(Relative) Efficiency of Estimators and Basic Tests using Fisher Information

John Duchi

Stats 300b - Winter Quarter 2021

Outline

- Efficiency of estimators
- Super-efficiency
- Some basic tests
- Confidence intervals
- Likelihood Ratios
- Standard tests: likelihood ratio, Wald, and Rao's Score

Reading: The references here are somewhat redundant to one another, but their union is more than sufficient:

- 1. Lehmann, Elements of Large Sample Theory Chs. 3.1, 3.2, 4.1.
- 2. Lehmann & Romano, Testing Statistical Hypotheses Ch. 12.4.
- 3. van der Vaart, Asymptotic Statistics Chs. 8.1, 8.2, 14.1–14.3.

Efficiency of estimators

Definition

We say an estimator $\hat{\theta}_n$ is *efficient* for a parameter θ in the model $\{P_{\theta}\}$ with Fisher information I_{θ} if

$$\sqrt{n}(\widehat{\theta}_n-\theta) \stackrel{d}{\to} \mathcal{N}(0,I_{\theta}^{-1}).$$

Examples:

- Gaussian mean
- Poisson parameter estimation
- Regular exponential family MLEs.

Comparing estimators

Let $\hat{\theta}_n$ and T_n be (sequences) of estimators of a parameter $\theta \in \mathbb{R}$, where we have

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^2(\theta)).$$

Definition

If there is a sequence $m(n) \to \infty$ such that

$$\sqrt{n}(T_{m(n)}-\theta) \stackrel{d}{\rightarrow} \mathcal{N}(0,\sigma^2(\theta))$$

then the limit (assuming it exists)

$$\lim_{n\to\infty}\frac{m(n)}{n}$$

is the asymptotic relative efficiency (ARE) of $\hat{\theta}_n$ to T_n .

Idea: relative sample size estimators require to get an estimate of the same "quality" (Relative) Efficiency of Estimators and Basic Tests using Fisher Information 11-4

Confidence intervals

Constructing an interval

- Asymptotically normal estimate $\hat{\theta}_n$, $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^2(\theta))$
- Gaussian $1 \alpha/2$ quantile $\mathbb{P}(|Z| \ge z_{1-\alpha/2}) = \alpha$

Natural (Wald) confidence interval

$$C_n := \left[\widehat{\theta}_n - z_{1-\alpha/2}\sqrt{\frac{\sigma^2(\theta)}{n}}, \widehat{\theta}_n + z_{1-\alpha/2}\sqrt{\frac{\sigma^2(\theta)}{n}}\right]$$

satisfies $\lim_{n\to\infty} P_{\theta}(\theta \in C_n) = 1 - \alpha$

Comparing inverals: If ARE of $\hat{\theta}_n$ to T_n is $A \in (0, \infty)$, when are intervals the same size?

From variance to relative efficiency

Lemma If

$$\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$$
 and $\sqrt{n}(T_n - \theta) \xrightarrow{d} \mathcal{N}(0, \tau^2(\theta))$
then the asymptotic relative efficiency (ARE) of $\widehat{\theta}_n$ w.r.t. T_n is $\frac{\tau^2(\theta)}{\sigma^2(\theta)}$

Super-efficiency and comparison of estimators

Food for thought: say estimators T_n , $\hat{\theta}_n$ satisfy

$$\sqrt{n}(T_n - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \tau^2(\theta)) \text{ and } \sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^2(\theta))$$

where $\tau^2(\theta) \le \sigma^2(\theta)$ everywhere, and $\tau^2(\theta_0) < \sigma^2(\theta_0)$ for some θ_0 Definition

If the preceding occurs and $\sigma^2(\theta) = I_{\theta}^{-1}$, T_n is super-efficient.

Hodge's super-efficient estimator

Assume $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, 1)$ and define

$$T_n := \begin{cases} \overline{X}_n & \text{if } |\overline{X}_n| \ge n^{-1/4} \\ 0 & \text{otherwise} \end{cases}$$

Lemma

Hodge's estimator is super-efficient, as

$$\sqrt{n}(T_n-\theta) \stackrel{d}{\underset{P_{\theta}}{\longrightarrow}} \begin{cases} \mathcal{N}(0,1) & \text{if } \theta \neq 0 \\ 0 & \text{if } \theta = 0. \end{cases}$$

Testing

The scientific method: We propose a hypothesis, develop an experiment to test the hypothesis, and then either (i) reject the hypothesis or state that (ii) the hypothesis remains consistent with the data. (There is no truth.)

Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly:

- 1. Devising alternative hypotheses
- Devising a crucial experiment (or several), with alternative possible outcomes, each of which will, as nearly as possible, exclude one or more of the hypotheses;
- 3. Carrying out the experiment so as to get a clean result

John Platt, "Strong Inference," Science 1964.

Testing and confidence intervals

Constructing a confidence region: Given

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, I_{\theta_0}^{-1})$$

would like to say "with reasonably high confidence, $\theta_0 \in C_n$ " for some set C_n . (This isn't the scientific method.)

Example (Wald confidence ellipse) If $\sqrt{n}(\widehat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, I_{\theta_0}^{-1})$ and I_{θ} is continuous,

$$C_{n,\gamma} := \left\{ \theta : (\theta - \widehat{\theta}_n)^T I_{\widehat{\theta}_n} (\theta - \widehat{\theta}_n) \leq \frac{\gamma}{n} \right\}$$

(we'll modify notation slightly later) gives a confidence set with

$$\mathcal{P}_{ heta}(heta \in \mathcal{C}_{n,\gamma}) o \mathbb{P}(\|W\|_2^2 \leq \gamma) \;\; ext{for} \; W \sim \mathcal{N}(0, I_d)$$

Duality: testing and confidence regions

Conjecture a model P_{θ_0} is "true" and then obtain

$$P_{ heta_0} \left(egin{minipage}{l} {
m see \ data \ as \ extreme \ as} \ {
m what \ we \ have \ seen} \end{array}
ight) \leq lpha$$

Definition (*p*-value) Let $H_0 : \{P_\theta : \theta \in \Theta_0\}$. The *p*-value associated with a sample X_1^n is sup P_θ (Data at least as extreme as X_1^n observed).

 $\theta \in \Theta_0$

Example (Normal observations) For $H_0: \{X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)\}$, standard *p*-value is $P_0(|Z| \ge \sqrt{n}|\overline{X}_n|)$.

Neyman-Pearson tests

For a point null and alternative

```
H_0: P_0 and H_1: P_1
```

the test maximizing power subject to a level constraint is likelihood ratio test: for

$$T(x) := \log \frac{dP_1(x)}{dP_0(x)}$$

we

Accept
$$H_1$$
, reject H_0 if $T(x) > t$
Accept H_0 , reject H_1 if $T(x) < t$
balance/randomize if $T(x) = t$.

Asymptotic level of a test

• Setting: model family $\{P_{\theta}\}_{\theta\in\Theta}$,

- ▶ Null $H_0: \theta \in \Theta_0 \subset \Theta$ (often $\Theta_0 = \{\theta_0\}$ is point null)
- T_n is sequence of test statistics that may reject null.

Definition

The uniform asymptotic level of T_n for null H_0 is

 $\limsup_{n\to\infty} \sup_{\theta_0\in\Theta_0} P_{\theta_0}(T_n \text{ rejects}).$

The pointwise asymptotic level of T_n for null H_0 is

 $\sup_{\theta_0\in\Theta_0}\limsup_{n\to\infty}P_{\theta_0}(T_n \text{ rejects})$

Typically, we want asymptotically level α tests (α small)

Three standard tests

- Generalized likelihood ratio test
- Wald test
- Rao's score test

Generalized likelihood ratio test

In model family $\{P_{\theta}\}_{\theta \in \Theta}$, testing

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta$

Analogue of likelihood ratio test:

$$T(x) := \log \frac{\sup_{\theta \in \Theta} p(x; \theta)}{\sup_{\theta \in \Theta_0} p(x; \theta)} = \log \frac{p(x; \widehat{\theta}_{\mathsf{mle}})}{\sup_{\theta \in \Theta_0} p(x; \theta)}$$

Wilks' Theorem

Theorem (Wilks, simplified)

Define

$$\Delta_n := L_n(X; \widehat{\theta}_n) - L_n(X; \theta_0).$$

Then (under typical smoothness assumptions)

$$2\Delta_n \xrightarrow[P_{\theta_0}]{d} \chi^2_d.$$

Wald tests

- Insight: everything looks like quadratics (in classical case)
- Recall Wald confidence ellipse (for γ to be specified)

$$C_n := \left\{ \theta : (\theta - \widehat{\theta}_n)^T I_{\widehat{\theta}_n} (\theta - \widehat{\theta}_n) \leq \frac{\gamma}{n} \right\}$$

• Convergence under null $H_0 : P_{\theta_0}$ when $I_{\theta_0} \succ 0$,

$$n(\theta_0 - \widehat{\theta}_n)^T I_{\widehat{\theta}_n}(\theta_0 - \widehat{\theta}_n) \xrightarrow{d}_{H_0} \|W\|_2^2 \stackrel{\text{dist}}{=} \chi_d^2, \quad W \sim \mathcal{N}(0, I_d)$$

Definition (Wald test of point null $\theta = \theta_0$) Let $u_{d,\alpha}^2$ be the α quantile of a χ_d^2 R.V., $\mathbb{P}(||W||_2^2 \le u_{d,\alpha}^2) = \alpha$ for $W \sim \mathcal{N}(0, I_d)$. The Wald test at asymptotic level α is

$${\mathcal T}_n := egin{cases} {\sf Reject} & ext{if } heta_0
ot\in {\mathcal C}_{n,lpha} \ {\sf Don't reject} & ext{if } heta_0 \in {\mathcal C}_{n,lpha} \end{cases}$$

where $C_{n,\alpha}$ is Wald confidence ellipse with $\gamma = u_{d,\alpha}^2$. (Relative) Efficiency of Estimators and Basic Tests using Fisher Information What about nuisance parameters (composite nulls)?

Example (Normal sample, unknown variance) Say $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ and $H_0: \mu = 0$, but σ^2 unspecified

Idea: essentially, estimate the nuisance parameters

Setting: I_{θ} exists and is invertible, so MLE (usually) satisfies

$$\sqrt{n}(\widehat{\theta}_n-\theta) \xrightarrow{d}_{P_{\theta}} \mathcal{N}(0, I_{\theta}^{-1}).$$

Insight: asymptotics of sub-vectors are immediate

Notation for Wald test with nuisances

For $v \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$, let $[v]_{1:k}$ be the first k components of v and $\Sigma^{(k)}$ be the k-by-k principal submatrix

$$[\mathbf{v}]_{1:k} = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_k \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}^{(k)} & \cdots \\ \vdots & \ddots \end{bmatrix}, \ \boldsymbol{\Sigma}^{(k)} \in \mathbb{R}^{k \times k}$$

Corollary

If $\Sigma_{\theta} = I_{\theta}^{-1}$, so $\Sigma^{(k)} = (I_{\theta}^{-1})^{(k)}$, then (under typical smoothness conditions)

$$\sqrt{n}([\widehat{\theta}_n]_{1:k}-[\theta]_{1:k})\stackrel{d}{\to}\mathcal{N}\left(0,\Sigma^{(k)}\right)$$

and

$$n([\widehat{\theta}_n]_{1:k}-[\theta]_{1:k})^{\top}(\Sigma_{\widehat{\theta}_n}^{(k)})^{-1}([\widehat{\theta}_n]_{1:k}-[\theta]_{1:k}) \xrightarrow{d}_{P_{\theta}} \chi_k^2.$$

A "reduction" in information

Lemma

For symmetric block matrix

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

$$M = A^{-1}$$
 satisfies $M_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$

Wald test with nuisance parameters

$$\begin{split} C_{n,\alpha} &:= \left\{ \theta \in \mathbb{R}^d : \\ ([\theta]_{1:k} - [\widehat{\theta}_n]_{1:k})^\top (\Sigma_{\widehat{\theta}_n}^{(k)})^{-1} ([\theta]_{1:k} - [\widehat{\theta}_n]_{1:k}) \leq \frac{u_{k,\alpha}^2}{n} \right\} \end{split}$$

• Wald test at (pointwise) asymptotic level α is

$$T_n := \begin{cases} \text{Reject} & \text{if } \theta_0 \notin C_{n,\alpha} \\ \text{Don't reject} & \text{if } \theta_0 \in C_{n,\alpha} \end{cases}$$

Wald test comments and example

Actually need to use Σ^(k)_{θ_n} to get a consistent Fisher information estimate

Example (Gaussian mean, unknown covariance) For null H_0 : { $\mathcal{N}(\theta, \Sigma), \theta = 0, \Sigma \succ 0$ },

$$C_{n,\alpha} := \left\{ \theta \in \mathbb{R}^d : \theta^\top \widehat{\Sigma}^{-1} \theta \leq \frac{u_{d,\alpha}^2}{n} \right\}$$

and

$$\mathbb{P}(\overline{X}_n \in C_{n,\alpha}) \to \alpha.$$

Rao's score test

- an asymptotic test that doesn't rely on MLE computation
- ▶ use limits of score under θ , $\sqrt{n}P_n\nabla \ell_\theta \xrightarrow{d} \mathcal{N}(0, I_\theta)$
- under null $H_0: \theta = \theta_0 \in \mathbb{R}^d$,

$$nP_n \nabla \ell_{\theta_0}^\top I_{\theta_0}^{-1} \nabla \ell_{\theta_0} \xrightarrow{d} \chi_d^2$$

Definition (Rao test)

The *Rao test* of asymptotic level α rejects $H_0: \theta = \theta_0$ when

$$P_n \nabla \ell_{\theta_0}^\top I_{\theta_0}^{-1} \nabla \ell_{\theta_0} \geq \frac{u_{d,\alpha}^2}{n}$$

strong connections to optimality (revisit later)
 analogues for composite nulls to other cases
 (Relative) Efficiency of Estimators and Basic Tests using Fisher Information