Q_n and $p_n = \frac{dP_n}{d\mu_n}$ and $q_n = \frac{dQ_n}{d\mu_n}$
- define likelihood ratio $L_n = \frac{q_n}{p_n}$
- likelihood ratio is tight under P_n

Lemma (Le Cam's First Lemma)

The limits of L_n determine contiguity: the following are equivalent. (1) $Q_n \triangleleft P_n$ (2) If $L_n^{-1} \xrightarrow{d}_{Q_n} U$ along a subsequence, then $\mathbb{P}(U > 0) = 1$ (3) If $L_n \xrightarrow{d}_{P_n} L$, then $\mathbb{E}[L] = 1$ (4) If $T_n \xrightarrow{p}_{P_n} 0$, then $T_n \xrightarrow{p}_{Q_n} 0$

Asymptotic log normality

An important special case: asymptotic normality when

$$\log \frac{dP_n}{dQ_n} \xrightarrow{d} \mathcal{N}(\mu, \sigma^2)$$

▶ certainly $Q_n \triangleleft P_n$ as $U = \exp(\mathcal{N}(\mu, \sigma^2)) > 0$

Lemma

$$Q_n \triangleleft \triangleright P_n$$
 if and only if $\mu = -rac{1}{2}\sigma^2$

Asymptotic log normality for smooth likelihoods

▶ log likelihood $\ell_{\theta_0} := \log p_{\theta_0}$, $\theta_0 \in \mathbb{R}^d$

▶ assume sufficiently smooth around θ_0 , and let $h \in \mathbb{R}^d$

Lemma For $X_1^n \stackrel{\text{iid}}{\sim} P_{\theta_0}$, $\log \frac{dP_{\theta_0+h/\sqrt{n}}}{dP_{\theta_0}}(X_1, \dots, X_n) = h^T \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \dot{\ell}_{\theta_0}(X_i)\right) - \frac{1}{2} h^T I_{\theta_0} h + o_P(1)$

Asymptotically changing measure

Theorem (Le Cam; Theorem 6.6 in van der Vaart) Let P_n , Q_n be distributions on a $X_n \in \mathcal{X}$ and $L_n = \frac{dQ_n}{dP_n}$. If $Q_n \triangleleft P_n$ and

$$(X_n, L_n) \xrightarrow[P_n]{d} (X, L)$$

where (X, L) has joint measure M on $\mathcal{X} \times \mathbb{R}_+$. Then

$$X_n \xrightarrow{d} Z$$
 where $\mathbb{P}(Z \in B) = \mathbb{E}_M[1 \{ X \in B \} L]$

i.e. $\mathbb{P}(Z \in B) = \int_{B \times \mathbb{R}_+} r \, dM(x, r)$

Changing measures with asymptotic normality Lemma (Le Cam's Third Lemma) Assume

$$\left(X_n, \log \frac{dQ_n}{dP_n}\right) \xrightarrow{d} \mathcal{N}\left(\begin{bmatrix} \mu\\ -\frac{1}{2}\sigma^2 \end{bmatrix}, \begin{bmatrix} \Sigma & \tau\\ \tau^T & \sigma^2 \end{bmatrix}\right).$$

Then $X_n \xrightarrow{d}_{Q_n} \mathcal{N}(\mu + \tau, \Sigma)$.

Asymptotically linear statistics and smooth likelihoods

Assume typical likelihood expansions:

$$egin{aligned} &\sqrt{n}(\widehat{ heta}_n- heta_0)=rac{1}{\sqrt{n}}\sum_{i=1}^n\psi_{ heta_0}(X_i)+o_{P_{ heta_0}}(1) \ &\lograc{dP_{ heta_0+h/\sqrt{n}}}{dP_{ heta_0}}(X_1,\ldots,X_n)=rac{h^{ op}}{\sqrt{n}}\sum_{i=1}^n\dot{\ell}_{ heta_0}(X_i)-rac{1}{2}h^{ op}I_{ heta_0}h+o_{P_{ heta_0}}(1) \end{aligned}$$

where
$$P_{ heta_0}\psi_{ heta_0}=$$
 0, $\mathsf{Cov}(\psi_{ heta_0})=\Sigma$

Corollary

Under the above conditions,

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \xrightarrow[P_{\theta_0 + h/\sqrt{n}}]{d} \mathcal{N}\left(\mathsf{Cov}(\psi_{\theta_0}, h^{\mathsf{T}}\dot{\ell}_{\theta_0}), \Sigma\right).$$