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Outline

I Empirical process notation

I Consistency

I Asymptotic normality and Taylor expansions

I Fisher information

Reading: van der Vaart, Chapter 5.1–5.6
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Notation

We’ll use empirical process notation, which is very convenient.
Given a distribution P on X and f : X → Rd , we write

Pf :=

∫
fdP =

∫
X
f (x)dP(x)

Example (Empirical distributions)

If Xi
iid∼ P, define Pn = 1

n

∑n
i=1 1Xi

as the empirical distribution, so

Pn(A) =
1

n
card({i ∈ [n] : Xi ∈ A}) and Pnf =

1

n

n∑
i=1

f (Xi )
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“Simple” asymptotic normality arugment

idea: often the log-likelihood of a model is smooth enough that a
Taylor expansion and ignoring higher-order terms gives asymptotic
normality

setting: model family {Pθ}θ∈Θ of distributions on X with θ ∈ Rd ,
each with density pθ = dPθ/dµ

the log likelihood is
`θ(x) := log pθ(x)

observe: observations Xi
iid∼ Pθ0 , but θ0 unknown, and typically use

maximum likelihood estimator (MLE)

θ̂n := argmax
θ∈Θ

Pn`θ(X )
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Questions about the MLE

For
θ̂n = argmax

θ∈Θ
Pn`θ(X ),

would like to know about

(1) consistency

(2) asymptotic distribution

(3) optimality
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Consistency

Definition
A model {Pθ}θ∈Θ is identifiable if Pθ 6= Pθ′ for all θ 6= θ′ ∈ Θ.
Equivalently, Dkl (Pθ||Pθ′) > 0.

Theorem (Consistency for finite Θ)

Assume that {Pθ} is identifiable and card(Θ) <∞. Then θ̂n
p→ θ

under Pθ
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A few remarks

I Consistency may fail for Θ infinite, but usually doesn’t

I Often, consistency the “hardest” part of the argument
I Many sufficient conditions (see exercises); some include

I Uniform convergence supθ∈Θ |Pn`θ − P`θ|
p→ 0 for Xi

iid∼ P
I Convexity, i.e. when θ 7→ `θ(x) is convex (or concave when

maximizing)
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Asymptotic normality: notation and setting

notation: have log-likelihood `θ, with score and Hessian of log
likelihood

∇`θ(x) =

[
∂

∂θj
log pθ(x)

]d
j=1

∈ Rd

∇2`θ(x) =

[
∂2

∂θi∂θj
log pθ(x)

]d
i ,j=1

∈ Rd×d ,

(sometimes write ˙̀
θ = ∇`θ and ῭

θ(x) = ∇2`θ)

assumptions: we have a smooth model∥∥∇2`θ1(x)−∇2`θ0(x)
∥∥

op
≤ M(x) ‖θ0 − θ1‖ where Eθ0 [M2(X )] <∞

and Eθ0 [∇`θ0(X )∇`θ0(X )>] exists
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The basic asymptotic normality result

Theorem
Let Xi

iid∼ Pθ0 and assume θ̂n = argmaxθ Pn`θ(X ) is consistent.
Define the covariance

Σθ := (Pθ∇2`θ(X ))−1Covθ(∇`θ(X ))(Pθ∇2`θ(X ))−1

Under the previous assumptions,

√
n(θ̂n − θ0)

d→N (0,Σθ0)

I “typically” Σθ = −(Pθ∇2`θ(X ))−1 = Covθ( ˙̀
θ)
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Proof of Theorem
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Additional comments

I proof of result never used log-likelihood, so completely
identical result holds for “M-estimation” problems

I loss function (criterion) `(θ, x) and risk (population loss)

RP(θ) := P`(θ,X )

I completely parallel derivation for θ̂n = argminθ RPn(θ)
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Fisher information

Definition (Fisher information)

For a model family {Pθ} on X , the Fisher information is

I (θ) := Eθ[∇`θ(X )∇`θ(X )>]

I when E and ∇ are interchangable, then I (θ) = −E[∇2`θ(X )]
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Examples
Example (Normal location family)

For pθ(x) = 1√
2πσ2

exp(− (x−θ)2

2σ2 ), I (θ) = 1
σ2

Example (Reparameterization)

If we are interested in h(θ) instead of θ, then I (h(θ)) = I (θ)
h′(θ)2

Example (Normal location for θ2)

In this case, I (θ2) = 1
4σ2θ2
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Properties of Fisher Information

I Additivity: If X1 ∼ Pθ and X2 ∼ Qθ have information I1(θ)
and I2(θ), then information I (θ) from both is I1(θ) + I2(θ)

I i.i.d. sampling: if Xi
iid∼ Pθ, then information In(θ) in {Xi}ni=1

is n · I (θ)
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Information inequalities (or, the biggest con in statistics)

idea: Fisher information should tell us something about how hard
problems are

starting point: a covariance lower bound: for any decision
procedure δ : X → R and any function ψ,

Var(δ) ≥ Cov(δ, ψ)2

Var(ψ)
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The information inequality

Theorem (The generic information inequality)

Assume that δ : X → R is any estimator and `θ = log pθ is
“regular enough.” Then

Var(δ) ≥
( ∂∂θPθδ)2

I (θ)
.
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Cramér Rao bounds

Suppose we wish to estimate g(θ) and Pθ[δ] = b(θ) + g(θ), which
are C1. Then we have

Corollary (Cramér Rao Bound)

Varθ(δ) ≥ (b′(θ) + g ′(θ))2

I (θ)
.

Example (Information inequality)

If g(θ) = θ and δ is unbiased, then E[(δ − θ)2] ≥ 1
I (θ) .
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Multi-dimensional Cramér Rao bounds

Lemma
Let δ : X → R and ψ : X → Rd , where Pθψ = 0. For
γ = Covθ(ψ, δ) = Pθψ(δ − Pθδ) and C = Covθ(ψ),

Var(δ) ≥ γTC−1γ
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A multi-dimensional information bound

Theorem
Let g(θ) = Pθδ be differentiable in θ and I (θ) = Pθ ˙̀

θ
˙̀>
θ � 0. Then

Varθ(δ) ≥ ∇g(θ)>I (θ)−1∇g(θ).

Corollary (Fisher information bound)

If θ̂ is unbiased for θ, then Eθ[‖θ̂ − θ‖2
2] ≥ tr I (θ)−1 and

Eθ[(θ̂ − θ)(θ̂ − θ)>] � I (θ)−1
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Comments on information bounds

I say nothing about biased estimators

I say little about only asymptotically unbiased estimators

I apply to squared error and little else

I extensions via Van Trees inequality to arbitrary estimators
possible
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