Basics of asymptotic normality in estimation

John Duchi

Stats 300b - Winter Quarter 2021

Outline

Empirical process notation

Consistency

Asymptotic normality and Taylor expansions

Fisher information

Reading: van der Vaart, Chapter 5.1–5.6

Notation

We'll use empirical process notation, which is very convenient. Given a distribution P on \mathcal{X} and $f : \mathcal{X} \to \mathbb{R}^d$, we write

$$Pf := \int f dP = \int_{\mathcal{X}} f(x) dP(x)$$

Example (Empirical distributions) If $X_i \stackrel{\text{iid}}{\sim} P$, define $P_n = \frac{1}{n} \sum_{i=1}^n 1_{X_i}$ as the *empirical distribution*, so

$$P_n(A) = rac{1}{n} ext{card}(\{i \in [n] : X_i \in A\}) \ ext{ and } \ P_n f = rac{1}{n} \sum_{i=1}^n f(X_i)$$

"Simple" asymptotic normality arugment

idea: often the log-likelihood of a model is smooth enough that a Taylor expansion and ignoring higher-order terms gives asymptotic normality

setting: model family $\{P_{\theta}\}_{\theta \in \Theta}$ of distributions on \mathcal{X} with $\theta \in \mathbb{R}^d$, each with density $p_{\theta} = dP_{\theta}/d\mu$

the log likelihood is

$$\ell_{\theta}(x) := \log p_{\theta}(x)$$

observe: observations $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$, but θ_0 unknown, and typically use *maximum likelihood estimator* (MLE)

$$\widehat{ heta}_n := rgmax_{ heta \in \Theta} P_n \ell_{ heta}(X)$$

Questions about the MLE

For

$$\widehat{\theta}_n = \operatorname*{argmax}_{\theta \in \Theta} P_n \ell_{\theta}(X),$$

would like to know about

- (1) consistency
- (2) asymptotic distribution
- (3) optimality

Consistency

Definition

A model $\{P_{\theta}\}_{\theta \in \Theta}$ is *identifiable* if $P_{\theta} \neq P_{\theta'}$ for all $\theta \neq \theta' \in \Theta$. Equivalently, $D_{kl}(P_{\theta} || P_{\theta'}) > 0$.

Theorem (Consistency for finite Θ)

Assume that $\{P_{\theta}\}$ is identifiable and $card(\Theta) < \infty$. Then $\widehat{\theta}_n \xrightarrow{p} \theta$ under P_{θ}

A few remarks

- Consistency may fail for Θ infinite, but usually doesn't
- Often, consistency the "hardest" part of the argument
- Many sufficient conditions (see exercises); some include
 - Uniform convergence $\sup_{\theta \in \Theta} |P_n \ell_{\theta} P \ell_{\theta}| \xrightarrow{p} 0$ for $X_i \stackrel{\text{iid}}{\sim} P$
 - Convexity, i.e. when θ → ℓ_θ(x) is convex (or concave when maximizing)

Asymptotic normality: notation and setting

notation: have log-likelihood ℓ_{θ} , with *score* and Hessian of log likelihood

$$abla \ell_{ heta}(x) = \left[rac{\partial}{\partial heta_j} \log p_{ heta}(x)
ight]_{j=1}^d \in \mathbb{R}^d$$
 $abla^2 \ell_{ heta}(x) = \left[rac{\partial^2}{\partial heta_i \partial heta_j} \log p_{ heta}(x)
ight]_{i,j=1}^d \in \mathbb{R}^{d imes d},$

(sometimes write $\dot{\ell}_{ heta} =
abla \ell_{ heta}$ and $\ddot{\ell}_{ heta}(x) =
abla^2 \ell_{ heta}$)

assumptions: we have a smooth model

$$\left\|\nabla^{2}\ell_{\theta_{1}}(x) - \nabla^{2}\ell_{\theta_{0}}(x)\right\|_{\mathsf{op}} \leq M(x) \left\|\theta_{0} - \theta_{1}\right\| \text{ where } \mathbb{E}_{\theta_{0}}[M^{2}(X)] < \infty$$

and $\mathbb{E}_{\theta_0}[\nabla \ell_{\theta_0}(X) \nabla \ell_{\theta_0}(X)^\top]$ exists

The basic asymptotic normality result

Theorem Let $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$ and assume $\hat{\theta}_n = \operatorname{argmax}_{\theta} P_n \ell_{\theta}(X)$ is consistent. Define the covariance

$$\Sigma_{ heta} := (P_{ heta}
abla^2 \ell_{ heta}(X))^{-1} \mathsf{Cov}_{ heta}(
abla \ell_{ heta}(X)) (P_{ heta}
abla^2 \ell_{ heta}(X))^{-1}$$

Under the previous assumptions,

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma_{\theta_0})$$

• "typically"
$$\Sigma_ heta = -(P_ heta
abla^2 \ell_ heta(X))^{-1} = {\sf Cov}_ heta(\dot{\ell}_ heta)$$

Proof of Theorem

Additional comments

- proof of result never used log-likelihood, so completely identical result holds for "M-estimation" problems
- loss function (criterion) $\ell(\theta, x)$ and risk (population loss)

$$R_P(\theta) := P\ell(\theta, X)$$

• completely parallel derivation for $\hat{\theta}_n = \operatorname{argmin}_{\theta} R_{P_n}(\theta)$

Definition (Fisher information)

For a model family $\{P_{\theta}\}$ on \mathcal{X} , the *Fisher information* is

$$I(\theta) := \mathbb{E}_{\theta}[\nabla \ell_{\theta}(X) \nabla \ell_{\theta}(X)^{\top}]$$

• when \mathbb{E} and ∇ are interchangable, then $I(\theta) = -\mathbb{E}[\nabla^2 \ell_{\theta}(X)]$

Examples

Example (Normal location family) For $p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\theta)^2}{2\sigma^2})$, $I(\theta) = \frac{1}{\sigma^2}$

Example (Reparameterization)

If we are interested in $h(\theta)$ instead of θ , then $I(h(\theta)) = \frac{I(\theta)}{h'(\theta)^2}$

Example (Normal location for θ^2) In this case, $I(\theta^2) = \frac{1}{4\sigma^2\theta^2}$

Properties of Fisher Information

Additivity: If X₁ ~ P_θ and X₂ ~ Q_θ have information I₁(θ) and I₂(θ), then information I(θ) from both is I₁(θ) + I₂(θ)

i.i.d. sampling: if X_i ^{iid} ∼ P_θ, then information I_n(θ) in {X_i}ⁿ_{i=1} is n · I(θ)

Information inequalities (or, the biggest con in statistics)

idea: Fisher information should tell us something about how hard problems are

starting point: a covariance lower bound: for any decision procedure $\delta : \mathcal{X} \to \mathbb{R}$ and any function ψ ,

$$\mathsf{Var}(\delta) \geq rac{\mathsf{Cov}(\delta,\psi)^2}{\mathsf{Var}(\psi)}$$

The information inequality

Theorem (The generic information inequality) Assume that $\delta : \mathcal{X} \to \mathbb{R}$ is any estimator and $\ell_{\theta} = \log p_{\theta}$ is "regular enough." Then

$$\mathsf{Var}(\delta) \geq rac{(rac{\partial}{\partial heta} \mathsf{P}_{ heta} \delta)^2}{I(heta)}.$$

Cramér Rao bounds

Suppose we wish to estimate $g(\theta)$ and $P_{\theta}[\delta] = b(\theta) + g(\theta)$, which are C^1 . Then we have

Corollary (Cramér Rao Bound)

$$\mathsf{Var}_{ heta}(\delta) \geq rac{(b'(heta) + \mathbf{g}'(heta))^2}{I(heta)}$$

Example (Information inequality) If $g(\theta) = \theta$ and δ is unbiased, then $\mathbb{E}[(\delta - \theta)^2] \ge \frac{1}{I(\theta)}$.

Multi-dimensional Cramér Rao bounds

Lemma Let $\delta : \mathcal{X} \to \mathbb{R}$ and $\psi : \mathcal{X} \to \mathbb{R}^d$, where $P_{\theta}\psi = 0$. For $\gamma = \text{Cov}_{\theta}(\psi, \delta) = P_{\theta}\psi(\delta - \mathbb{P}_{\theta}\delta)$ and $C = \text{Cov}_{\theta}(\psi)$, $\text{Var}(\delta) \ge \gamma^T C^{-1}\gamma$

A multi-dimensional information bound

Theorem Let $g(\theta) = P_{\theta}\delta$ be differentiable in θ and $I(\theta) = P_{\theta}\dot{\ell}_{\theta}\dot{\ell}_{\theta}^{\top} \succ 0$. Then $\operatorname{Var}_{\theta}(\delta) \geq \nabla g(\theta)^{\top}I(\theta)^{-1}\nabla g(\theta).$

Corollary (Fisher information bound) If $\hat{\theta}$ is unbiased for θ , then $\mathbb{E}_{\theta}[\|\hat{\theta} - \theta\|_2^2] \ge \operatorname{tr} I(\theta)^{-1}$ and $\mathbb{E}_{\theta}[(\hat{\theta} - \theta)(\hat{\theta} - \theta)^{\top}] \ge I(\theta)^{-1}$

Comments on information bounds

- say nothing about biased estimators
- say little about only asymptotically unbiased estimators
- apply to squared error and little else
- extensions via Van Trees inequality to arbitrary estimators possible