Stats 300b: Theory of Statistics

Winter 2018

Lecture 16 – March 1

Lecturer: John Duchi

Scribe: Michael Hahn

Warning: these notes may contain factual errors

Reading: Van der Vaart, Chapters 19.3 and 5.3

Outline:

- Applications of last lecture's theorem: Goodness-of-fit statistics
- Rates of Convergence for M-estimators based on nondifferen- tiable losses

1 Goodness-of-fit statistics

 $\mathbb{P}(f)_{f\in\mathcal{F}}$ converges to a tight limit in $L^{\infty}(\mathcal{F})$.

Let $\mathbb{G}_n := \sqrt{n}(\mathbb{P}_n - \mathbb{P})$, viewed as a function on a function class $\mathcal{F}: \mathbb{G}_n F := \frac{1}{\sqrt{n}} (\sum_{i=1}^n f(x_i) - Pf)$. **Definition 1.1** (Donsker Class). A collection of functions \mathcal{F} is \mathbb{P} -Donsker if the process ($\sqrt{n}(\mathbb{P}_n - \mathbb{P})$).

As discussed in the previous lecture, this limit is a Gaussian process.

Goodness-of-fit statistics address the testing problem when the null hypothesis is that the data comes from a given distribution: $H_0: X \sim_{iid} \mathbb{P}$. We can use the theorem from the last lecture to show asymptotic properties of such tests.

Example: Kolmogorov-Smirnoff Test Define the *Kolmogorov-Smirnoff Test*: Let F be CDF of $X \in \mathbb{R}$, and let F_n be the empirical CDF. Define the test statistic

$$K_n := \sqrt{n} \|F_n - F\|_{\infty} = \sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$

Corollary 1 (Corollary of Theorem from Last Lecture). Let K_n be the Kolmogorov-Smirnoff test statistic, and let $X_i \sim_{iid} \mathbb{P}$. Then $K_n \xrightarrow{d} ||\mathbb{G}_p||_{\infty}$, where \mathbb{G}_p is the limiting Gaussian process (Brownian bridge) with

$$Cov(\mathbb{G}_t, \mathbb{G}_s) = F(s \wedge t) - F(t)F(s)$$

This limit is independent of the CDF F of \mathbb{P} if F is continuous.

Proof For the function class $\mathcal{F} := \{1\{\cdot \leq t\} : t \in \mathbb{R}\}$, the constant F(x) := 1 is an envelope function with a second moment, and $\int \sup_Q \sqrt{\log N(\mathfrak{F}, L^2(Q), \|F\|_{L^2(Q)}\epsilon)} d\epsilon < \infty$ where Q runs over the finitely supported measures on X. So we can apply the theorem from last lecture and see that \mathcal{F} is Donsker.

Applied to functions $f : \mathbb{R} \to \mathbb{R}$, the map $f \mapsto \sup_{t \in \mathbb{R}} |f(t)|$ is $\|\cdot\|_{\infty}$ -continuous, so the continuous mapping theorem implies $K_n = \|\mathbb{G}_n\|_{\infty} \xrightarrow{d} \|\mathbb{G}_p\|_{\infty}$. To show independence from \mathbb{P} : Let $\lambda := Uniform([0,1])$. We have

$$\mathbb{P}\left(\sup_{t\in\mathbb{R}} |\mathbb{G}_{\lambda}\circ F(t)| \geq \alpha\right) = \mathbb{P}\left(\sup_{u\in[0,1]} |\mathbb{G}_{\lambda}(u)| \geq \alpha\right)$$

Therefore, $\mathbb{G}_p =_d \mathbb{G}_\lambda \circ F$.

Example: Cramér-von Mises statistic Define the Cramér-von Mises statistic:

$$C_n := n \int (F_n - F)^2 dF$$

Corollary 2. $C_n \xrightarrow{d} \int \mathbb{G}_F^2 dF$. If F is continuous, then the limit is independent of F. **Proof** For $f \in L^{\infty}(\mathbb{R})$, the map $f \mapsto \int f^2 dF$ satisfies

$$|\int f^2 dF - \int g^2 dF| \le \int |f - g| |f + g| dF \le ||f - g||_{\infty} ||f + g||_{\infty}$$

and is thus continuous in the supremum norm. Then $C_n \xrightarrow{d} \int \mathbb{G}_F^2 dF$ by the continuous mapping theorem.

Note that, if F is continuous, $\int \mathbb{G}_F^2(t) dF(t) = \int \mathbb{G}_\lambda^2(F(t)) dF(t) = \int_0^1 \mathbb{G}_\lambda^2(u) du$ by substituting u = f(t). \square

2 Rates of Convergence for M-estimators based on nondifferentiable losses

Example 1: The loss $\ell(\theta, x) := |\theta - x|, R(\theta) := \mathbb{E}[\ell(\theta, x)]$ is minimized by any median if X has a first moment. 🌲

Example 2: The loss $\ell(\theta, x) := (1 - \alpha)(\theta - x)_+ + \alpha(x - \theta)_+$, where $\alpha \in (0, 1), [t]_+ := max(t, 0),$ is minimized at the α -quantiles:

$$Q_{\mathbb{P}}(\alpha) := \inf\{\theta \in \mathbb{R} : \alpha \le P(X \le \theta)\}$$

÷

Goal Get analogues of classical conditions (via Taylor expansions) such that

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \frac{-1}{\sqrt{n}} I_{\theta_0}^{-1} \sum_{i=1}^n \dot{\ell}_{\theta_0}(X_i) + o_P(1)$$

Step 1 Get an in-probability analogue of Taylor approximations even when ℓ is not differentiable. Suppose that $\ell_{\theta} : \mathcal{X} \to \mathbb{R}$ is locally-Lipschitz, i.e., for any θ_1, θ_2 in a neighborhood of the (fixed) pint θ_0

$$|\ell(\theta_1, x) - \ell(\theta_2, x)| \le \ell(x) \cdot ||\theta_1 - \theta_2||$$

(for some $\dot{\ell}: \mathcal{X} \to X$). Moreover, assume that for \mathbb{P} -almost every $x \in \mathcal{X}, \theta \mapsto \ell(\theta, x)$ is differentiable at θ_0 with derivative $\dot{\ell}(\theta_0, x) = \frac{d}{d\theta} \ell(\theta, x)|_{\theta=\theta_0}$. **Example 3:** For $\ell(\theta, x) := |\theta - x|$, having a density near the median θ_0 suffices.

Lemma 3 (19.31 in Van der Vaart). If $P\dot{\ell}^2 < \infty$, then for all sequences $r_n \to \infty$, we have

$$\sup_{h \in \mathbb{R}^d ||h|| \le 1} \mathbb{G}_n(r_n(\ell_{\theta_0 + \frac{h}{r_n}} - \ell_{\theta_0}) - h^T \dot{\ell}_{\theta_0}) \xrightarrow{p} 0$$

This says that, locally, we have accurate Taylor approximations.

Remark If this holds, then for any h_n (random or not) such that $h_n = O_p(1)$, we have

$$\mathbb{G}_n\left(r_n\left(\ell_{\theta_0+\frac{h_n}{r_n}}-\ell_{\theta_0}\right)-h_n^T\ell_{\theta_0}\right)\xrightarrow{p} 0$$

Proof We show that the process defined in the lemma has finite-dimensional convergence (FIDI) to 0, and is tight over $||h|| \leq 1$. Define

$$e_n(h,x) := r_n\left(\ell_{\theta_0 + \frac{h}{r_n}}(x) - \ell_{\theta_0}(x)\right) - h^T \ell_{\theta_0}(x)$$

We know $e_n(h, x) \to 0$ as $n \to \infty$ for \mathbb{P} -almost all $x \in \mathcal{X}$ by almost-everywhere-differentiability. Note also

$$r_n\left(\ell_{\theta_0+\frac{h}{r_n}}(x)-\ell_{\theta_0}(x)\right) \leq \dot{\ell}(x) \cdot \|h\|$$

for n large by assumption of local-Lipschitzness. Using that $\mathbb{E}[\mathbb{G}_n] = 0$, we get

$$Var(\mathbb{G}_n(e_n(h,x))) \le \mathbb{E}\left[\left(r_n\left(\ell_{\theta_0+\frac{h}{r_n}}(x) - \ell_{\theta_0}(x)\right) - h^T \dot{\ell}_{\theta_0}(x)\right)^2\right] \to 0$$

as $n \to \infty$ by dominated convergence: A dominating function is $(\dot{\ell}(x)||h|| + ||h||\dot{\ell}(x))^2$, which has finite expectation, since we assumed $P\dot{\ell}^2 < \infty$.

So if $Var(Z_n) \to 0$ and $\mathbb{E}[Z_n] = 0$, then $Z_n \xrightarrow{p} 0$, so

$$\mathbb{G}_n\left(r_n\left(\ell_{\theta_0+\frac{h}{r_n}}(x)-\ell_{\theta_0}(x)-h^T\dot{\ell}_{\theta_0}(x)\right)\right)\xrightarrow{p} 0$$

for each h.

Now we need to show tightness. For this, we look at the localized process around θ_0 . We know that $h^T \dot{\ell}_{\theta_0}$ is tight, as $\sup_{\|h\|_2 \leq 1} h^T \dot{\ell}_{\theta_0} = \|\dot{\ell}_{\theta_0}\|_2$, which has a second moment. Therefore, we only study $r_n \left(\ell_{\theta_0 + \frac{h}{r_n}} - \ell_{\theta_0}\right)$ as h varies. Let

$$\mathcal{L}_{\delta} := \left\{ \frac{1}{\delta} (\ell_{\theta} - \ell_{\theta_0}) : \|\theta - \theta_0\| \le \delta \right\}$$

 $\mathcal{L}_{1/r_n} \text{ is equal to } \{r_n(\ell_{\theta_0+\frac{h}{r_n}}-\ell_{\theta_0}): \|h\| \leq 1\}. \text{ Note that, for } \delta \text{ small: } \frac{1}{\delta}|\ell_{\theta}(x)-\ell_{\theta_0}(x)| \leq \dot{\ell}(x)\frac{\|\theta-\theta_0\|}{\delta} \leq \dot{\ell}(x) \text{ if } \|\theta-\theta_0\| \leq \delta \text{ by local-Lipschitzness. Then considering bracketing numbers for } \mathcal{L}_{\delta}, \text{ we get: } \mathbf{1} \leq \mathbf{1}$

$$N_{[]}(\mathcal{L}_{\delta}, L^{2}(\mathbb{P}_{n}), \epsilon) = N_{[]}(\{\ell_{\theta} - \ell_{\theta_{0}}\}_{\|\theta - \theta_{0}\| \leq \delta}, L^{2}(P_{n}), \delta\epsilon)$$
$$\lesssim N(\{\theta : \|\theta - \theta_{0}\| \leq \delta\}, \|\cdot\|, \frac{\delta\epsilon}{2\sqrt{\mathbb{P}_{n}\dot{\ell}^{2}}})$$
$$\leq \left(1 + \frac{2\delta}{\delta\epsilon}\sqrt{\mathbb{P}_{n}\dot{\ell}^{2}}\right)^{d} = \left(1 + \frac{2\sqrt{\mathbb{P}_{n}\dot{\ell}^{2}}}{\epsilon}\right)^{d}$$

where d is the dimensionality of the parameter space, by our previous results on the covering numbers of norm balls, and the relationship between bracketing numbers and covering numbers. Therefore

$$\mathbb{E}[\sup_{f \in \mathcal{L}_{\delta}} |\mathbb{G}_{n}(f)|] \leq C\mathbb{E}[\int \sqrt{\log N_{[]}(\mathcal{L}_{\delta}, L^{2}(\mathbb{P}_{n}), \epsilon)} d\epsilon]$$
$$\leq C\mathbb{E}[\int_{0}^{\sqrt{\mathbb{P}_{n}\dot{\ell}^{2}}} \sqrt{d\log\left(1 + \frac{\sqrt{\mathbb{P}_{n}\dot{\ell}^{2}}}{\epsilon}\right)} d\epsilon]$$
$$< C\sqrt{d} \cdot \mathbb{E}[\dot{\ell}^{2}]$$

As we assumed $\mathbb{E}[\dot{\ell}^2] < \infty$, this shows that the expectations are uniformly bounded, thus the process

$$\left\{\mathbb{G}_n(r_n(\ell_{\theta_0+\frac{h}{r_n}}-\ell_{\theta_0})-h^T\dot{\ell}_{\theta_0}):\|h\|\leq 1\right\}$$

is tight.

As we have FIDI to 0, and thus the whole process must converge to zero.

With this differentiability result, we can get asymptotic normality of M-estimators with nondifferentiable losses.

Theorem 4 (Van der Vaart 5.23). Let $\ell_{\theta}(x)$ locally-Lipschitz (as in the Lemma) near θ_0 . Assume that $\theta \mapsto \ell_{\theta}(x)$ is differentiable at θ_0 with \mathbb{P} -probability 1. Define $R(\theta) := \mathbb{E}_{\mathbb{P}}[\ell_{\theta}(x)]$. Assume $R(\theta)$ is twice differentiable at θ_0 with $\nabla^2 R(\theta_0) \succ 0$, where $\theta_0 := \operatorname{argmin}_{\theta} R(\theta)$.

Let $\widehat{\theta} \xrightarrow{p} \theta_0$. Assume

$$R_n(\widehat{\theta}_n) \le \inf_{\theta} R_n(\theta) + o_p(\frac{1}{n})$$

Then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -(\nabla^2 R(\theta_0))^{-1} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^n \dot{\ell}_{\theta_0}(X_i) + o_p(1)$$

By the lemma, for any $h_n = O_p(1)$, we have Proof

$$\mathbb{G}_n(\sqrt{n}(\ell_{\theta_0+\frac{h_n}{\sqrt{n}}}-\ell_{\theta_0})-h_n^T\dot{\ell}_{\theta_0})=o_p(1)$$

Now we have

$$\mathbb{G}_n(\sqrt{n}(\ell_{\theta_0+\frac{h_n}{\sqrt{n}}}-\ell_{\theta_0})-h_n^T\dot{\ell}_{\theta_0})=n(\mathbb{P}_n\ell_{\theta_0+\frac{h_n}{\sqrt{n}}}-\mathbb{P}_n\ell_{\theta_0})+n(\mathbb{P}\ell_{\theta_0}-\mathbb{P}\ell_{\theta_0+\frac{h_n}{\sqrt{n}}})-h_n^T\mathbb{G}_n\dot{\ell}_{\theta_0})$$

Now by definition of R, we get

$$n(\mathbb{P}\ell_{\theta_0} - \mathbb{P}\ell_{\theta_0 + \frac{h_n}{\sqrt{n}}}) = n(R(\theta_0) - R(\theta_0 + \frac{h_n}{\sqrt{n}}))) = -\frac{1}{2}h_n^T \nabla^2 R(\theta_0)h_n + o_p(1)$$

as $n \to \infty$, where the second step holds because of our assumptions on the differentiability of $R(\theta)$. Note $\sqrt{n}(\hat{\theta}_n - \theta_0) = O_p(1)$ from Rates of Convergence and the quadratic growth of R around θ_0 : $R(\theta) \geq R(\theta_0) + c \|\theta - \theta_0\|^2 \text{ near } \theta_0.$ Let $\hat{h}_n := \sqrt{n}(\hat{\theta}_n - \theta_0), \text{ and } \tilde{h}_n := -\nabla^2 R(\theta_0^{-1}) \mathbb{G}_n \dot{\ell}_{\theta_0}.$

The goal is to show $\hat{h}_n = \tilde{h}_n + o_p(1)$. Both \hat{h}_n and \tilde{h}_n are $O_p(1)$. Now substitute these into the empirical process:

$$n(\mathbb{P}_n\ell_{\theta_0+\frac{\hat{h}_n}{\sqrt{n}}} - \mathbb{P}_n\ell_{\theta_0}) = \frac{1}{2}\hat{h}_n^T \nabla^2 R(\theta_0)\hat{h}_n + \hat{h}_n \mathbb{G}_n \dot{\ell}_{\theta_0} + o_p(1)$$

On the left side, by the choice of \hat{h}_n and since $\hat{\theta}_n$ is the empirical minimizer, we get:

$$n(\mathbb{P}_n\ell_{\theta_0+\frac{\hat{h}_n}{\sqrt{n}}} - P_n\ell_{\theta_0}) \le n(\mathbb{P}_n\ell_{\theta_0+\frac{\hat{h}_n}{\sqrt{n}}} - \mathbb{P}_n\ell_{\theta_0}) = \frac{-1}{2}(\mathbb{G}_n\dot{\ell}_{\theta_0})^T\nabla^2 R(\theta_0)^{-1}(\mathbb{G}_n(\ell_{\theta_0})) + o_p(1)$$

where the second step uses our Taylor approximation lemma and the definition of \tilde{h}_n . Substituting:

$$\widehat{h}_n^T \nabla^2 R(\theta_0) \widehat{h}_n + \widehat{h}_n^T \mathbb{G}_n \dot{\ell}_{\theta_0} \le \frac{-1}{2} (\mathbb{G}_n \dot{\ell}_{\theta_0})^T \nabla^2 R(\theta_0)^{-1} (\mathbb{G}_n \dot{\ell}_{\theta_0}) + o_p(1)$$

Completing the square:

$$\frac{1}{2} \left(\hat{h}_n + \nabla^2 R(\theta)^{-1} \mathbb{G}_n \dot{\ell}_\theta \right)^T \nabla^2 R(\theta_0) \cdot \left(\hat{h}_n + \nabla^2 R(\theta_0)^{-1} \mathbb{G}_n \dot{\ell}_\theta \right) = o_p(1)$$

5