Stats 300b: Theory of Statistics

Winter 2018

Lecture 13 – February 20

Lecturer: John Duchi Scribe: Andrea Zanette

Warning: these notes may contain factual errors

Reading: VDV 18-19

1 VC Classes and Dimension

Definition 1.1. (Vapnik-Chervonenkis classes) $C = collection \ of \ sets)$ shatters $x_1, ..., x_n$ if for all labelings $y \in \{\pm 1\}^n$ of $\{x_i\}$ $\exists C \in C$, s.t.

$$\begin{cases} y_i = 1 & x_i \in C \\ y_i = 0 & x_i \notin C \end{cases}$$

Definition 1.2. (Vapnik-Chervonenkis dimension) VC(C)=size of largest set $x_1, ..., x_n$ shattered by C.

Theorem 1. (Uniform covering numbers in $L_r(P)$) For sets A,B, let $dist(A,B)=||\mathbb{1}_A-\mathbb{1}_B||_{L_r(P)}=(\int |\mathbb{1}_A-\mathbb{1}_B|^r dP)^{\frac{1}{r}}$. Then \exists constant $K<\infty$,

$$\sup_{P} N(\mathcal{C}, Lr(P), \epsilon) \le KVC(\mathcal{C})(4e)^{VC(\mathcal{C})} (\frac{1}{\epsilon})^{rVC(\mathcal{C})}$$

i.e.

$$\log N(\mathcal{C}, Lr(P), \epsilon) \lesssim rVC(\mathcal{C}) \log(\frac{1}{\epsilon})$$

Example 1: Let $\mathcal{F} = \{f(x) = \mathbb{1}_{X \leq t}, t \in \mathbb{R}^d\}$. Then $VC(\mathcal{F}) = O(d)$.

$$\sup_{P} \log N(\mathcal{F}, L_2(P), \epsilon) \le Kd \log(\frac{1}{\epsilon})$$

As a consequence, we have the classical Glivenko Cantelli theorem:

$$\mathbb{E}[\sup_{t \in \mathbb{R}^d} |\mathbb{P}_n(X \le t) - \mathbb{P}(X \le t)|] = \mathbb{E}[\sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P}f|]$$

$$\leq \frac{2}{\sqrt{n}} \mathbb{E}[|\sup_{f \in \mathcal{F}|} \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(X_i)] (\epsilon_i \overset{i.i.d}{\sim} \{\pm 1\})$$

$$\stackrel{Dudley}{\leq} \frac{const}{\sqrt{n}} \int_0^1 \sqrt{\log N(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon$$

$$= \frac{const\sqrt{d}}{\sqrt{n}} \int_0^1 \sqrt{\log(1/\epsilon)} d\epsilon$$

$$\leq \frac{const\sqrt{d}}{\sqrt{n}}$$

÷

Example 2: Hyperplanes in \mathbb{R}^d are sets of the form $\{x \in \mathbb{R}^d \mid w^\top x \leq b, w \in \mathbb{R}^d, b \in \mathbb{R}\}$. In \mathbb{R}^2 we can shatter 3 points. \clubsuit

Definition 1.3. The subgraph of a function: $\mathcal{X} \to \mathbb{R}$:

$$subf := \{(x, t) : t < f(x)\} = (epif)^c$$

Note: $\operatorname{sub} f \subseteq \mathcal{X} \subseteq \mathbb{R}$.

Definition 1.4. \mathcal{F} is a VC-class (VC-subgraph-class) if $subf : f \in \mathcal{F}$ is VC.

2 Rates of Convergence of Estimators and Modulus of Continuity

We want to understand and use continuity properties of empirical processes and estimators. Consider the following M-estimator problem of minimizing the risk $R(\theta)$. Let $\theta_0 = \operatorname{argmin}_{\theta} R(\theta)$. Assume that $R(\theta) \geq R(\theta_0) + \lambda d(\theta, \theta_0)^{\alpha}$ for distance $d: \theta \times \theta \to R, \alpha > 0$. Suppose we have R_n such that $R_n \to R$ in some sense. How do we get a handle on the convergence of θ_n ?

Example 3: Let $X \sim P_{\theta_0}, l(\theta, x) = -\log P_{\theta}(x), R(\theta) = E_{P_{\theta_0}}l(\theta, x)$. Then

$$R(\theta) - R(\theta_0) = \frac{1}{2} (\theta - \theta_0)^{\top} \nabla^2 R(\theta_0) (\theta - \theta_0) + O(\|\theta - \theta_0\|^2)$$

Here we could take $\alpha = 2, d(\theta, \theta_0) = \|\theta - \theta_0\|$. Assume θ_n is consistent under the distance d. We define the localized empirical process

$$\Delta_n(\theta) = (R_n(\theta) - R(\theta)) - (R_n(\theta_0) - R(\theta_0))$$

Definition 2.1. The modulus of continuity of R_n at point θ_0 is $w = \sup_{d(\theta,\theta_0) < \delta} |\Delta_n|$

With this is mind we present our main result of the lecture:

Theorem 2. Suppose $M(\theta_0) \ge M(\theta) + d(\theta, \theta_0)^2$ near θ_0 .

Let ϕ be such that $\phi(c\delta) \leq c^{\alpha}\phi(\delta)$ for some $\alpha \in (0,2)$.

Assume

$$\mathbb{E}\left[\sup_{d(\theta,\theta_0)\leq\delta}\left|M_n(\theta)-M(\theta)-(M_n(\theta_0)-M(\theta_0))\right|\right]\leq\frac{\phi(\delta)}{\sqrt{n}}$$

Let $r_n \to +\infty$ such that $r_n^2 \phi(\frac{1}{r_n}) \leq \sqrt{n}$.

If $\hat{\theta}_n \to \theta_0$ in probability, then $r_n d(\hat{\theta}_n, \theta_0) = O_P(1)$

Idea: Estimation errors can scale at most as $\frac{\phi(\delta)}{\sqrt{n}} \sim \frac{d(\theta,\theta_0)^{\alpha}}{\sqrt{n}}$ with $\alpha < 2$. But the growth of the objective function is quadratic: $d(\theta,\theta_0)^2$.

We solve $\delta^2 = \frac{\delta^{\alpha}}{\sqrt{n}}$: it implies $\delta = \left(\frac{1}{n}\right)^{\frac{1}{2(2-\alpha)}}$

Proof Let $\eta \leq \delta$. Then $\mathbb{P}(d(\hat{\theta}_n, \theta_0) \geq \eta) = o(1)$ (consistency of the estimator). Define the shell: $S_{nj} = \{\theta : 2^{j-1} \leq r_n d(\theta, \theta_0) \leq 2^j\}$.

Consider the event

$$d(\hat{\theta}_n, \theta_0) \ge \frac{2^t}{r_n}$$

for some $t \geq 0$.

Then $\exists j \geq t \text{ such that } \hat{\theta}_n \in S_{jn}$.

Therefore

$$\begin{split} \mathbb{P}(r_n d(\hat{\theta}_n, \theta_0) \geq 2^t) &\leq \mathbb{P}(r_n d(\hat{\theta}_n, \theta_0) \geq 2^t, d(\hat{\theta}_n, \theta_0) \leq \eta) + \mathbb{P}(d(\hat{\theta}_n, \theta_0) > \eta) \\ &= \Big(\sum_{j \leq t, \, 2^{j-1} \leq r_n \eta} \mathbb{P}(\hat{\theta}_n \in S_{jn})\Big) + \mathbb{P}(d(\hat{\theta}_n, \theta_0) > \eta) \\ &\leq \Big(\sum_{j \leq t, \, 2^{j-1} \leq r_n \eta} \mathbb{P}(\exists \theta \in S_{jn}, M_n(\theta) \geq M_n(\theta_0))\Big) + o(1) \end{split}$$

But if $M_n(\theta) \geq M_n(\theta_0)$ for some $\theta \in S_{jn}$ then

$$M_n(\theta) - M(\theta) \ge M_n(\theta_0) - M(\theta_0) + M(\theta_0) - M(\theta)$$

$$\ge M_n(\theta_0) - M(\theta_0) + d(\theta, \theta_0)^2$$

So

$$\sup_{\theta \in S_{jn}} \left| (M_n(\theta) - M(\theta)) - (M_n(\theta_0) - M(\theta_0)) \right| \ge \frac{2^{2j}}{r_n^2}$$

And

$$\mathbb{P}(\exists \theta \in S_{jn}, M_n(\theta) \ge M_n(\theta_0))$$

$$\leq \mathbb{P}\left(\sup_{\theta \in S_{jn}} \left| (M_n(\theta) - M(\theta)) - (M_n(\theta_0) - M(\theta_0)) \right| \ge \frac{4^j}{r_n^2} \right)$$

$$\leq \frac{r_n^2}{4^j} \mathbb{E}\left[\sup_{\theta \in S_{jn}} \left| (M_n(\theta) - M(\theta)) - (M_n(\theta_0) - M(\theta_0)) \right| \right]$$

$$\leq \frac{r_n^2}{4^j \sqrt{n}} \phi\left(\frac{2^j}{r_n}\right) \le \frac{r_n^2 2^{\alpha j}}{4^j \sqrt{n}} \phi\left(\frac{1}{r_n}\right) \le 2^{j(\alpha - 2)}$$

So we bound the inequality above with this result and get:

$$\mathbb{P}(d(\hat{\theta}_n, \theta_0) \ge \frac{2^t}{r_n}) \le \sum_{i>t} 2^{-j(2-\alpha)} + o(1)$$

So by taking t large enough we get that $r_n d(\hat{\theta}_n, \theta_0) = O_P(1)$