Stats 300b: Theory of Statistics

Winter 2018

Lecture 10 – Feb 8

Lecturer: John Duchi

Scribe: Michael Feldman, Swarnadip Ghosh

Warning: these notes may contain factual errors

Reading: VdV ch. 19, Vershynin ch. 1,2,8

Outline:

- Sub-Gaussian random variables
- Symmetrization
- Rademacher complexity and metric entropy

Recap: For a metric space (Θ, ρ) , the covering number is $N(\Theta, \rho, \epsilon) = \min \{ N \text{ s.t. } \exists \text{ an } \epsilon\text{-cover } \{\theta_i\}_{i=1}^N \text{ of } \Theta \}$ where $\{\theta_i\}_{i=1}^N$ is an ϵ -cover if $\forall \theta \in \Theta, \exists \theta_i \text{ s.t. } \rho(\theta, \theta_i) \leq \epsilon$. Our goal is to prove uniform laws of large numbers, i.e.,

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |P_n f - P f| \stackrel{p}{\to} 0$$

1 Concentration Inequalities

Concentration inequalities are the key to proving ULLNS and are of fundamental importance in high dimensional and modern theoretical statistics and machine learning.

1.1 Sub-Gaussianity

Definition 1.1. X is a mean-zero σ^2 -sub-Gaussian RV if

$$\mathbb{E}\left[e^{\lambda X}\right] \le \exp\left(\frac{\lambda^2 \sigma^2}{2}\right) \quad \forall \lambda \in \mathbb{R}$$

Example: Gaussian random variables: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\mathbb{E}\big[e^{\lambda(X-\mu)}\big] = \exp\left(\frac{\lambda^2\sigma^2}{2}\right) \quad \forall \lambda \in \mathbb{R}.$$

Example: Bounded random variables: If $X \in [a, b]$, then X is $\frac{(b-a)^2}{4}$ - subgaussian i.e,

$$\mathbb{E}\left[e^{\lambda\left(X-\mathbb{E}X\right)}\right] \le \exp\left(\frac{\lambda^2(b-a)^2}{8}\right) \quad \forall \lambda \in \mathbb{R}$$

Proposition 1. Let X_i 's be independent σ_i^2 - sub-Gaussian random variables. Then $\sum_{i=1}^n X_i$ is a $\sum \sigma_i^2$ -sub-Gaussian random variable.

Proof W.l.o.g., let $\mathbb{E}X_i = 0$. By independence,

$$\mathbb{E}\big[e^{\lambda \sum_{i=1}^n X_i}\big] = \prod_{i=1}^n \mathbb{E}\big[e^{\lambda X_i}\big] \le \exp\Big(\frac{\lambda^2}{2} \sum_{i=1}^n \sigma_i^2\Big).$$

We now derive two basic concentration inequalities for sub-Gaussian random variables.

1.2 Concentration inequalities

Proposition 2. (Chernoff bound for sub-Gaussians) Let X be σ^2 - sub-Gaussian. For all $t \geq 0$,

$$\max (\mathbb{P}(X - \mathbb{E}X \ge t), \mathbb{P}(X - \mathbb{E}X \le -t)) \le e^{-t^2/2\sigma^2}$$

Proof Let $\mathbb{E}X = 0$ w.l.o.g. The result is proved using a standard technique, exponentiating the random variable and applying Markov' inequality:

$$\mathbb{P}(X \ge t) = \mathbb{P}(e^{\lambda X} \ge e^{\lambda t}) \qquad \forall \lambda \in \mathbb{R} - + \\
\le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda t}} \\
\le e^{\frac{\lambda^2 \sigma^2}{2} - \lambda t}.$$

The lefthand side of the above equation is minimized at $\lambda = \frac{t}{\sigma^2}$, giving

$$\mathbb{P}(X \ge t) \le e^{t^2/2\sigma^2}$$

Corollary 3. (Hoeffding bound) Let X_i be independent σ_i^2 -sub-Gaussian r.v.s. Then, for $t \geq 0$,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \ge t\right) \le \exp\left(\frac{-nt^{2}}{2\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}^{2}}\right)$$

This is proved by applying the Chernoff bound to the $\sum_{i=1}^{n} X_i$, which is a $\sum_{i=1}^{n} \sigma_i^2$ -sub-Gaussian. The bound for the lower tail is identical.

Proposition 4. (HW 1) Let $\{X_i\}_{i=1}^n$ be zero mean sub-Gaussians, possibly dependent. Then,

$$\mathbb{E}\big(\max_{1 \le i \le n} X_i\big) \le \sqrt{2\sigma^2 \log n}$$

2 Symmetrization

For any class $\mathcal{F} \subset \{\mathcal{X} \to \mathbb{R}\},\$

$$\mathbb{P}\Big(\sup_{f\in\mathcal{F}}P_nf - Pf \ge t\Big) \le t^{-1}\mathbb{E}\Big[\sup_{f\in\mathcal{F}}P_nf - Pf\Big]$$

If $P_n - P$ is symmetric, these expressions are much easier to deal with.

Definition 2.1. ε is a Rademacher random variable if $\varepsilon \in \{-1,1\}$ and $\mathbb{E}(\varepsilon) = 0$.

Theorem 5. (Symmetrization) Let $X_1, ..., X_n$ be independent random vectors in a Banach space equipped with a norm $||\cdot||$ and let $\varepsilon_1, ..., \varepsilon_n$ be i.i.d. Rademacher variables which are independent of the X_i 's. For $p \ge 1$,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n}(X_{i}-\mathbb{E}X_{i})\right\|^{p}\right] \leq 2^{p}\,\mathbb{E}\left[\left\|\sum_{i=1}^{n}\varepsilon_{i}X_{i}\right\|^{p}\right]$$

Proof Let X'_i be an independent copy of X_i . Then,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i})\right\|^{p}\right] = \mathbb{E}\left[\left\|\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i}')\right\|^{p}\right]$$

$$\leq \mathbb{E}\left[\left\|\sum_{i=1}^{n}(X_{i} - X_{i}')\right\|^{p}\right]$$

by Jensen's inequality ($\|\cdot\|^p$ is convex as $p \ge 1$). Notice that $X_i - X_i'$ is symmetric about 0, so $X_i - X_i' \stackrel{d}{=} \varepsilon_i (X_i - X_i')$. Therefore,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n}(X_{i} - \mathbb{E}X_{i})\right\|^{p}\right] \leq \mathbb{E}\left[\left\|\sum_{i=1}^{n}\epsilon_{i}(X_{i} - X_{i}')\right\|^{p}\right]$$

$$= 2^{p} \mathbb{E}\left[\left\|\frac{1}{2}\sum_{i=1}^{n}\epsilon_{i}X_{i} - \frac{1}{2}\sum_{i=1}^{n}\epsilon_{i}X_{i}'\right\|^{p}\right]$$

$$\leq 2^{p-1} \mathbb{E}\left[\left\|\sum_{i=1}^{n}\epsilon_{i}X_{i}\right\|^{p}\right] + 2^{p-1} \mathbb{E}\left[\left\|\sum_{i=1}^{n}\epsilon_{i}X_{i}'\right\|^{p}\right]$$

$$= 2^{p} \cdot \mathbb{E}\left[\left\|\sum_{i=1}^{n}\epsilon_{i}X_{i}\right\|^{p}\right]$$

The second inequality follows from the convexity of $\|\cdot\|^p$.

This result is useful for several reasons:

- 1. symmetric r.v.s are often easier to work with
- 2. we can find more precise bounds for symmetric sums
- 3. proofs of ULLNS will be easier
- 4. Conditional on $\{X_i\}_{i=1}^n$, $\sum_{i=1}^n \varepsilon_i X_i$ is $\sum_{i=1}^n X_i^2$ -sub-Gaussian.

By symmetrization,

$$\mathbb{P}\Big(\sup_{f\in\mathcal{F}}P_nf - Pf \ge \varepsilon\Big) \le \frac{1}{\varepsilon}\mathbb{E}\Big[\sup_{f\in\mathcal{F}}P_nf - Pf\Big] \le \frac{2}{n\varepsilon}\mathbb{E}\Big[\sup_{f\in\mathcal{F}}\Big|\sum_{i=1}^n \varepsilon_i f(x_i)\Big|\Big]$$

Definition 2.2. The Rademacher complexity $R_n(\mathcal{F})$ is defined as

$$R_n(\mathcal{F}) = \mathbb{E}\Big[\sup_{f \in \mathcal{F}} \Big| \sum_{i=1}^n \varepsilon_i f(x_i) \Big| \Big]$$

If $R_n(\mathcal{F}) = o(n)$, then we have a ULLN. Typically we require an envelope function F, a function that satisifies $F(x) \geq |f(x)|$, for all $x \in \mathcal{X}$ and $f \in \mathcal{F}$. For $M \in \mathbb{R}_+$, let

$$f_M(x) = \begin{cases} f(x) & |f(x)| \le M \\ 0 & |f(x)| > M \end{cases}$$

and $\mathcal{F}_M = \{f_m : f \in \mathcal{F}\}.$

Theorem 6. Let \mathcal{F} be a class of functions with envelope $F \in L_1(P)$. If $\log N(\mathcal{F}_M, L_1(P_n), \varepsilon) = o_p(n)$ for all $M < \infty$ and $\varepsilon > 0$, then $\|P_n - P\|_{\mathcal{F}} \stackrel{p}{\to} 0$.

Proof Let $P_n^0 f = \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i)$ where the ϵ_i are i.i.d. Rademachers. By symmetrization,

$$\mathbb{E}[\|P_n - P\|_{\mathcal{F}}] \le 2\mathbb{E}[\|P_n^0\|_{\mathcal{F}}]$$

$$\le 2\mathbb{E}\Big[\sup_{f \in \mathcal{F}} \Big| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(X_i) - f_M(X_i)) \Big| \Big] + 2\mathbb{E}\Big[\sup_{f \in \mathcal{F}_M} \Big| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \Big| \Big]$$

Call the first term above T_1 and the second T_2 . $T_1 \leq 2\mathbb{E}\big[F(X)\mathbf{1}_{F(X)\geq M}\big] \to 0$ as $M \to \infty$. Let \mathcal{G} be minimal ε -cover of \mathcal{F}_M in $L_1(P_n)$ norm. Then,

$$\sup_{f \in \mathcal{F}_M} \left\| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right\| \le \max_{g \in \mathcal{G}} \left\| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X_i) \right\| + \epsilon$$

Conditional on X_i , $\sum_{i=1}^n \varepsilon_i g(X_i)$ is $n\sigma_n^2 := \sum_{i=1}^n g^2(X_i)$ sub-Gaussian. Since $\sum_{i=1}^n g^2(X_i) \le nM^2$, $\frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i g(X_i)$ is M^2 sub-Gaussian.

$$\mathbb{E}\Big[\sup_{g\in\mathcal{G}}\Big\|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\epsilon_{i}g(X_{i})\Big\|\Big|X\Big] \leq \sqrt{2\sigma_{n}^{2}\log(2|\mathcal{G}|)}$$

$$\leq \sqrt{2M^{2}log(2N(\mathcal{F}_{M},L_{1}(P_{n}),\epsilon))}$$

$$= o_{p}(\sqrt{n})$$

Therefore we get, $\mathbb{E}[\|P_n - P\|_{\mathcal{F}}] \leq 2\mathbb{E}[F\mathbf{1}_{F \geq M}] + 2\mathbb{E}[M \wedge o_p(1)] + 2\epsilon$. Now, let $M \to \infty$, $n \to \infty$, and $\varepsilon \downarrow 0$. The righthand side goes converges to 0, concluding the proof.