Stats 300b: Theory of Statistics Winter 2018

Lecture 3 — January 16

Lecturer: Yu Bai/John Duchi Scribe: Shuangning Li, Theodor Misiakiewicz

@ Warning: these notes may contain factual errors
Reading: VDV Chapter 5.1-5.6; ELST Chapter 7.1-7.3

Outline of Lecture 2:
1. Basic consistency and identifiability
2. Asymptotic Normality

(a) Taylor expansions
(b) Classical log-likelihood & asymptotic normality

(c) Fisher Information
Recap of Delta Method Last lecture, we discussed the Delta Method (aka Taylor expansions).

The basic idea was as follows:

Claim 1. Ifr,(T,—0) 4, and ¢ : R* — RF is smooth, then rp(¢(Tn)—o(0)) — ¢ (0)T, if ¢'(0) #
0.
Idea of proof:

rn(@(Tn) — ¢(0))

(¢ (0)(Tn — 0) + op(Tn — 0))
(¢ (0)(T — ) + op(rn(Tn — 0))
= 1 (¢'(0)(Tn — 0)) + 0p(1)

¢'(0)T.
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Notation: (from now on) Given distribution P on X, function f : X — RY,

Pri= [ 1aP= [ f@)p() = Erlf(o)

Example 1 (Empirical distributions): Consider the observations z1,z2,...,z, € X. Let the
empirical distribution P, = % Yoy 1s,. For any set A C X,

1 ..
Pn(A) = ﬁ‘{l S [n] X € A}| = Pnl{meA}-

Hence for any function f, P,f = %Z” L f(zi). &

1=



Taylor expansions

1. Real-valued functions
For f : R? — R differentiable at = € R,

f(y) = f(x) + VF(@)T (y — ) + o(||ly — z||). (Remainder version)

fly) = f(z) + Vf(ic)T(y — z). (Mean value version)

If f is twice differentiable,

f) = f@)+ V@) (y—=2) + %(y —2)IV2f(x)(y — =) + o(||ly — z||?). (Remainder version)

fy) = f@)+ V@) (y—z)+ %(y —2)TV2f(2)(y — x). (Mean value version)

2. Vector-valued functions

f1 Vf;(ﬁﬂ)
\%
Let f:RY = RF f(x) = f:2 . Define Df(x) = f2 (@) € R¥*4 0 be the Jacobian of f.
fr Vi (x)

Then,
fly) = f(x)+ Df(x)(y — ) + o(||ly — z||). (Remainder version)

But for mean value version, we don’t necessarily have Z such that

fy) = f(z) + Df(E)(y — ).

x
:1:2
Example 2 (Failure of mean value version): Let f : R — R* f(z) = | . |, then Df(z) =

.’L'k

] 1 1 1

o 1 2 1

. Take x = 0,y =1, then f(y) — f(z) =1= | .|. Yet Df(z) = i £ .] -
k! 1 e

Example 3 (Quantitative continuity guarantees): Recall the operator norm of A is

[Allop = sup || Aullz,

f[ull2=1

this implied that ||Az|s < ||Allopllz]2. For f : R? — RF, differentiable, assume that Df is
L—Lipschitz, i.e. |Df(x) — Df(y)llop < Lllz — yll2. (Roughly, this means that | D*f(z)|| < L.)
Claim 2. We have

fly) = f(z) + Df(2)(y — ) + Ry — @),
where R is a remainder matriz (depending on x,y) that satisfy | R|l,, < Ly —=| and |R(y — z)| <
L 2
5 lly — Il



Proof Define ¢,(t) = fi(1 — )z + ty), & : [0,1] — R. Note that ¢;(0) = fi(x), ¢:(1) = fi(y),
and ¢; = (Vf;((1 — t)z + ty))T(y —x). Then

Vfi;((l —t)z +ty) ¢ (1)
V(1 -tz +t (t
Df((1=t)x+ty)ly — =) = R :) ) (y —x) = %_()

Vi (1=t)z +ty) P (1)

Since ¢;(1) — ¢;(0) = [ ¢ (t)dt,
1
) — f(2) = / DF((1— ) + ty)(y — x)dt
0

- / (DF((1 - t)a + ty) — DF@))(y — 2)dt + Df(x)(y — ).

To bound the remainder term,
1 1
I [ (DS =0+ t9) = Df @)ty =)t < [ (DA =12+ t9) = Dy )
1
< [ 1D = 02 + t5) = DF@llyl (0 — )
1
< [ 2ty =)ty - )
1
< /0 Lt (y - )|t

L 2
=l - =)

(y — )

&

Consistency and asymptotic distribution:

Setting:

1. We have some model family {P}oce of distributions on X', where © C R?. Also, assume all

Py have density pyp with respect to base measure p on X, i.e. py = C&—Pl}".
2. We consider the log-likelihood of the distribution fy(x) = log pg(z), with
9 d
Vig(x) = [ logpg(x)} e R4
90, j=1
0” 4
Viy(z) = log pg(x) e Réxd
906; ij=1

For simplicity, we will denote: g = Vly(x) and g = V24(z).

The gradient of the log-likelihood is often called the “score function.” We will use this term
to refer to Vly(z) throughout future lectures.



3. Observe X; id Py, where 6y is unknown. Our goal is to estimate 6.

4. A standard estimator is to choose én to maximize the “likelihood,” i.e. the probability of the
data.

0, € argmax P, 0y ()
0cO

Main questions:
1. Consistency: does 0, 5 0y as n — +o0 ?
2. Asymptotic distribution: does rn(én N y) converge in distribution ?

3. Optimality 7 (in the next lecture)

Consistency:

Definition 0.1 (Identifiability). A model {Py}oco is identifiable if Py, # Py, for all 61,02 € ©
(01 # 62).
Equivalently, Dy (Py, |Po,) > 0 when 61 # 6. Recall that Dy (P, |Pp,) = /log

Note that Py, # Py, means that 3 set A C X such that Py, (A) # Py, (A).

Py,
Py,

dPp,.

Now that we have established what both identifiability and consistency mean, we can prove a
basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 3 (Finite © consistency of MLE). Suppose {Py}gco is identifiable and card © < oo.
Then, if 0,, := argmaxgcg Pnlo(z), 0,, 2 0y when X; id Py, .

Proof of Proposition By the Strong Law of Large Numbers, we know that P, ¢g(z) %3 Py lo(z)

iid
when z; ~ Py, .

P@ogeo (SC) o Pgoge ($) B EGO |:10g ];090((;))]

= Dia (Pg, | P)
We know that Dy (Py,|Ps) > 0 unless § = 6y. Combining this remark with P,ly,(z) — Pplo(x) =
Dy (Py, | Pp), we deduce that there exists N(6) such that for all n > N(6), we have P,lp,(x) —
P, lg(x) > 0 with probability 1.
It follows that for n > maxgce g0, N (6), we have P,lg,(x) > Pplo(x) for all § # 6. Therefore
én =y and we conclude that, for sufficiently large n and finite ©, we have én = 0y “eventually.” [

Remark The above result can fail for © infinite even if © is countable.

Uniform law: One sufficient condition often used for consistency results is a uniform law, i.e. for
T; i P, we have supgeg |Pnly — Ply| 20, In this case, if Pyoly < Pyylg, — 2€ and supgee |Pnlo —

Py, lg| < ¢, then 0, # 0. We will have:

én € {9 : PQO&) > PQOEQO — 26}



Now, that we have established some basic definitions and results regarding the consistency of
estimators, we turn our attention to understanding their asymptotic behavior.

Asymptotic Normality via Taylor Expansions:

Definition 0.2 (Operator norm). [[Al,, := supy,,<1 [[Aull,-
Note: A € R¥*? 4 ¢ RY and || Az|, < Al I l5-

Before we do anything, we have to make several assumptions.

1. We have a “nice, smooth” model, i.e. the Hessian is Lipschitz-continuous. To be rigorous,
the following must hold:

IV, () — V4o, ()], z) |61 — 02, Eg[M?(z)] < o0

2. The MLE, 6,, € argmaxycg Pnlp(z), is consistent, i.e. 6, 2 6y under Py, .
3. O is a convex set.

Theorem 4. Let x; id Py,, 0,, be the MLE (i.e. VPnEén = 0) and assume the conditions stated
above. Then, v/n(B, — 8) % N0, (Pg, V2Co,) " Py, Ve,V 05 (PoyV2lg,) ™).

Vpe) _ Vo _ VoV .

Remark  Let us rewrite the asymptotic variance. Given that V2¢y = V ( Do e e
0

2 2
E, [v pg] Vpe podys = /v2 odp = v2/ podp =0

As a result:

Ey[V2ly) = —Eqg

()R-

We define the Fisher Information as Iy := Ey[Vly(z)Viy(z)T] = Covy VI where the final equality
holds because Eg[Vly(z)] = 0 (0 maximizes Eg[lg(x)]). To show this, assume that we can swap

V,E. Then, V{y(x) = Vlogpg(x) = %. Using that result, we see that:

Eg[Vig] = [Vpe] /vmpedu /Vpedu V/padu V(1) =

We now have a more compact representation of the asymptotic distribution described in the
Theorem above.

V(B — 60) % N(0, I, M T, I, 1) = N(0, 1)

Consider Iy = —V2E[{y(z)]. If the magnitude of the second derivative is “large,” that implies that
the log-likelihood is steep around the global maximum (making it “easy” to find). Alternatively, if
the magnitude of —V2E[¢s(x)] is “small,” we do not have sufficient curvature to find the optimal
6.



Proof Let 7(z) € R¥9 be the remainder matrix in Taylor expansion of the gradients of the
individual log likelihood terms around 0y guaranteed by Taylor’s theorem (which certainly depends
on 0, — 6y), that is,

Vg (x) = Vig, () + Vg, () (Br — 0) + 7(z) (0 — b0),

where by Taylor’s theorem ||7(x)]],, < M (2)]|6n — 6o|. Writing this out using the empirical distri-
bution and that 6, = argmaxy P,lg(X), we have

VPl = 0= P,Vig, + P,V?lg,(0, — 0p) + PaF(X) (0 — b0). (1)

But of course, expanding the term P,7(X) € R¥9, we find that

n

N 1 N N 1 — ~
Pr(X) = - Zr(Xi) and ||P7,, < - ZM(Xi) 105 — bol| = op(1).
i=1 =1 ¥
S—— 5o
“3Eg, [M (X))

In particular, revisiting expression (1), we have

0= PyVlg, + PV (8, — b0) + 0p(1) (B, — 6p).
= PyVlg, + (Psy Vg, + (Po — Pay)V2lg, + 0p(1)) (6, — o).
The strong law of large numbers guarantees that (P, — Py,)V?ls, = op(1), and multiplying each

side by y/n yields R
V1(Py,V2Lg, 4 0p(1)) (0, — 00) = —/nP, Vi,

Applying Slutsky’s theorem gives the result: indeed, we have T,, = /nP,V{y, satisfies T), A
N(0, Iy,) by the central limit theorem, and noting that Py, V?{y, + op(1) is eventually invertible
gives

~ d _ _
\/ﬁ(‘gn - 90) — N(Ov (PGOVZEQO) 1190 (P90v2€90) 1)

as desired. O



