
Stats 300b: Theory of Statistics Winter 2018

Lecture 16 – March 1

Lecturer: John Duchi Scribe: Michael Hahn

� Warning: these notes may contain factual errors

Reading: Van der Vaart, Chapters 19.3 and 5.3

Outline:

• Applications of last lecture’s theorem: Goodness-of-fit statistics

• Rates of Convergence for M-estimators based on nondifferen- tiable losses

1 Goodness-of-fit statistics

Let Gn :=
√
n(Pn− P), viewed as a function on a function class F : GnF := 1√

n
(
∑n

i=1 f(xi)−Pf).

Definition 1.1 (Donsker Class). A collection of functions F is P-Donsker if the process (
√
n(Pn−

P)f)f∈F converges to a tight limit in L∞(F).

As discussed in the previous lecture, this limit is a Gaussian process.
Goodness-of-fit statistics address the testing problem when the null hypothesis is that the data

comes from a given distribution: H0 : X ∼iid P. We can use the theorem from the last lecture to
show asymptotic properties of such tests.

Example: Kolmogorov-Smirnoff Test Define the Kolmogorov-Smirnoff Test : Let F be CDF
of X ∈ R, and let Fn be the empirical CDF. Define the test statistic

Kn :=
√
n‖Fn − F‖∞ =

√
n sup
t∈R
|Fn(t)− F (t)|

Corollary 1 (Corollary of Theorem from Last Lecture). Let Kn be the Kolmogorov-Smirnoff test

statistic, and let Xi ∼iid P. Then Kn
d−→ ‖Gp‖∞, where Gp is the limiting Gaussian process

(Brownian bridge) with
Cov(Gt,Gs) = F (s ∧ t)− F (t)F (s)

This limit is independent of the CDF F of P if F is continuous.

Proof For the function class F := {1{· ≤ t} : t ∈ R}, the constant F (x) := 1 is an envelope

function with a second moment, and
∫

supQ

√
logN(F, L2(Q), ‖F‖L2(Q)ε)dε < ∞ where Q runs

over the finitely supported measures on X. So we can apply the theorem from last lecture and see
that F is Donsker.

Applied to functions f : R → R, the map f 7→ supt∈R |f(t)| is ‖ · ‖∞-continuous, so the

continuous mapping theorem implies Kn = ‖Gn‖∞
d−→ ‖Gp‖∞. To show independence from P: Let

λ := Uniform([0, 1]). We have

P
(

sup
t∈R
|Gλ ◦ F (t)| ≥ α

)
= P

(
sup
u∈[0,1]

|Gλ(u)| ≥ α

)
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Therefore, Gp =d Gλ ◦ F .

Example: Cramér-von Mises statistic Define the Cramér-von Mises statistic:

Cn := n

∫
(Fn − F )2dF

Corollary 2. Cn
d−→
∫
G2
FdF . If F is continuous, then the limit is independent of F .

Proof For f ∈ L∞(R), the map f 7→
∫
f2dF satisfies

|
∫
f2dF −

∫
g2dF | ≤

∫
|f − g||f + g|dF ≤ ‖f − g‖∞‖f + g‖∞

and is thus continuous in the supremum norm. Then Cn
d−→
∫
G2
FdF by the continuous mapping

theorem.
Note that, if F is continuous,

∫
G2
F (t)dF (t) =

∫
G2
λ(F (t))dF (t) =

∫ 1
0 G2

λ(u)du by substituting
u = f(t).

2 Rates of Convergence for M-estimators based on nondifferen-
tiable losses

Example 1: The loss `(θ, x) := |θ− x|, R(θ) := E[`(θ, x)] is minimized by any median if X has a
first moment. ♣

Example 2: The loss `(θ, x) := (1− α)(θ − x)+ + α(x− θ)+, where α ∈ (0, 1), [t]+ := max(t, 0),
is minimized at the α-quantiles:

QP(α) := inf{θ ∈ R : α ≤ P (X ≤ θ)}

♣

Goal Get analogues of classical conditions (via Taylor expansions) such that

√
n(θ̂n − θ0) =

−1√
n
I−1θ0

n∑
i=1

˙̀
θ0(Xi) + oP (1)

Step 1 Get an in-probability analogue of Taylor approximations even when ` is not differentiable.
Suppose that `θ : X → R is locally-Lipschitz, i.e., for any θ1, θ2 in a neighborhood of the (fixed)
pint θ0

|`(θ1, x)− `(θ2, x)| ≤ ˙̀(x) · ‖θ1 − θ2‖

(for some ˙̀ : X → X). Moreover, assume that for P-almost every x ∈ X , θ 7→ `(θ, x) is differentiable
at θ0 with derivative ˙̀(θ0, x) = d

dθ `(θ, x)|θ=θ0 .
Example 3: For `(θ, x) := |θ − x|, having a density near the median θ0 suffices. ♣
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Lemma 3 (19.31 in Van der Vaart). If P ˙̀2 <∞, then for all sequences rn →∞, we have

sup
h∈Rd‖h‖≤1

Gn(rn(`θ0+ h
rn

− `θ0)− hT ˙̀
θ0)

p−→ 0

This says that, locally, we have accurate Taylor approximations.
Remark If this holds, then for any hn (random or not) such that hn = Op(1), we have

Gn

(
rn

(
`θ0+hn

rn

− `θ0
)
− hTn `θ0

)
p−→ 0

Proof We show that the process defined in the lemma has finite-dimensional convergence (FIDI)

to 0, and is tight over ‖h‖ ≤ 1. Define

en(h, x) := rn

(
`θ0+ h

rn

(x)− `θ0(x)
)
− hT `θ0(x)

We know en(h, x) → 0 as n → ∞ for P-almost all x ∈ X by almost-everywhere-differentiability.
Note also

rn

(
`θ0+ h

rn

(x)− `θ0(x)
)
≤ ˙̀(x) · ‖h‖

for n large by assumption of local-Lipschitzness. Using that E[Gn] = 0, we get

V ar(Gn(en(h, x))) ≤ E
[(
rn

(
`θ0+ h

rn

(x)− `θ0(x)
)
− hT ˙̀

θ0(x)
)2]
→ 0

as n→∞ by dominated convergence: A dominating function is
(

˙̀(x)‖h‖+ ‖h‖ ˙̀(x)
)2

, which has

finite expectation, since we assumed P ˙̀2 <∞.
So if V ar(Zn)→ 0 and E[Zn] = 0, then Zn

p−→ 0, so

Gn

(
rn

(
`θ0+ h

rn

(x)− `θ0(x)− hT ˙̀
θ0(x)

))
p−→ 0

for each h.
Now we need to show tightness. For this, we look at the localized process around θ0. We know

that hT ˙̀
θ0 is tight, as sup‖h‖2≤1 h

T ˙̀
θ0 = ‖ ˙̀

θ0‖2, which has a second moment. Therefore, we only

study rn

(
`θ0+ h

rn

− `θ0
)

as h varies. Let

Lδ :=

{
1

δ
(`θ − `θ0) : ‖θ − θ0‖ ≤ δ

}
L1/rn is equal to {rn(`θ0+ h

rn

−`θ0) : ‖h‖ ≤ 1}. Note that, for δ small: 1
δ |`θ(x)−`θ0(x)| ≤ ˙̀(x)‖θ−θ0‖δ ≤

˙̀(x) if ‖θ − θ0‖ ≤ δ by local-Lipschitzness. Then considering bracketing numbers for Lδ, we get:

N[](Lδ, L2(Pn), ε) = N[]({`θ − `θ0}‖θ−θ0‖≤δ, L
2(Pn), δε)

. N({θ : ‖θ − θ0‖ ≤ δ}, ‖ · ‖,
δε

2
√
Pn ˙̀2

)

≤
(

1 +
2δ

δε

√
Pn ˙̀2

)d
=

(
1 +

2
√

Pn ˙̀2

ε

)d
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where d is the dimensionality of the parameter space, by our previous results on the covering
numbers of norm balls, and the relationship between bracketing numbers and covering numbers.
Therefore

E[ sup
f∈Lδ

|Gn(f)|] ≤ CE[

∫ √
logN[](Lδ, L2(Pn), ε)dε]

≤ CE[

∫ √Pn ˙̀2

0

√√√√d log

(
1 +

√
Pn ˙̀2

ε

)
dε]

≤ C
√
d · E[ ˙̀2]

As we assumed E[ ˙̀2] < ∞, this shows that the expectations are uniformly bounded, thus the
process {

Gn(rn(`θ0+ h
rn

− `θ0)− hT ˙̀
θ0) : ‖h‖ ≤ 1

}
is tight.

As we have FIDI to 0, and thus the whole process must converge to zero.

With this differentiability result, we can get asymptotic normality of M-estimators with nondiffer-
entiable losses.

Theorem 4 (Van der Vaart 5.23). Let `θ(x) locally-Lipschitz (as in the Lemma) near θ0. Assume
that θ 7→ `θ(x) is differentiable at θ0 with P-probability 1. Define R(θ) := EP[`θ(x)]. Assume R(θ)
is twice differentiable at θ0 with ∇2R(θ0) � 0, where θ0 := argminθ R(θ).

Let θ̂
p−→ θ0. Assume

Rn(θ̂n) ≤ inf
θ
Rn(θ) + op(

1

n
)

Then
√
n(θ̂n − θ0) = −(∇2R(θ0))

−1 · 1√
n

n∑
i=1

˙̀
θ0(Xi) + op(1)

Proof By the lemma, for any hn = Op(1), we have

Gn(
√
n(`θ0+ hn√

n
− `θ0)− hTn ˙̀

θ0) = op(1)

Now we have

Gn(
√
n(`θ0+ hn√

n
− `θ0)− hTn ˙̀

θ0) = n(Pn`θ0+ hn√
n
− Pn`θ0) + n(P`θ0 − P`θ0+ hn√

n
)− hTnGn

˙̀
θ0

Now by definition of R, we get

n(P`θ0 − P`θ0+ hn√
n

) = n(R(θ0)−R(θ0 +
hn√
n

))) = −1

2
hTn∇2R(θ0)hn + op(1)

as n→∞, where the second step holds because of our assumptions on the differentiability of R(θ).
Note

√
n(θ̂n − θ0) = Op(1) from Rates of Convergence and the quadratic growth of R around θ0:

R(θ) ≥ R(θ0) + c‖θ − θ0‖2 near θ0.
Let ĥn :=

√
n(θ̂n − θ0), and h̃n := −∇2R(θ−10 )Gn

˙̀
θ0 .
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The goal is to show ĥn = h̃n + op(1). Both ĥn and h̃n are Op(1). Now substitute these into the
empirical process:

n(Pn`
θ0+

ĥn√
n

− Pn`θ0) =
1

2
ĥTn∇2R(θ0)ĥn + ĥnGn

˙̀
θ0 + op(1)

On the left side, by the choice of ĥn and since θ̂n is the empirical minimizer, we get:

n(Pn`
θ0+

ĥn√
n

− Pn`θ0) ≤ n(Pn`θ0+ h̃n√
n

− Pn`θ0) =
−1

2
(Gn

˙̀
θ0)T∇2R(θ0)

−1(Gn(`θ0)) + op(1)

where the second step uses our Taylor approximation lemma and the definition of h̃n. Substituting:

ĥTn∇2R(θ0)ĥn + ĥTnGn
˙̀
θ0 ≤

−1

2
(Gn

˙̀
θ0)T∇2R(θ0)

−1(Gn
˙̀
θ0) + op(1)

Completing the square:

1

2

(
ĥn +∇2R(θ)−1Gn

˙̀
θ

)T
∇2R(θ0) ·

(
ĥn +∇2R(θ0)

−1Gn
˙̀
θ

)
= op(1)
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