Stats 300b: Theory of Statistics Winter 2018

Lecture 10 — Feb 8

Lecturer: John Duchi Scribe: Michael Feldman, Swarnadip Ghosh

@ Warning: these notes may contain factual errors
Reading: VdV ch. 19, Vershynin ch. 1,2,8

Outline:
e Sub-Gaussian random variables
e Symmetrization

e Rademacher complexity and metric entropy

Recap: For ametric space (0, p), the covering number is N (0, p,€) = min { N s.t. 3 an e-cover {f;}]*; of O}
where {Hi}f\il is an e-cover if V6 € ©, 3 0; s.t. p(0,6;) < e. Our goal is to prove uniform laws of
large numbers, i.e.,

|P, — P|lz=sup |P.f — Pf]| 50
feF

1 Concentration Inequalities

Concentration inequalities are the key to proving ULLNS and are of fundamental importance in
high dimensional and modern theoretical statistics and machine learning.
1.1 Sub-Gaussianity

Definition 1.1. X is a mean-zero o%—sub-Gaussian RV if
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Example: Gaussian random variables: If X ~ N (,u, 02), then
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Example: Bounded random variables: If X € [a,b], then X is - subgaussian i.e,

E[*(X~EX)] < exp (W) VAER



Proposition 1. Let X;’s be independent 03— sub-Gaussian random variables. Then Y | X; is a
> 02-sub-Gaussian random variable.

Proof W.lo.g., let EX; = 0. By independence,
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We now derive two basic concentration inequalities for sub-Gaussian random variables.

1.2 Concentration inequalities

Proposition 2. (Chernoff bound for sub-Gaussians) Let X be o?- sub-Gaussian. For allt > 0,
max (P(X —EX >t),P(X —EX < —t)) < o 12/20°

Proof Let EX =0 w.l.o.g. The result is proved using a standard technique, exponentiating the
random variable and applying Markov’ inequality:

]P(X > t) = P(e)‘X > e)‘t) VAeR -+
E[e’\X]
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The lefthand side of the above equation is minimized at A = %, giving

P(X >t) < et/

Corollary 3. (Hoeffding bound) Let X; be independent U?—sub—Gaussi(m r.v.s. Then, fort >0,
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This is proved by applying the Chernoff bound to the "1 | X;, which is a > ; 02-sub-Gaussian.
The bound for the lower tail is identical.

Proposition 4. (HW 1) Let {X;}! | be zero mean sub-Gaussians, possibly dependent. Then,

E( max X;) < v/202logn

1<i<n



2 Symmetrization

For any class F C {X — R},

P(;lelg):Pf Pf>t) <t 1E{Jsﬁupr Pf}

If P, — P is symmetric, these expressions are much easier to deal with.
Definition 2.1. € is a Rademacher random variable if € € {—1,1} and E(e) = 0.

Theorem 5. (Symmetrization) Let X1, ..., X,, be independent random vectors in a Banach space
equipped with a norm || - || and let €1, ...,&, be i.i.d. Rademacher variables which are independent

of the X;’s. Forp > 1,
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Proof Let X/ be an independent copy of X;. Then,
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by Jensen’s inequality (|| - [|P is convex as p > 1). Notice that X; — X/ is symmetric about 0, so
X, — X! 4 i(X; — X]). Therefore,
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The second inequality follows from the convexity of || - ||P. O

This result is useful for several reasons:
1. symmetric r.v.s are often easier to work with
2. we can find more precise bounds for symmetric sums
3. proofs of ULLNS will be easier

4. Conditional on {X;}7 1, > | X, is > I ; X?-sub-Gaussian.



By symmetrization,

P(?E?:Pnf_PfZE)< E[]scupr Pf} <E[§1€1§):‘Zelf x;)
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Definition 2.2. The Rademacher complezity R, (F) is defined as

R, (F [sup‘Zelf x;) }

feF
If R, (F) = o(n), then we have a ULLN. Typically we require an envelope function F, a function
that satisifies F'(z) > |f(z)|, for all z € X and f € F. For M € R4, let

Far) = {f<fﬂ> o) < 1

0 flz)| > M
and Fpr = {fm : f € F}.

Theorem 6. Let F be a class of functions with envelope F' € Li(P). If log N(Far, L1(Pp),€) =
op(n) for all M < co and & > 0, then |P, — P|lz 2 0.

Proof Let Pf = %Z;;l g; f(X;) where the ¢; are i.i.d. Rademachers. By symmetrization,

E[||P. — PlF] < 2E[|P)]| 7]
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Call the first term above T and the second Ts. T < 2E [F(X)IF(X)ZM} —0as M — oo. Let G
be minimal e-cover of Fj; in Lq1(P,) norm. Then,

1;61f =1 H*ZQQ

Conditional on X; , > 7", £;,9(X;) is no? = S, ¢2(X;) sub-Gaussian. Since S G2(Xi) < nM2,
ﬁ S €g(X;) is M? sub-Gaussian.

sup
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sup H €9(X } < /202 1og(2|G|)
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< V/2M2log(2N (Far, L1 (Py), €))
= 0p(V/n)
Therefore we get, E[|| P, — P||r] < 2E[F1p>a] + 2E[M Aoy(1)] + 2e. Now, let M — 0o, n — oo,
and € | 0. The righthand side goes converges to 0, concluding the proof. O



