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Outline

I Uniform laws of large numbers

I “argmax” theorem

I Covering and bracketing numbers

I Metric entropy

Reading:

I van der Vaart Chapters 5.2, 19.1, 19.2.

I Wainwright Chapters 4, 5.1 cover the material but rely on
some concentration inequalities we will cover in coming
lectures.
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Uniform laws of large numbers

Let F be a collection of functions f : X → R. Then F satisfies a
ULLN (for a distribution P) if

‖Pn − P‖F := sup
f ∈F
|Pnf − Pf | p→ 0.

Example (Glivenko Cantelli)

Let F = {f (x) = 1 {x ≤ t}}t∈R. Then

sup
f ∈F
|Pnf − Pf | = sup

t∈R
|Pn(X ≤ t)− P(X ≤ t)| p→ 0.

More is possible: Dvoretzky-Kiefer-Wolfowitz inequality gives

P
(

sup
t
|Pn(X ≤ t)− P(X ≤ t)| ≥ ε

)
≤ 2 exp

(
−2nε2

)
.
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Consistency and argmax theorems

I ULLNs make consistency results much easier

I easy “generic” consistency result for loss minimization

I Θ is a parameter space, ` : Θ×X → R a loss

I population loss (risk) L(θ) = P`(θ,X ) and Ln(θ) = Pn`(θ,X )

Proposition

If F = {`(θ, ·)}θ∈Θ satisfies the ULLN and

Ln(θ̂n) ≤ inf
θ∈Θ

Ln(θ) + oP(1) then L(θ̂n)
p→ inf
θ∈Θ

L(θ)
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The argmax theorem

I Assume for all ε > 0, there is δ > 0 such that

L(θ) ≥ L(θ?) + δ whenever d(θ, θ?) ≥ ε

Proposition (Argmax)

If Ln(θ̂n) ≤ infθ∈Θ Ln(θ) + oP(1) and {`(θ, ·)}θ∈Θ satisfies the
ULLN, then

θ̂n
p→ θ?.
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Covering a set

Definition
Let (Θ, ρ) be a metric space (ρ may be a semimetric). For ε > 0, a
set {θi}Ni=1 is an ε-cover of Θ if for each θ ∈ Θ there exists i ≤ N
such that

ρ(θ, θi ) ≤ ε

I Sometimes require θi ∈ Θ, in which case we have internal
cover
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Packing a set

Definition
For δ > 0, a set {θi}Mi=1 ⊂ Θ is a δ-packing of Θ is ρ(θi , θj) > δ
for each i 6= j .
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Covering numbers and entropies

Definition
The ε-covering number N(Θ, ρ, ε) of Θ is the smallest N such that
there exists an ε-cover {θi}Ni=1 of Θ.

Definition
The δ-packing number M(Θ, ρ, δ) of Θ is the largest M such that
there exists a δ-packing {θi}Mi=1 ⊂ Θ of Θ.

Definition (Entropies)

The metric entropy of Θ is logN(Θ, ρ, ε); the packing entropy of
Θ is logM(Θ, ρ, ε).

Proposition (Equivalence between entropies)

M(Θ, ρ, 2ε) ≤ N(Θ, ρ, ε) ≤ M(Θ, ρ, ε).
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Covering numbers by volume arguments

Let Bd = {θ ∈ Rd | ‖θ‖ ≤ 1} be the 1-ball for norm ‖·‖.

Proposition (Entropy of norm balls)

For any 0 < ε ≤ r <∞,

d log
r

ε
≤ logN(rBd , ‖·‖ , ε) ≤ d log

(
1 +

2r

ε

)
.
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Bracketing numbers

I for F ⊂ {X → R}, an additional type of covering is useful

Definition
Let F be a collection of functions f : X → R, µ a measure on X ,
and p ≥ 1. A set {[li , ui ]}Ni=1 ⊂ Lp(µ) is an ε-bracketing of F for
Lp(µ) if for each f ∈ F , there exists i ∈ [N] satisfying

li ≤ f ≤ ui and ‖li − ui‖Lp(µ) :=

(∫
|li − ui |pdµ

)1/p

≤ ε.

The bracketing number N[](F , Lp(µ), ε) of F is the smallest N
such that there exists such an ε-bracket of size N.
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Bracketing a parametric collection functions

I Θ ⊂ Rd is compact with N(Θ, ‖·‖ , ε) <∞
I criterion functions `θ(x) are M(x)-Lipschitz in θ with

E[M(X )] <∞, i.e. |`θ0(x)− `θ1(x)| ≤ M(x) ‖θ0 − θ1‖
I function class F = {`θ}θ∈Θ

Proposition

The bracketing number of F satisfies

N[](F , L1(P), εPM(X )) ≤ N(Θ, ‖·‖ , ε/2).
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A uniform law of large numbers

Theorem
Let F ⊂ {X → R} satisfy N[](F , L1(P), ε) <∞ for all ε > 0.
Then

sup
f ∈F
|Pnf − Pf | = ‖Pn − P‖F

p→ 0.
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Example: logistic regression

I data {x , y} ∈ Rd × {±1}
I losses `(θ, x , y) = log(1 + exp(−y〈θ, x〉))

I function class Flog = {`(θ, ·)}θ∈Θ

Proposition

If P ‖X‖ <∞, then ‖Pn − P‖Flog

p→ 0.

Uniform Laws of Large Numbers 5–13


