
Stats 300b: Theory of Statistics Winter 2018

Lecture 10 – Feb 8

Lecturer: John Duchi Scribe: Michael Feldman, Swarnadip Ghosh

� Warning: these notes may contain factual errors

Reading: VdV ch. 19, Vershynin ch. 1,2,8

Outline:

• Sub-Gaussian random variables

• Symmetrization

• Rademacher complexity and metric entropy

Recap: For a metric space (Θ, ρ), the covering number isN(Θ, ρ, ε) = min
{
N s.t. ∃ an ε-cover {θi}Ni=1 of Θ

}
where {θi}Ni=1 is an ε-cover if ∀θ ∈ Θ, ∃ θi s.t. ρ(θ, θi) ≤ ε. Our goal is to prove uniform laws of
large numbers, i.e.,

‖Pn − P‖F = sup
f∈F
|Pnf − Pf |

p→ 0

1 Concentration Inequalities

Concentration inequalities are the key to proving ULLNS and are of fundamental importance in
high dimensional and modern theoretical statistics and machine learning.

1.1 Sub-Gaussianity

Definition 1.1. X is a mean-zero σ2−sub-Gaussian RV if

E
[
eλX

]
≤ exp

(λ2σ2
2

)
∀λ ∈ R

Example: Gaussian random variables: If X ∼ N
(
µ, σ2

)
, then

E
[
eλ(X−µ)

]
= exp

(λ2σ2
2

)
∀λ ∈ R.

Example: Bounded random variables: If X ∈ [a, b], then X is (b−a)2
4 - subgaussian i.e,

E
[
eλ
(
X−EX

)]
≤ exp

(λ2(b− a)2

8

)
∀λ ∈ R
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Proposition 1. Let Xi’s be independent σ2i - sub-Gaussian random variables. Then
∑n

i=1Xi is a∑
σ2i -sub-Gaussian random variable.

Proof W.l.o.g., let EXi = 0. By independence,

E
[
eλ

∑n
i=1Xi

]
=

n∏
i=1

E
[
eλXi

]
≤ exp

(λ2
2

n∑
i=1

σ2i

)
.

We now derive two basic concentration inequalities for sub-Gaussian random variables.

1.2 Concentration inequalities

Proposition 2. (Chernoff bound for sub-Gaussians) Let X be σ2- sub-Gaussian. For all t ≥ 0,

max
(
P
(
X − EX ≥ t

)
,P
(
X − EX ≤ −t

))
≤ e−t2/2σ2

Proof Let EX = 0 w.l.o.g. The result is proved using a standard technique, exponentiating the
random variable and applying Markov’ inequality:

P
(
X ≥ t

)
= P

(
eλX ≥ eλt

)
∀λ ∈ R−+

≤
E
[
eλX

]
eλt

≤ e
λ2σ2

2
−λt.

The lefthand side of the above equation is minimized at λ = t
σ2 , giving

P
(
X ≥ t

)
≤ et2/2σ2

Corollary 3. (Hoeffding bound) Let Xi be independent σ2i -sub-Gaussian r.v.s. Then, for t ≥ 0,

P
( 1

n

n∑
i=1

Xi ≥ t
)
≤ exp

(
−nt2

2 1
n

∑n
i=1 σ

2
i

)
This is proved by applying the Chernoff bound to the

∑n
i=1Xi, which is a

∑n
i=1 σ

2
i -sub-Gaussian.

The bound for the lower tail is identical.

Proposition 4. (HW 1) Let {Xi}ni=1 be zero mean sub-Gaussians, possibly dependent. Then,

E
(

max
1≤i≤n

Xi

)
≤
√

2σ2 log n
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2 Symmetrization

For any class F ⊂ {X → R},

P
(

sup
f∈F

Pnf − Pf ≥ t
)
≤ t−1E

[
sup
f∈F

Pnf − Pf
]

If Pn − P is symmetric, these expressions are much easier to deal with.

Definition 2.1. ε is a Rademacher random variable if ε ∈ {−1, 1} and E(ε) = 0.

Theorem 5. (Symmetrization) Let X1, ..., Xn be independent random vectors in a Banach space
equipped with a norm || · || and let ε1, ..., εn be i.i.d. Rademacher variables which are independent
of the Xi’s. For p ≥ 1,

E
[∥∥∥∥ n∑

i=1

(Xi − EXi)

∥∥∥∥p] ≤ 2p E
[∥∥∥∥ n∑

i=1

εiXi

∥∥∥∥p]
Proof Let X ′i be an independent copy of Xi. Then,

E
[∥∥∥∥ n∑

i=1

(Xi − EXi)

∥∥∥∥p] = E
[∥∥∥∥ n∑

i=1

(Xi − EX ′i)
∥∥∥∥p]

≤ E
[∥∥∥∥ n∑

i=1

(Xi −X ′i)
∥∥∥∥p]

by Jensen’s inequality (‖ · ‖p is convex as p ≥ 1). Notice that Xi − X ′i is symmetric about 0, so

Xi −X ′i
d
= εi(Xi −X ′i). Therefore,

E
[∥∥∥∥ n∑

i=1

(Xi − EXi)

∥∥∥∥p] ≤ E
[∥∥∥∥ n∑

i=1

εi(Xi −X ′i)
∥∥∥∥p]

= 2p E
[∥∥∥∥1

2

n∑
i=1

εiXi −
1

2

n∑
i=1

εiX
′
i

∥∥∥∥p]

≤ 2p−1 E
[∥∥∥∥ n∑

i=1

εiXi

∥∥∥∥p]+ 2p−1 E
[∥∥∥∥ n∑

i=1

εiX
′
i

∥∥∥∥p]

= 2p · E
[∥∥∥∥ n∑

i=1

εiXi

∥∥∥∥p]
The second inequality follows from the convexity of ‖ · ‖p.

This result is useful for several reasons:

1. symmetric r.v.s are often easier to work with

2. we can find more precise bounds for symmetric sums

3. proofs of ULLNS will be easier

4. Conditional on {Xi}ni=1,
∑n

i=1 εiXi is
∑n

i=1X
2
i -sub-Gaussian.
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By symmetrization,

P
(

sup
f∈F

Pnf − Pf ≥ ε
)
≤ 1

ε
E
[

sup
f∈F

Pnf − Pf
]
≤ 2

nε
E
[

sup
f∈F

∣∣∣ n∑
i=1

εif(xi)
∣∣∣]

Definition 2.2. The Rademacher complexity Rn(F) is defined as

Rn(F) = E
[

sup
f∈F

∣∣∣ n∑
i=1

εif(xi)
∣∣∣]

If Rn(F) = o(n), then we have a ULLN. Typically we require an envelope function F , a function
that satisifies F (x) ≥ |f(x)|, for all x ∈ X and f ∈ F . For M ∈ R+, let

fM (x) =

{
f(x) |f(x)| ≤M
0 |f(x)| > M

and FM = {fm : f ∈ F}.

Theorem 6. Let F be a class of functions with envelope F ∈ L1(P ). If logN(FM , L1(Pn), ε) =

op(n) for all M <∞ and ε > 0, then ‖Pn − P‖F
p→ 0.

Proof Let P 0
nf = 1

n

∑n
i=1 εif(Xi) where the εi are i.i.d. Rademachers. By symmetrization,

E
[
‖Pn − P‖F

]
≤ 2E

[
‖P 0

n‖F
]

≤ 2E
[

sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi(f(Xi)− fM (Xi))
∣∣∣]+ 2E

[
sup
f∈FM

∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣]

Call the first term above T1 and the second T2. T1 ≤ 2E
[
F (X)1F (X)≥M

]
→ 0 as M → ∞. Let G

be minimal ε-cover of FM in L1(Pn) norm. Then,

sup
f∈FM

∥∥∥ 1

n

n∑
i=1

εif(Xi)
∥∥∥ ≤ max

g∈G

∥∥∥ 1

n

n∑
i=1

εig(Xi)
∥∥∥+ ε

Conditional on Xi ,
∑n

i=1 εig(Xi) is nσ2n :=
∑n

i=1 g
2(Xi) sub-Gaussian. Since

∑n
i=1 g

2(Xi) ≤ nM2,
1√
n

∑n
i=1 εig(Xi) is M2 sub-Gaussian.

E
[

sup
g∈G

∥∥∥ 1√
n

n∑
i=1

εig(Xi)
∥∥∥∣∣∣X] ≤√2σ2n log(2|G|)

≤
√

2M2log(2N(FM , L1(Pn), ε))

= op(
√
n)

Therefore we get, E
[
‖Pn − P‖F

]
≤ 2E

[
F1F≥M

]
+ 2E

[
M ∧ op(1)

]
+ 2ε. Now, let M →∞, n→∞,

and ε ↓ 0. The righthand side goes converges to 0, concluding the proof.

4


