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� Warning: these notes may contain factual errors

Reading: VDV Chapter 12

Outline:

• U-Statistics (VDV Chapter 12)

– Definitions

– Examples

– Variance calculation

1 U-Statistics

1.1 Definitions

Suppose I have h : Xr → R and want to estimate θ = E [h (X1, ..., Xr)], where the Xi are
independent. Given a sample (X1, ..., Xn), how should I estimate θ?
Example:

Observe that

Var (X) = E
[
X2

1

]
− E [X1X2] =

1

2
E
[
(X1 −X2)

2
]
.

So,

h (X1, X2) =
1

2
(X1 −X2)

2

♣

Remark Without loss of generality, we assume h is symmetric, i.e it is invariant under any
permutation of its arguments.

I should estimate θ with with U-Statistics (Hoeffding 1940s). It allows us to
(1) abstract away annoying details and still perform inference, and
(2) develop statistics and tests that do not depend on parametric assumptions (non-parametric)
making our inference more ”robust”.

Definition 1.1 (U-Statistics). For Xi
i.i.d∼ P , denote θ (P ) := EP [h (X1, ..., Xr)]. A U-statistic is

a random variable of the form

Un :=
1(
n
r

) ∑
|β|=r,β⊂[n]

h (Xβ)

1



where h : Xr → R is a symmetric (kernel) function, β ranges over all size r subsets of
[n] := {1, ..., n}, and Xβ := (Xi1 , ..., Xir) for β = (i1, ..., ir).

Remark The U in ”U-statistics” is because EP [Un] = θ (P ) := E[h(X1, ..., Xr)], so Un is
unbiased.

Why use a U-statistic at all? Why not use

h(X1, X2, ..., Xr)

or

1(
n
r

) n
r∑
`=1

h
(
X`(r−1)+1, ..., X`r

)
?

Let
{
X(1), ..., X(n)

}
be the sample with “index” information removed. (e.g. Order Statistics.

Generally a histogram. In EE terminology, called “type” of the sample.) Then, under Xi
i.i.d∼ P ,{

X(i)

}n
i=1

is a sufficient statistic. Observe that

E
{
h (X1, ..., Xr) |X(1), ..., X(n)

}
= Un :=

1(
n
r

) ∑
|β|=r,β⊂[n]

h (Xβ)

By Rao-Blackwellization, we know that for any convex (loss) function L and any r.v. Zn such
that E[Zn|(X(i))1≤i≤n] = Un,

E[L(Zn)] ≥ E[L(Un)].

1.2 Examples

Example (Sample Variance): Consider h (x, y) = 1
2 (x− y)2. Then E [h (X1, X2)] = 1

2

(
E
[
X2

1

]
+ E

[
X2

2

])
−

E [X1, X2] = Var (X). When we have more than two samples, we use

Un =
1(
n
2

) ∑
1≤i<j≤n

1

2
(Xi −Xj)

2

=
1

2n (n− 1)

∑
i,j

(Xi −Xj)
2

=
1

2n (n− 1)

∑
i,j

((
Xi − X̄n

)
−
(
Xj − X̄n

))2
=

1

2n (n− 1)

∑
i,j

((
Xi − X̄n

)2
+
(
Xj − X̄n

)2)
=

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
♣

Example (Gini’s Mean-Difference): h (x, y) = |x− y| and E [Un] = E [|X1 −X2|] . ♣

Example (Quantiles):
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θ (P ) = P (X ≤ t) =

∫ t

−∞
dp and h (X) = 1 {X ≤ t}

This is a first order U-statistic. ♣

Example (Signed Rank Statistic): Suppose we want to know whether the central location of P
is 0. Then we can use

θ (P ) := P (X1 +X2 > 0) ,

even when E [X] isn’t well-defined.
This means h (x, y) = 1 {x+ y > 0} and Un = 1

(n2)

∑
i<j 1 {Xi +Xj > 0} . ♣

Definition 1.2 (Two-sample U-Statistic). Given two samples {X1, ..., Xn}and {Y1, ..., Yn},a two-
sample U-statistic is a random variable of the form

U =
1(

n
r

)(
m
s

) ∑
|α|=s,α⊂[m]

∑
|β|=r,β⊂[n]

h (Xβ, Yα)

where h : Xr × Y s → R. h is symmetric in its first r arguments and in its last s arguments.

Example (Mann-Whitney Statistic): Do X and Y have the same location? We can consider

θ (P ) = P (X ≤ Y ) ,

h (X,Y ) = 1 {X ≤ Y } ,

Un,m =
1

nm

n∑
i=1

m∑
j=1

1 {Xi ≤ Yj} ,

which should be close to 1
2 when X and Y have the same location. ♣

Example: Here’s another motivating example for two-sample U-statistics.

Suppose we have Xi
i.i.d∼ P and Yi

i.i.d∼ Q. Are P and Q different?
The null in this two-sample problem is: P = Q. This is a huge null: P is unknown and
could be anything. We approximate the null by looking at the distribution of h(ZA), where
Z = {X1, ..., Xn, Y1, ..., Yn} and A ranges over all possible index sets of size |A| = r + s. We
use that under the null,

h(ZA)
dist
= h(ZB)

for any A,B ∈ [n] such that |A| = |B| = r + s. ♣
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1.3 Variance of U-Statistics

This is a precursor to asymptotic normality because ”1st order terms” dominate everything else.

Definition 1.3. Assume that E
[
|h|2
]
<∞ for any c < r. Define

hc (X1, ..., Xc) := E

h
X1, ..., Xc︸ ︷︷ ︸

fixed

, Xc+1, ..., Xr︸ ︷︷ ︸
i.i.d P


 .

Remark

1. h0 = E [h (X1, ..., Xr)] = θ (P )

2. E [hc (X1, ..., Xc)] = E [h (X1, ..., Xr)] = θ (P )

Definition 1.4.

ĥc : = hc − E [hc] = hc − θ (P )

E
[
ĥc

]
= 0

Then define

ζc := Var (hc (X1, ..., Xc)) = E
[
ĥ2c

]
(Note that ζ0 = 0.)

Goal: Write V ar [Un] in terms of ζ ′cs for c = 1, 2, ..., r.

Lemma 1. If α, β ⊆ [n], S = α ∩ β, c = |S|, then

E
[
ĥ(Xα)ĥ(Xβ)

]
= ζc.

Proof Using the symmetry of h,

E
[
ĥ(Xα)ĥ(Xβ)

]
= E

[
ĥ(Xα\S , XS)ĥ(Xβ\S , XS)

]
= E

[
E[ĥ(Xα\S , XS) | XS ] · E[ĥ(Xβ\S , XS) | XS ]

]
(since Xα\S , Xβ\S indep.)

= E
[
ĥc(XS) · ĥc(XS)

]
= ζc.

Theorem 2. Let Un be an rth order U-statistic. Then

VarUn =
r2

n
ζ1 +O(n−2).
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Proof There are
(
n
r

)(
r
c

)(
n−r
r−c
)

ways to select a pair of subsets of [n], each of size r, with c common
elements. Hence,

Un − θ =

(
n

r

)−1 ∑
|β|=r

ĥ(Xβ),

VarUn =

(
n

r

)−2 ∑
|α|=r

∑
|β|=r

E
[
ĥ(Xα)ĥ(Xβ)

]

=

(
n

r

)−2 r∑
c=1

(
n

r

)(
r

c

)(
n− r
r − c

)
ζc

=

r∑
c=1

r!2

c!(r − c)!2
(n− r)(n− r − 1) . . . (n− 2r + c+ 1)

n(n− 1) . . . (n− r + 1)
ζc.

For fixed c, (n−r)(n−r−1)...(n−2r+c+1)
n(n−1)...(n−r+1) has r − c terms in the numerator and r terms in the

denominator. Hence,

VarUn = r2
(n− r)(n− r − 1) . . . (n− 2r + 2)

n(n− 1) . . . (n− r + 1)
ζ1 +

r∑
c=2

O

(
nr−c

nr

)
ζc

= r2
[

1

n
+O(n−2)

]
ζ1 +O(n−2)

=
r2

n
ζ1 +O(n−2).

With this theorem, we know that the variance of U-statistics behaves like the variance of a
sample mean plus high-order errors.

New Goal: Show that Un is asymptotically normal by projecting out all high-order interactions.
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