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Outline

» Empirical process notation
» Consistency
> Asymptotic normality and Taylor expansions

» Fisher information

Reading: van der Vaart, Chapter 5.1-5.6
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Notation

We'll use empirical process notation, which is very convenient.
Given a distribution P on X and f : X — RY, we write

Pf := / fdP = /X f(x)dP(x)

Example (Empirical distributions)

If X; id P, define P, = %27:1 1x; as the empirical distribution, so

Po(A) = %card({i €[n]: X € A})) and Pyf — ,172 £(X)
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“Simple” asymptotic normality arugment

idea: often the log-likelihood of a model is smooth enough that a
Taylor expansion and ignoring higher-order terms gives asymptotic
normality

setting: model family {Py}gco of distributions on X with § € RY,
each with density pp = dPy/du

the log likelihood is
£o(x) := log py(x)

observe: observations X; " Py,, but 89 unknown, and typically use
maximum likelihood estimator (MLE)

~

0n = argmax Pplg(X)
0cO
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Questions about the MLE

For

0, = argmax Pplp(X),
0cO

would like to know about
(1) consistency

(2) asymptotic distribution
(3) optimality
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Consistency

Definition
A model {Py}oco is identifiable if Py # Py for all  # 6" € ©.
Equivalently, Dy (Pg|Pg’) > 0.

Theorem (Consistency for finite ©)
Assume that {Py} is identifiable and card(©) < co. Then 6,50
under Py
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A few remarks

» Consistency may fail for © infinite, but usually doesn't

» Often, consistency the “hardest” part of the argument
» Many sufficient conditions (see exercises); some include
» Uniform convergence supgeg |Pnlo — Ply| 20 for X; ¥p
> Convexity, i.e. when 6 — £y(x) is convex (or concave when
maximizing)
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Asymptotic normality: notation and setting

notation: have log-likelihood ¢y, with score and Hessian of log
likelihood

d

Vip(x) = [;; log py(x )] B € R’

V2ly(x) = [ i log py(x )]d e R
90,00, e

(sometimes write £y = V/g and fg(x) = V2£y)

assumptions: we have a smooth model

V29, (x) — V2lgo (x|, < M(x) |60 — 61]] where Eg,[M?(X)] < oo

op
and Eg, [V0g,(X) V¥, (X)T] exists

Asymptotic normality



The basic asymptotic normality result
Theorem

d ~ ) :
Let X; ~ Py, and assume 0, = argmax, P,{p(X) is consistent.
Define the covariance

%o 1= (PgV2Lp(X)) ™ Cov(VLo(X))(PsV2Lo(X))

Under the previous assumptions,

V(0 — 00) SN (0,%g,)

> “typically” Ly = —(PaV?£g(X))~t = Covy(ly)
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Proof of Theorem
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Additional comments

» proof of result never used log-likelihood, so completely
identical result holds for “M-estimation” problems

» loss function (criterion) £(6, x) and risk (population loss)
Rp () := PL(0, X)

> completely parallel derivation for 8, = argming Rp, (6)
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Fisher information

Definition (Fisher information)
For a model family {Py} on X, the Fisher information is

1(0) == Eg[VLe(X)VLle(X)T]

» when E and V are interchangable, then /(6) = —E[V2£y(X)]
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Examples
Example (Normal location family)

For pp(x) = \/re xp(— (X 0) ), 1(0) = %

Example (Reparameterization)
1(6)

If we are interested in h(6) instead of 6, then I(h(0)) = (o)

Example (Normal location for 62)

In this case, /(6?) = ;55
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Properties of Fisher Information

> Additivity: If X; ~ Py and Xy ~ Qg have information /()
and h(#), then information /(#) from both is /1(0) + h(0)

» i.i.d. sampling: if X; *S Py, then information I,(0) in {X;}7_;
is n-1(0)
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Information inequalities (or, the biggest con in statistics)

idea: Fisher information should tell us something about how hard
problems are

starting point: a covariance lower bound: for any decision
procedure § : X — R and any function 1,

Cov(d,)?

Var(0) > Var(0)
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The information inequality

Theorem (The generic information inequality)

Assume that § : X — R is any estimator and £y = log pg is
“regular enough.” Then

Var(§) > (%,;9)5)2.
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Cramér Rao bounds

Suppose we wish to estimate g(#) and Py[d] = b(6) + g(#), which
are C1. Then we have

Corollary (Cramér Rao Bound)

(b'(6) + &'(9))?
IO

Varg(s) >

Example (Information inequality)
If g(6) = 0 and ¢ is unbiased, then E[(0 — 6)?] >

1
1(0)
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Multi-dimensional Cramér Rao bounds

Lemma
Let §: X - R and ) : X — RY, where Pyp = 0. For
Y= COVg(?ﬁ, 5) = Pgw((s - Pe&) and C = COV@(?,ZJ),

Var(0) >~TC 1y
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A multi-dimensional information bound

Theorem o
Let g(0) = Pyd be differentiable in @ and 1(0) = Pylyl, = 0. Then

Vary(6) > Vg(0)"1(0) " Vg(6).

Corollary (Fisher information bound)
If§ is unbiased for 6, then Eq[||0 — 0113] > tr1(0)~1 and
Eo[(0 — 0)(0 —0)"] = 1(6)~*
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Comments on information bounds

say nothing about biased estimators
say little about only asymptotically unbiased estimators
apply to squared error and little else

vvyyy

extensions via Van Trees inequality to arbitrary estimators
possible
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