Applications of Uniform Central Limit Theorems and Laws of Large Numbers

John Duchi

Stats 300b - Winter Quarter 2021

Applications of Uniform Convergence

Outline

Goodness of fit tests

Convergence of M-estimators

rates of convergence

non-smooth losses and CLT-type expansions

Reading: van der Vaart, *Asymptotic Statistics*, Chapter 19.3–19.6, Chapter 5.8

Refined continuous mapping theorem

- Metric spaces $\mathbb{D}_n \subset \mathbb{D}$ and \mathbb{E}
- Sequence of functions $g_n : \mathbb{D}_n \to \mathbb{E}$,
- ▶ Continuous-ish: for some $g : \mathbb{D}_0 \to \mathbb{E}$, if $x_n \in \mathbb{D}_n$ has subsequence $x_{n(m)} \to x \in \mathbb{D}_0 \subset \mathbb{D}$, then

$$g_{n(m)}(x_{n(m)}) \rightarrow g(x)$$

Theorem (18.11 in van der Vaart)

If $X_n \in \mathbb{D}_n$ and $X \in \mathbb{D}$ are random elements and $X \in \mathbb{D}_0$ with probability 1,

(i) If
$$X_n \xrightarrow{d} X$$
, then $g_n(X_n) \xrightarrow{d} g(X)$
(ii) If $X_n \xrightarrow{p} X$, then $g_n(X_n) \xrightarrow{p} g(X)$
(iii) If $X_n \xrightarrow{a.s.} X$, then $g_n(X_n) \xrightarrow{a.s.} g(X)$

Basic approach

have empirical process G_n = √n(P_n - P) in L[∞](T)
 if it's Donsker, i.e. G_n ^d→ G in L[∞](T), then

$$\phi(\mathbb{G}_n) \xrightarrow{d} \phi(\mathbb{G})$$

whenever ϕ is continuous for $L^{\infty}(T)$

Goodness of fit tests

Two statistics:

$$\sqrt{n} \|F_n - F\|_{\infty}$$
 Kolmogorov-Smirnov
 $n \int (F_n - F)^2 dF$ Cramér-von Mises

both F_n and F belong to càdlàg functions (continuous from right, limits from the left)

Kolmogorov-Smirnov Statistics

Corollary For $K_n = \sqrt{n} \|F_n - F\|_{\infty}$, $K_n \stackrel{d}{\to} \|\mathbb{G}_F\|_{\infty}$ under $H_0 : X_i \stackrel{\text{iid}}{\sim} F$,

where $Cov(\mathbb{G}_F(t), \mathbb{G}_F(s)) = F(s \wedge t) - F(s)F(t)$, and $\|\mathbb{G}_F\|_{\infty}$ has identical distribution for all continuous F

Cramér-von Mises Statistics

Corollary
For
$$C_n := n \int (F_n - F)^2 dF$$
,
 $C_n \xrightarrow{d} \int \mathbb{G}_F^2 dF$ under $H_0 : X_i \stackrel{\text{iid}}{\sim} F$,

where $Cov(\mathbb{G}_F(t), \mathbb{G}_F(s)) = F(s \wedge t) - F(s)F(t)$, and $\int \mathbb{G}_F^2 dF$ has identical distribution for all continuous F

An approach to multiple hypothesis testing

$$A_n := \sup_t \sqrt{n}(F_n(t) - t)w(t)$$
 Anderson-Darling

Corollary

Under $H_{0,n}$, weighted process $\mathbb{G}_n^w = [\sqrt{n}(F_n - t)w(t)]_{t \in [0,1]}$ has

$$\mathbb{G}_n^w \xrightarrow{d} \mathbb{G}^w$$
 in $L^\infty([0,1])$

whenever $\int_0^1 w^2(t) dt < \infty$.

Proof of convergence for Anderson-Darling statistics

• envelope function F(t) = w(t) for entire class $\mathcal{F}_{indicators} = \{f(x) = 1 \{x \le t\}\}_{t \in [0,1]}$

Convergence of M-estimators

recall M-estimators:

loss function $\ell_{\theta}(x)$ in θ

sample and population losses L(θ) = Pℓ_θ(X) and L_n(θ) = P_nℓ_θ(X)

M-estimator

$$\widehat{ heta}_{n} \in \mathop{\mathrm{argmin}}_{ heta \in \Theta} L_{n}(heta)$$

• global minimizer
$$heta_0 = \operatorname{argmin}_{ heta \in \Theta} L(heta)$$

idea: to get rate of convergence, argue that growth $L(\theta) - L(\theta_0)$ dominates noise $L_n(\theta) - L_n(\theta_0)$

The picture in the "standard" case

demonstrate population growth L(θ) − L(θ₀) ≥ ||θ − θ₀||²
 central limit behavior for localized process

$$|(L_n(\theta) - L_n(\theta_0)) - (L(\theta) - L(\theta_0))| = O_P(1) \frac{\|\theta - \theta_0\|}{\sqrt{n}}$$

3. critical radius

$$\frac{\|\theta - \theta_0\|}{\sqrt{n}} = \|\theta - \theta_0\|^2 \quad \text{i.e.} \quad \|\theta - \theta_0\| = \frac{1}{\sqrt{n}}.$$

Rates of convergence

• distance-like function $d: \Theta \times \Theta \rightarrow \mathbb{R}_+$

▶ population growth $L(\theta) - L(\theta_0) \ge \lambda d(\theta, \theta_0)^{\beta}$ near θ_0 , i.e. for growth function $g(\delta) = \lambda \delta^{\beta}$, in a neighborhood of θ_0 ,

$$L(\theta) \ge L(\theta_0) + g(\delta)$$
 if $d(\theta, \theta_0) \ge \delta$

• stochastic modulus
$$\omega(\delta) = c \delta^{lpha}$$
, some $0 \leq lpha < eta$

$$\mathbb{E}\left[\sup_{\theta:d(\theta,\theta_0)\leq\delta}|\mathbb{G}_n(\ell_{\theta}-\ell_{\theta_0})|\right]\leq\omega(\delta)$$

Theorem

Let the rate $r_n > 0$ satisfy the critical radius condition $\frac{\omega(r_n)}{\sqrt{n}} \leq g(r_n)$. If $\hat{\theta}_n \xrightarrow{p} \theta_0$, then $d(\hat{\theta}_n, \theta_0) = O_P(r_n)$.

Rates of convergence: proof by peeling

- let $\epsilon > 0$, choose η such that $P(d(\hat{\theta}_n, \theta_0) \ge \eta) \le \epsilon$
- ► construct shells $S_{j,n} = \{\theta \in \Theta, r_n 2^{j-1} \le d(\theta, \theta_0) \le 2^j r_n\}$

probability of individual shells is small:

M-estimators with non-smooth losses

some losses $\ell(\theta, x)$ we like, population loss $L(\theta) = P\ell(\theta, X)$

Stochastic Taylor approximations

using shorthand $\ell_{\theta} = \ell(\theta, \cdot)$, assume in a neighborhood of θ_0 :

Lipschitz condition

$$|\ell_{ heta_1}(x) - \ell_{ heta_2}(x)| \leq M(x) \, \| heta_1 - heta_2\|$$

• differentiability (in probability): $\theta \mapsto \ell_{\theta}(x)$ has gradient $\dot{\ell}_{\theta_0}$ at θ_0 with *P*-probability 1

Lemma (19.31 in van der Vaart) If $r_n \uparrow \infty$ and $PM^2 < \infty$, then

$$\sup_{\|h\|\leq 1} \mathbb{G}_n\left(r_n\left(\ell_{\theta_0+\frac{h}{r_n}}-\ell_{\theta_0}\right)-h^\top\dot{\ell}_{\theta_0}\right) \xrightarrow{p} 0.$$

Proof of stochastic Taylor approximation

Finite dimensional convergence to 0

Tightness (asymptotic stochastic equicontinuity)

Convergence of M-estimators

same conditions as lemma, and

• $L(\theta) = P\ell_{\theta}(X)$ is twice differentiable at $\theta_0 = \operatorname{argmin}_{\theta} L(\theta)$, with positive definite Hessian

 $\nabla^2 L(\theta_0) \succ 0$

Theorem (5.23 in van der Vaart) Assume $\widehat{\theta}_n \xrightarrow{p} \theta_0$ and $L_n(\widehat{\theta}_n) \leq \inf_{\theta} L_n(\theta) + o_P(1/n)$. Then

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) = -\nabla^2 L(\theta_0)^{-1} \cdot \sqrt{n} P_n \dot{\ell}_{\theta_0} + o_P(1)$$

Proof of convergence

• for any $h_n = O_P(1)$, we have

$$n(P_n\ell_{\theta_0+h_n/\sqrt{n}}-P_n\ell_{\theta_0})=\frac{1}{2}h_n^{\top}\nabla^2 L(\theta_0)h_n+h_n^{\top}\mathbb{G}_n\dot{\ell}_{\theta_0}+o_P(1)$$

• expand using
$$\hat{h}_n = \sqrt{n}(\hat{\theta}_n - \theta_0)$$
 and $\tilde{h}_n = -\nabla^2 L(\theta_0)^{-1} \mathbb{G}_n \dot{\ell}_{\theta_0}$

Example: quantile estimation

• CDF
$$F(t) := P(X \le t)$$
 has density $f(\theta_0)$ at θ_0

► loss function
$$\ell_{\theta}(x) = (1 - \alpha)(\theta - x)_{+} + \alpha(x - \theta)_{+}$$

$$\blacktriangleright P(X \le \theta_0) = \alpha$$

Corollary (Asymptotic linearity of quantile estimator) The empirical minimizer $\hat{\theta}_n = \operatorname{argmin} L_n(\theta)$ satisfies

$$\begin{split} &\sqrt{n}(\widehat{\theta}_n - \theta_0) \\ &= -\frac{1}{f(\theta_0)} \cdot \sqrt{n} \left[(1 - \alpha) P_n(X_i \le \theta_0) - \alpha P_n(X_i \ge \theta_0) \right] + o_P(1) \end{split}$$