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I Likelihood Ratios
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Reading: The references here are somewhat redundant to one
another, but their union is more than sufficient:

1. Lehmann, Elements of Large Sample Theory Chs. 3.1, 3.2, 4.1.

2. Lehmann & Romano, Testing Statistical Hypotheses Ch. 12.4.

3. van der Vaart, Asymptotic Statistics Chs. 8.1, 8.2, 14.1–14.3.
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Efficiency of estimators

Definition
We say an estimator θ̂n is efficient for a parameter θ in the model
{Pθ} with Fisher information Iθ if

√
n(θ̂n − θ)

d→N (0, I−1
θ ).

Examples:

I Gaussian mean

I Poisson parameter estimation

I Regular exponential family MLEs.
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Comparing estimators
Let θ̂n and Tn be (sequences) of estimators of a parameter θ ∈ R,
where we have √

n(θ̂n − θ)
d→N (0, σ2(θ)).

Definition
If there is a sequence m(n)→∞ such that

√
n(Tm(n) − θ)

d→N (0, σ2(θ))

then the limit (assuming it exists)

lim
n→∞

m(n)

n

is the asymptotic relative efficiency (ARE) of θ̂n to Tn.

Idea: relative sample size estimators require to get an estimate of
the same “quality”
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Confidence intervals

Constructing an interval

I Asymptotically normal estimate θ̂n,
√
n(θ̂n − θ)

d→N (0, σ2(θ))

I Gaussian 1− α/2 quantile P(|Z | ≥ z1−α/2) = α

I Natural (Wald) confidence interval

Cn :=

[
θ̂n − z1−α/2

√
σ2(θ)

n
, θ̂n + z1−α/2

√
σ2(θ)

n

]

satisfies limn→∞ Pθ(θ ∈ Cn) = 1− α

Comparing inverals: If ARE of θ̂n to Tn is A ∈ (0,∞), when are
intervals the same size?
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From variance to relative efficiency

Lemma
If

√
n(θ̂n − θ)

d→N (0, σ2(θ)) and
√
n(Tn − θ)

d→N (0, τ2(θ))

then the asymptotic relative efficiency (ARE) of θ̂n w.r.t. Tn is
τ2(θ)
σ2(θ)
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Super-efficiency and comparison of estimators

Food for thought: say estimators Tn, θ̂n satisfy

√
n(Tn − θ)

d→N (0, τ2(θ)) and
√
n(θ̂n − θ)

d→N (0, σ2(θ))

where τ2(θ) ≤ σ2(θ) everywhere, and τ2(θ0) < σ2(θ0) for some θ0

Definition
If the preceding occurs and σ2(θ) = I−1

θ , Tn is super-efficient.
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Hodge’s super-efficient estimator

Assume Xi
iid∼ N (θ, 1) and define

Tn :=

{
X n if |X n| ≥ n−1/4

0 otherwise

Lemma
Hodge’s estimator is super-efficient, as

√
n(Tn − θ)

d→
Pθ

{
N (0, 1) if θ 6= 0

0 if θ = 0.
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Testing

The scientific method: We propose a hypothesis, develop an
experiment to test the hypothesis, and then either (i) reject the
hypothesis or state that (ii) the hypothesis remains consistent with
the data. (There is no truth.)

Strong inference consists of applying the following steps to
every problem in science, formally and explicitly and regularly:

1. Devising alternative hypotheses

2. Devising a crucial experiment (or several), with
alternative possible outcomes, each of which will, as
nearly as possible, exclude one or more of the
hypotheses;

3. Carrying out the experiment so as to get a clean result

John Platt, “Strong Inference,” Science 1964.
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Testing and confidence intervals

Constructing a confidence region: Given

√
n(θ̂n − θ0)

d→N (0, I−1
θ0

)

would like to say “with reasonably high confidence, θ0 ∈ Cn” for
some set Cn. (This isn’t the scientific method.)

Example (Wald confidence ellipse)

If
√
n(θ̂n − θ0)

d→N (0, I−1
θ0

) and Iθ is continuous,

Cn,γ :=
{
θ : (θ − θ̂n)T I

θ̂n
(θ − θ̂n) ≤ γ

n

}
(we’ll modify notation slightly later) gives a confidence set with

Pθ(θ ∈ Cn,γ)→ P(‖W ‖2
2 ≤ γ) for W ∼ N (0, Id)
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Duality: testing and confidence regions

Conjecture a model Pθ0 is “true” and then obtain

Pθ0

(
see data as extreme as

what we have seen

)
≤ α

Definition (p-value)

Let H0 : {Pθ : θ ∈ Θ0}. The p-value associated with a sample X n
1

is
sup
θ∈Θ0

Pθ (Data at least as extreme as X n
1 observed) .

Example (Normal observations)

For H0 : {Xi
iid∼ N (0, 1)}, standard p-value is P0(|Z | ≥

√
n|X n|).
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Neyman-Pearson tests

For a point null and alternative

H0 : P0 and H1 : P1

the test maximizing power subject to a level constraint is likelihood
ratio test: for

T (x) := log
dP1(x)

dP0(x)

we

Accept H1, reject H0 if T (x) > t

Accept H0, reject H1 if T (x) < t

balance/randomize if T (x) = t.
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Asymptotic level of a test

I Setting: model family {Pθ}θ∈Θ,

I Null H0 : θ ∈ Θ0 ⊂ Θ (often Θ0 = {θ0} is point null)

I Tn is sequence of test statistics that may reject null.

Definition
The uniform asymptotic level of Tn for null H0 is

lim sup
n→∞

sup
θ0∈Θ0

Pθ0(Tn rejects).

The pointwise asymptotic level of Tn for null H0 is

sup
θ0∈Θ0

lim sup
n→∞

Pθ0(Tn rejects)

Typically, we want asymptotically level α tests (α small)
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Three standard tests

I Generalized likelihood ratio test

I Wald test

I Rao’s score test
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Generalized likelihood ratio test

In model family {Pθ}θ∈Θ, testing

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ

Analogue of likelihood ratio test:

T (x) := log
supθ∈Θ p(x ; θ)

supθ∈Θ0
p(x ; θ)

= log
p(x ; θ̂mle)

supθ∈Θ0
p(x ; θ)
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Wilks’ Theorem

I Θ0 = {θ0} is point null, θ0 ∈ int Θ ⊂ Rd

I Log-likelihood Ln(X ; θ) :=
∑n

i=1 `θ(Xi ) =
∑n

i=1 log pθ(Xi )

I MLE θ̂n = argmaxθ Ln(θ)

Theorem (Wilks, simplified)

Define
∆n := Ln(X ; θ̂n)− Ln(X ; θ0).

Then (under typical smoothness assumptions)

2∆n
d→

Pθ0

χ2
d .
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Wald tests
I Insight: everything looks like quadratics (in classical case)

I Recall Wald confidence ellipse (for γ to be specified)

Cn :=
{
θ : (θ − θ̂n)T I

θ̂n
(θ − θ̂n) ≤ γ

n

}
I Convergence under null H0 : Pθ0 when Iθ0 � 0,

n(θ0 − θ̂n)T I
θ̂n

(θ0 − θ̂n)
d→
H0

‖W ‖2
2

dist
= χ2

d , W ∼ N (0, Id)

Definition (Wald test of point null θ = θ0)

Let u2
d ,α be the α quantile of a χ2

d R.V., P(‖W ‖2
2 ≤ u2

d ,α) = α for
W ∼ N (0, Id). The Wald test at asymptotic level α is

Tn :=

{
Reject if θ0 6∈ Cn,α

Don’t reject if θ0 ∈ Cn,α

where Cn,α is Wald confidence ellipse with γ = u2
d ,α.
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What about nuisance parameters (composite nulls)?

Example (Normal sample, unknown variance)

Say Xi
iid∼ N (µ, σ2) and H0 : µ = 0, but σ2 unspecified

Idea: essentially, estimate the nuisance parameters

Setting: Iθ exists and is invertible, so MLE (usually) satisfies

√
n(θ̂n − θ)

d→
Pθ

N (0, I−1
θ ).

Insight: asymptotics of sub-vectors are immediate
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Notation for Wald test with nuisances

For v ∈ Rd and Σ ∈ Rd×d , let [v ]1:k be the first k components of
v and Σ(k) be the k-by-k principal submatrix

[v ]1:k =

v1
...
vk

 , Σ =

[
Σ(k) · · ·

...
. . .

]
, Σ(k) ∈ Rk×k

Corollary

If Σθ = I−1
θ , so Σ(k) = (I−1

θ )(k), then (under typical smoothness
conditions)

√
n([θ̂n]1:k − [θ]1:k)

d→N
(

0,Σ(k)
)

and

n([θ̂n]1:k − [θ]1:k)>(Σ
(k)

θ̂n
)−1([θ̂n]1:k − [θ]1:k)

d→
Pθ

χ2
k .
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A “reduction” in information

Lemma
For symmetric block matrix

A =

[
A11 A12

A21 A22

]
,

M = A−1 satisfies M11 = (A11 − A12A
−1
22 A21)−1

I Apply with A = Iθ, Σ = M = I−1
θ

I Get “reduced” information (Iθ)11 − (Iθ)12(Iθ)−1
22 (Iθ)21
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Wald test with nuisance parameters

I Composite null on θ ∈ Rd

H0 : {θ1 = θ0
1, . . . , θk = θ0

k , θk+1, . . . , θd unrestricted}.

I Confidence ellipse

Cn,α :=
{
θ ∈ Rd :

([θ]1:k − [θ̂n]1:k)>(Σ
(k)

θ̂n
)−1([θ]1:k − [θ̂n]1:k) ≤

u2
k,α

n

}
I Wald test at (pointwise) asymptotic level α is

Tn :=

{
Reject if θ0 6∈ Cn,α

Don’t reject if θ0 ∈ Cn,α
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Wald test comments and example

I Actually need to use Σ
(k)

θ̂n
to get a consistent Fisher

information estimate

Example (Gaussian mean, unknown covariance)

For null H0 : {N (θ,Σ), θ = 0,Σ � 0},

Cn,α :=

{
θ ∈ Rd : θ>Σ̂−1θ ≤

u2
d ,α

n

}

and
P(X n ∈ Cn,α)→ α.
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Rao’s score test

I an asymptotic test that doesn’t rely on MLE computation

I use limits of score under θ,
√
nPn∇`θ

d→Pθ
N (0, Iθ)

I under null H0 : θ = θ0 ∈ Rd ,

nPn∇`>θ0
I−1
θ0
∇`θ0

d→
H0

χ2
d

Definition (Rao test)

The Rao test of asymptotic level α rejects H0 : θ = θ0 when

Pn∇`>θ0
I−1
θ0
∇`θ0 ≥

u2
d ,α

n
.

I strong connections to optimality (revisit later)

I analogues for composite nulls to other cases
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