Stats 300b: Theory of Statistics

Winter 2018

Lecture 7– January 30

Lecturer: John Duchi Scribes: Sohom Bhattacharya, Ismael Lemhadri

Warning: these notes may contain factual errors

Reading: VDV Chapter 12

Outline:

- U-Statistics (VDV Chapter 12)
 - Definitions
 - Examples
 - Variance calculation

1 U-Statistics

1.1 Definitions

Suppose I have $h: X^r \to \mathbb{R}$ and want to estimate $\theta = E[h(X_1, ..., X_r)]$, where the X_i are independent. Given a sample $(X_1, ..., X_n)$, how should I estimate θ ?

Example:

Observe that

$$\operatorname{Var}(X) = E[X_1^2] - E[X_1 X_2] = \frac{1}{2} E[(X_1 - X_2)^2].$$

So,

$$h(X_1, X_2) = \frac{1}{2} (X_1 - X_2)^2$$

•

Remark Without loss of generality, we assume h is symmetric, i.e it is invariant under any permutation of its arguments.

I should estimate θ with with U-Statistics (Hoeffding 1940s). It allows us to

- (1) abstract away annoying details and still perform inference, and
- (2) develop statistics and tests that do not depend on parametric assumptions (non-parametric) making our inference more "robust".

Definition 1.1 (U-Statistics). For $X_i \stackrel{i.i.d}{\sim} P$, denote $\theta(P) := E_P[h(X_1, ..., X_r)]$. A U-statistic is a random variable of the form

$$U_n := \frac{1}{\binom{n}{r}} \sum_{|\beta| = r, \beta \subset [n]} h(X_\beta)$$

where $h: X^r \to \mathbb{R}$ is a symmetric (kernel) function, β ranges over all size r subsets of $[n] := \{1, ..., n\}$, and $X_{\beta} := (X_{i_1}, ..., X_{i_r})$ for $\beta = (i_1, ..., i_r)$.

Remark The U in "U-statistics" is because $\mathbb{E}_P[U_n] = \theta(P) := \mathbb{E}[h(X_1, ..., X_r)]$, so U_n is unbiased.

Why use a U-statistic at all? Why not use

$$h(X_1, X_2, ..., X_r)$$

or

$$\frac{1}{\left(\frac{n}{r}\right)} \sum_{\ell=1}^{\frac{n}{r}} h\left(X_{\ell(r-1)+1}, ..., X_{\ell r}\right)?$$

Let $\{X_{(1)},...,X_{(n)}\}$ be the sample with "index" information removed. (e.g. Order Statistics. Generally a histogram. In EE terminology, called "type" of the sample.) Then, under $X_i \stackrel{i.i.d}{\sim} P$, $\{X_{(i)}\}_{i=1}^n$ is a sufficient statistic. Observe that

$$\mathbb{E}\left\{h\left(X_{1},...,X_{r}\right)|X_{(1)},...,X_{(n)}\right\} = U_{n} := \frac{1}{\binom{n}{r}} \sum_{|\beta|=r,\beta \subset [n]} h\left(X_{\beta}\right)$$

By Rao-Blackwellization, we know that for any convex (loss) function L and any r.v. Z_n such that $\mathbb{E}[Z_n|(X_{(i)})_{1\leq i\leq n}]=U_n$,

$$\mathbb{E}[L(Z_n)] \ge \mathbb{E}[L(U_n)].$$

1.2 Examples

Example (Sample Variance): Consider $h(x,y) = \frac{1}{2}(x-y)^2$. Then $\mathbb{E}[h(X_1,X_2)] = \frac{1}{2}(\mathbb{E}[X_1^2] + \mathbb{E}[X_2^2]) - \mathbb{E}[X_1,X_2] = \text{Var}(X)$. When we have more than two samples, we use

$$U_{n} = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \frac{1}{2} (X_{i} - X_{j})^{2}$$

$$= \frac{1}{2n (n - 1)} \sum_{i,j} (X_{i} - X_{j})^{2}$$

$$= \frac{1}{2n (n - 1)} \sum_{i,j} ((X_{i} - \bar{X}_{n}) - (X_{j} - \bar{X}_{n}))^{2}$$

$$= \frac{1}{2n (n - 1)} \sum_{i,j} ((X_{i} - \bar{X}_{n})^{2} + (X_{j} - \bar{X}_{n})^{2})$$

$$= \frac{1}{n - 1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$$

2

Example (Gini's Mean-Difference): h(x,y) = |x-y| and $\mathbb{E}[U_n] = \mathbb{E}[|X_1 - X_2|]$.

Example (Quantiles):

$$\theta(P) = P(X \le t) = \int_{-\infty}^{t} dp \text{ and } h(X) = \mathbf{1}\{X \le t\}$$

This is a first order U-statistic. ♣

Example (Signed Rank Statistic): Suppose we want to know whether the central location of P is 0. Then we can use

$$\theta(P) := P(X_1 + X_2 > 0),$$

even when $\mathbb{E}[X]$ isn't well-defined.

This means
$$h'(x,y) = \mathbf{1} \{x+y>0\}$$
 and $U_n = \frac{1}{\binom{n}{2}} \sum_{i< j} \mathbf{1} \{X_i + X_j > 0\}$.

Definition 1.2 (Two-sample U-Statistic). Given two samples $\{X_1, ..., X_n\}$ and $\{Y_1, ..., Y_n\}$, a two-sample U-statistic is a random variable of the form

$$U = \frac{1}{\binom{n}{r}\binom{m}{s}} \sum_{|\alpha|=s,\alpha \subset [m]} \sum_{|\beta|=r,\beta \subset [n]} h(X_{\beta}, Y_{\alpha})$$

where $h: X^r \times Y^s \to \mathbb{R}$. h is symmetric in its first r arguments and in its last s arguments.

Example (Mann-Whitney Statistic): Do X and Y have the same location? We can consider

$$\theta(P) = P(X \le Y),$$

$$h(X,Y) = \mathbf{1} \{X \le Y\},$$

$$U_{n,m} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{1} \{X_i \le Y_j\},$$

which should be close to $\frac{1}{2}$ when X and Y have the same location. \clubsuit

Example: Here's another motivating example for two-sample U-statistics.

Suppose we have $X_i \stackrel{i.i.d}{\sim} P$ and $Y_i \stackrel{i.i.d}{\sim} Q$. Are P and Q different?

The null in this two-sample problem is: P = Q. This is a *huge* null: P is unknown and could be anything. We approximate the null by looking at the distribution of $h(Z_A)$, where $Z = \{X_1, ..., X_n, Y_1, ..., Y_n\}$ and A ranges over all possible index sets of size |A| = r + s. We use that under the null,

$$h(Z_A) \stackrel{dist}{=} h(Z_B)$$

for any $A,B\in [n]$ such that |A|=|B|=r+s.

1.3 Variance of U-Statistics

This is a precursor to asymptotic normality because "1st order terms" dominate everything else.

Definition 1.3. Assume that $E\left[|h|^2\right] < \infty$ for any c < r. Define

$$h_c(X_1,...,X_c) := E\left[h\left(\underbrace{X_1,...,X_c}_{fixed},\underbrace{X_{c+1},...,X_r}_{i.i.d\ P}\right)\right].$$

Remark

1.
$$h_0 = E[h(X_1, ..., X_r)] = \theta(P)$$

2.
$$E[h_c(X_1,...,X_c)] = E[h(X_1,...,X_r)] = \theta(P)$$

Definition 1.4.

$$\hat{h}_c := h_c - E[h_c] = h_c - \theta(P)$$

$$E[\hat{h}_c] = 0$$

Then define

$$\zeta_c := Var(h_c(X_1, ..., X_c)) = E\left[\hat{h}_c^2\right]$$

(Note that $\zeta_0 = 0$.)

Goal: Write $Var[U_n]$ in terms of $\zeta'_c s$ for c = 1, 2, ..., r.

Lemma 1. If $\alpha, \beta \subseteq [n]$, $S = \alpha \cap \beta$, c = |S|, then

$$\mathbb{E}\left[\hat{h}(X_{\alpha})\hat{h}(X_{\beta})\right] = \zeta_c.$$

Proof Using the symmetry of h,

$$\mathbb{E}\left[\hat{h}(X_{\alpha})\hat{h}(X_{\beta})\right] = \mathbb{E}\left[\hat{h}(X_{\alpha\backslash S}, X_S)\hat{h}(X_{\beta\backslash S}, X_S)\right]$$

$$= \mathbb{E}\left[\mathbb{E}[\hat{h}(X_{\alpha\backslash S}, X_S) \mid X_S] \cdot \mathbb{E}[\hat{h}(X_{\beta\backslash S}, X_S) \mid X_S]\right] \quad \text{(since } X_{\alpha\backslash S}, X_{\beta\backslash S} \text{ indep.)}$$

$$= \mathbb{E}\left[\hat{h}_c(X_S) \cdot \hat{h}_c(X_S)\right]$$

$$= \zeta_c.$$

Theorem 2. Let U_n be an r^{th} order U-statistic. Then

$$VarU_n = \frac{r^2}{n}\zeta_1 + O(n^{-2}).$$

Proof There are $\binom{n}{r}\binom{r}{c}\binom{n-r}{r-c}$ ways to select a pair of subsets of [n], each of size r, with c common elements. Hence,

$$U_n - \theta = \binom{n}{r}^{-1} \sum_{|\beta| = r} \hat{h}(X_\beta),$$

$$\operatorname{Var} U_n = \binom{n}{r}^{-2} \sum_{|\alpha| = r} \sum_{|\beta| = r} \mathbb{E} \left[\hat{h}(X_\alpha) \hat{h}(X_\beta) \right]$$

$$= \binom{n}{r}^{-2} \sum_{c=1}^r \binom{n}{r} \binom{r}{c} \binom{n-r}{r-c} \zeta_c$$

$$= \sum_{c=1}^r \frac{r!^2}{c!(r-c)!^2} \frac{(n-r)(n-r-1)\dots(n-2r+c+1)}{n(n-1)\dots(n-r+1)} \zeta_c.$$

For fixed c, $\frac{(n-r)(n-r-1)...(n-2r+c+1)}{n(n-1)...(n-r+1)}$ has r-c terms in the numerator and r terms in the denominator. Hence,

$$Var U_n = r^2 \frac{(n-r)(n-r-1)\dots(n-2r+2)}{n(n-1)\dots(n-r+1)} \zeta_1 + \sum_{c=2}^r O\left(\frac{n^{r-c}}{n^r}\right) \zeta_c$$
$$= r^2 \left[\frac{1}{n} + O(n^{-2})\right] \zeta_1 + O(n^{-2})$$
$$= \frac{r^2}{n} \zeta_1 + O(n^{-2}).$$

With this theorem, we know that the variance of U-statistics behaves like the variance of a sample mean plus high-order errors.

New Goal: Show that U_n is asymptotically normal by projecting out all high-order interactions.