Uniform Laws of Large Numbers

John Duchi

Stats 300b - Winter Quarter 2021

Uniform Laws of Large Numbers

Outline

- Uniform laws of large numbers
- "argmax" theorem
- Covering and bracketing numbers
- Metric entropy

Reading:

- van der Vaart Chapters 5.2, 19.1, 19.2.
- Wainwright Chapters 4, 5.1 cover the material but rely on some concentration inequalities we will cover in coming lectures.

Uniform laws of large numbers

Let \mathcal{F} be a collection of functions $f : \mathcal{X} \to \mathbb{R}$. Then \mathcal{F} satisfies a ULLN (for a distribution P) if

$$\|P_n-P\|_{\mathcal{F}}:=\sup_{f\in\mathcal{F}}|P_nf-Pf|\stackrel{p}{\to}0.$$

Example (Glivenko Cantelli) Let $\mathcal{F} = \{f(x) = 1 \{x \le t\}\}_{t \in \mathbb{R}}$. Then $\sup_{f \in \mathcal{F}} |P_n f - Pf| = \sup_{t \in \mathbb{R}} |P_n(X \le t) - P(X \le t)| \xrightarrow{p} 0.$

More is possible: Dvoretzky-Kiefer-Wolfowitz inequality gives

$$\mathbb{P}\left(\sup_{t}|P_{n}(X\leq t)-P(X\leq t)|\geq\epsilon
ight)\leq2\exp\left(-2n\epsilon^{2}
ight).$$

Consistency and argmax theorems

- ULLNs make consistency results much easier
- easy "generic" consistency result for loss minimization
- Θ is a parameter space, $\ell: \Theta \times \mathcal{X} \to \mathbb{R}$ a loss
- ▶ population loss (risk) $L(\theta) = P\ell(\theta, X)$ and $L_n(\theta) = P_n\ell(\theta, X)$

Proposition

If $\mathcal{F} = \{\ell(\theta, \cdot)\}_{\theta \in \Theta}$ satisfies the ULLN and

$$L_n(\widehat{\theta}_n) \leq \inf_{\theta \in \Theta} L_n(\theta) + o_P(1)$$
 then $L(\widehat{\theta}_n) \stackrel{P}{\to} \inf_{\theta \in \Theta} L(\theta)$

The argmax theorem

• Assume for all $\epsilon > 0$, there is $\delta > 0$ such that

 $L(\theta) \ge L(\theta^{\star}) + \delta$ whenever $d(\theta, \theta^{\star}) \ge \epsilon$

Proposition (Argmax) If $L_n(\hat{\theta}_n) \leq \inf_{\theta \in \Theta} L_n(\theta) + o_P(1)$ and $\{\ell(\theta, \cdot)\}_{\theta \in \Theta}$ satisfies the ULLN, then

 $\widehat{\theta}_n \stackrel{p}{\to} \theta^\star.$

Covering a set

Definition

Let (Θ, ρ) be a metric space $(\rho \text{ may be a semimetric})$. For $\epsilon > 0$, a set $\{\theta^i\}_{i=1}^N$ is an ϵ -cover of Θ if for each $\theta \in \Theta$ there exists $i \leq N$ such that

$$\rho(\theta, \theta^i) \leq \epsilon$$

Sometimes require $\theta^i \in \Theta$, in which case we have *internal* cover

Packing a set

Definition

For $\delta > 0$, a set $\{\theta^i\}_{i=1}^M \subset \Theta$ is a δ -packing of Θ is $\rho(\theta^i, \theta^j) > \delta$ for each $i \neq j$.

Covering numbers and entropies

Definition

The ϵ -covering number $N(\Theta, \rho, \epsilon)$ of Θ is the smallest N such that there exists an ϵ -cover $\{\theta^i\}_{i=1}^N$ of Θ .

Definition

The δ -packing number $M(\Theta, \rho, \delta)$ of Θ is the largest M such that there exists a δ -packing $\{\theta^i\}_{i=1}^M \subset \Theta$ of Θ .

Definition (Entropies)

The metric entropy of Θ is log $N(\Theta, \rho, \epsilon)$; the packing entropy of Θ is log $M(\Theta, \rho, \epsilon)$.

Proposition (Equivalence between entropies)

$$M(\Theta, \rho, 2\epsilon) \leq N(\Theta, \rho, \epsilon) \leq M(\Theta, \rho, \epsilon).$$

Covering numbers by volume arguments

Let $\mathbb{B}^d = \{\theta \in \mathbb{R}^d \mid \|\theta\| \le 1\}$ be the 1-ball for norm $\|\cdot\|$. Proposition (Entropy of norm balls) For any $0 < \epsilon \le r < \infty$,

$$d\log rac{r}{\epsilon} \leq \log \mathit{N}(r\mathbb{B}^d, \left\|\cdot\right\|, \epsilon) \leq d\log \left(1+rac{2r}{\epsilon}
ight).$$

Bracketing numbers

• for $\mathcal{F} \subset {\mathcal{X} \to \mathbb{R}}$, an additional type of covering is useful

Definition

Let \mathcal{F} be a collection of functions $f : \mathcal{X} \to \mathbb{R}$, μ a measure on \mathcal{X} , and $p \ge 1$. A set $\{[l_i, u_i]\}_{i=1}^N \subset L^p(\mu)$ is an ϵ -bracketing of \mathcal{F} for $L^p(\mu)$ if for each $f \in \mathcal{F}$, there exists $i \in [N]$ satisfying

$$I_i \leq f \leq u_i$$
 and $\|I_i - u_i\|_{L^p(\mu)} := \left(\int |I_i - u_i|^p d\mu\right)^{1/p} \leq \epsilon.$

The bracketing number $N_{[]}(\mathcal{F}, L^{p}(\mu), \epsilon)$ of \mathcal{F} is the smallest N such that there exists such an ϵ -bracket of size N.

Bracketing a parametric collection functions

• $\Theta \subset \mathbb{R}^d$ is compact with $N(\Theta, \|\cdot\|, \epsilon) < \infty$

► criterion functions $\ell_{\theta}(x)$ are M(x)-Lipschitz in θ with $\mathbb{E}[M(X)] < \infty$, i.e. $|\ell_{\theta_0}(x) - \ell_{\theta_1}(x)| \le M(x) \|\theta_0 - \theta_1\|$

• function class
$$\mathcal{F} = \{\ell_{ heta}\}_{ heta \in \Theta}$$

Proposition

The bracketing number of $\mathcal F$ satisfies

 $N_{[]}(\mathcal{F}, L^{1}(P), \epsilon PM(X)) \leq N(\Theta, \|\cdot\|, \epsilon/2).$

A uniform law of large numbers

Theorem
Let
$$\mathcal{F} \subset {\mathcal{X} \to \mathbb{R}}$$
 satisfy $N_{[]}(\mathcal{F}, L^1(P), \epsilon) < \infty$ for all $\epsilon > 0$.
Then

$$\sup_{f\in\mathcal{F}}|P_nf-Pf|=\|P_n-P\|_{\mathcal{F}}\stackrel{P}{\to}0.$$

Example: logistic regression

Proposition

If $P \|X\| < \infty$, then $\|P_n - P\|_{\mathcal{F}_{\log}} \xrightarrow{p} 0$.