
Stats 300b: Theory of Statistics Winter 2018

Lecture 3 – January 16

Lecturer: Yu Bai/John Duchi Scribe: Shuangning Li, Theodor Misiakiewicz

� Warning: these notes may contain factual errors

Reading: VDV Chapter 5.1-5.6; ELST Chapter 7.1-7.3

Outline of Lecture 2:

1. Basic consistency and identifiability

2. Asymptotic Normality

(a) Taylor expansions

(b) Classical log-likelihood & asymptotic normality

(c) Fisher Information

Recap of Delta Method Last lecture, we discussed the Delta Method (aka Taylor expansions).
The basic idea was as follows:

Claim 1. If rn(Tn−θ)
d→ T , and φ : Rd → Rk is smooth, then rn(φ(Tn)−φ(θ))→ φ′(θ)T, if φ′(θ) 6=

0.
Idea of proof:

rn(φ(Tn)− φ(θ)) = rn(φ′(θ)(Tn − θ) + op(Tn − θ))
= rn(φ′(θ)(Tn − θ)) + op(rn(Tn − θ))
= rn(φ′(θ)(Tn − θ)) + op(1)

d→ φ′(θ)T.

Notation: (from now on) Given distribution P on X , function f : X → Rd,

Pf :=

∫
fdP =

∫
X
f(x)dP (x) = EP [f(x)]

Example 1 (Empirical distributions): Consider the observations x1, x2, . . . , xn ∈ X . Let the
empirical distribution Pn = 1

n

∑n
i=1 1xi . For any set A ⊆ X ,

Pn(A) =
1

n
|{i ∈ [n] : xi ∈ A}| = Pn1{x∈A}.

Hence for any function f , Pnf = 1
n

∑n
i=1 f(xi). ♣
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Taylor expansions

1. Real-valued functions

For f : Rd → R differentiable at x ∈ Rd,

f(y) = f(x) +∇f(x)T (y − x) + o(‖y − x‖). (Remainder version)

f(y) = f(x) +∇f(x̃)T (y − x). (Mean value version)

If f is twice differentiable,

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) + o(‖y − x‖2). (Remainder version)

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x̃)(y − x). (Mean value version)

2. Vector-valued functions

Let f : Rd → Rk, f(x) =


f1

f2
...
fk

. Define Df(x) =


∇fT1 (x)
∇fT2 (x)

...
∇fTk (x)

 ∈ Rk×d to be the Jacobian of f .

Then,
f(y) = f(x) +Df(x)(y − x) + o(‖y − x‖). (Remainder version)

But for mean value version, we don’t necessarily have x̃ such that

f(y) = f(x) +Df(x̃)(y − x).

Example 2 (Failure of mean value version): Let f : R → Rk, f(x) =


x
x2

...
xk

, then Df(x) =


1

2x

kxk−1

 . Take x = 0, y = 1, then f(y)− f(x) = 1 =


1
1
...
1

. Yet Df(x̃) =


1

2x̃
...

kx̃k−1

 6=


1
1
...
1

 . ♣
Example 3 (Quantitative continuity guarantees): Recall the operator norm of A is

‖A‖op = sup
‖u‖2=1

‖Au‖2,

this implied that ‖Ax‖2 ≤ ‖A‖op‖x‖2. For f : Rd → Rk, differentiable, assume that Df is
L−Lipschitz, i.e. ‖Df(x)−Df(y)‖op ≤ L‖x− y‖2. (Roughly, this means that ‖D2f(x)‖ ≤ L.)

Claim 2. We have
f(y) = f(x) +Df(x)(y − x) +R(y − x),

where R is a remainder matrix (depending on x, y) that satisfy |||R|||op ≤
L
2 ‖y − x‖ and ‖R(y − x)‖ ≤

L
2 ‖y − x‖

2.
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Proof Define φi(t) = fi((1 − t)x + ty), φi : [0, 1] → R. Note that φi(0) = fi(x), φi(1) = fi(y),

and φ′i =
(
∇fi((1− t)x+ ty)

)T
(y − x). Then

Df((1− t)x+ ty)(y − x) =


∇fT1 ((1− t)x+ ty)
∇fT2 ((1− t)x+ ty)

...
∇fTk ((1− t)x+ ty)

 (y − x) =


φ′1(t)
φ′2(t)

...
φ′k(t)

 .
Since φi(1)− φi(0) =

∫ 1
0 φ
′
1(t)dt,

f(y)− f(x) =

∫ 1

0
Df((1− t)x+ ty)(y − x)dt

=

∫ 1

0

(
Df((1− t)x+ ty)−Df(x)

)
(y − x)dt+Df(x)(y − x).

To bound the remainder term,

‖
∫ 1

0

(
Df((1− t)x+ ty)−Df(x)

)
(y − x)dt‖ ≤

∫ 1

0
‖
(
Df((1− t)x+ ty)−Df(x)

)
(y − x)‖dt

≤
∫ 1

0
‖Df((1− t)x+ ty)−Df(x)‖op‖(y − x)‖dt

≤
∫ 1

0
L‖t(y − x)‖‖(y − x)‖dt

≤
∫ 1

0
Lt‖(y − x)‖2dt

=
L

2
‖(y − x)‖2.

♣

Consistency and asymptotic distribution:

Setting:

1. We have some model family {Pθ}θ∈Θ of distributions on X , where Θ ⊆ Rd. Also, assume all
Pθ have density pθ with respect to base measure µ on X , i.e. pθ = dPθ

dµ .

2. We consider the log-likelihood of the distribution `θ(x) = log pθ(x), with

∇`θ(x) :=

[
∂

∂θj
log pθ(x)

]d
j=1

∈ Rd

∇2`θ(x) :=

[
∂2

∂θiθj
log pθ(x)

]d
i,j=1

∈ Rd×d

For simplicity, we will denote: ˙̀
θ ≡ ∇`θ(x) and ῭

θ ≡ ∇2`θ(x).

The gradient of the log-likelihood is often called the “score function.” We will use this term
to refer to ∇`θ(x) throughout future lectures.
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3. Observe Xi
iid∼ Pθ0 where θ0 is unknown. Our goal is to estimate θ0.

4. A standard estimator is to choose θ̂n to maximize the “likelihood,” i.e. the probability of the
data.

θ̂n ∈ argmax
θ∈Θ

Pn`θ(x)

Main questions:

1. Consistency: does θ̂n
p→ θ0 as n→ +∞ ?

2. Asymptotic distribution: does rn(θ̂n
p→ θ0) converge in distribution ?

3. Optimality ? (in the next lecture)

Consistency:

Definition 0.1 (Identifiability). A model {Pθ}θ∈Θ is identifiable if Pθ1 6= Pθ2 for all θ1, θ2 ∈ Θ
(θ1 6= θ2).

Equivalently, Dkl (Pθ1 ||Pθ2) > 0 when θ1 6= θ2. Recall that Dkl (Pθ1 ||Pθ2) =

∫
log

dPθ1
dPθ2

dPθ1.

Note that Pθ1 6= Pθ2 means that ∃ set A ⊆ X such that Pθ1(A) 6= Pθ2(A).

Now that we have established what both identifiability and consistency mean, we can prove a
basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 3 (Finite Θ consistency of MLE). Suppose {Pθ}θ∈Θ is identifiable and card Θ <∞.

Then, if θ̂n := argmaxθ∈Θ Pn`θ(x), θ̂n
p→ θ0 when Xi

iid∼ Pθ0.

Proof of Proposition By the Strong Law of Large Numbers, we know that Pn`θ(x)
a.s.→ Pθ0`θ(x)

when xi
iid∼ Pθ0 .

Pθ0`θ0(x)− Pθ0`θ(x) = Eθ0
[
log

pθ0(x)

pθ(x)

]
= Dkl (Pθ0 ||Pθ)

We know that Dkl (Pθ0 ||Pθ) > 0 unless θ = θ0. Combining this remark with Pn`θ0(x)− Pn`θ(x)
a.s.→

Dkl (Pθ0 ||Pθ), we deduce that there exists N(θ) such that for all n > N(θ), we have Pn`θ0(x) −
Pn`θ(x) > 0 with probability 1.

It follows that for n > maxθ∈Θ,θ 6=θ0 N(θ), we have Pn`θ0(x) > Pn`θ(x) for all θ 6= θ0. Therefore

θ̂n = θ0 and we conclude that, for sufficiently large n and finite Θ, we have θ̂n = θ0 “eventually.”

Remark The above result can fail for Θ infinite even if Θ is countable.

Uniform law: One sufficient condition often used for consistency results is a uniform law, i.e. for

xi
iid∼ P , we have supθ∈Θ |Pn`θ − P`θ|

p→ 0. In this case, if Pθ0`θ < Pθ0`θ0 − 2ε and supθ∈Θ |Pn`θ −
Pθ0`θ| ≤ ε, then θ̂n 6= θ. We will have:

θ̂n ∈ {θ : Pθ0`θ ≥ Pθ0`θ0 − 2ε}
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Now, that we have established some basic definitions and results regarding the consistency of
estimators, we turn our attention to understanding their asymptotic behavior.

Asymptotic Normality via Taylor Expansions:

Definition 0.2 (Operator norm). |||A|||op := sup‖u‖2≤1 ‖Au‖2.

Note: A ∈ Rk×d, u ∈ Rd and ‖Ax‖2 ≤ |||A|||op ‖x‖2.

Before we do anything, we have to make several assumptions.

1. We have a “nice, smooth” model, i.e. the Hessian is Lipschitz-continuous. To be rigorous,
the following must hold:∣∣∣∣∣∣∇2`θ1(x)−∇2`θ2(x)

∣∣∣∣∣∣
op
≤M(x) ‖θ1 − θ2‖2 Eθ[M2(x)] <∞

2. The MLE, θ̂n ∈ argmaxθ∈Θ Pn`θ(x), is consistent, i.e. θ̂n
p→ θ0 under Pθ0 .

3. Θ is a convex set.

Theorem 4. Let xi
iid∼ Pθ0, θ̂n be the MLE (i.e. ∇Pn`θ̂n = 0) and assume the conditions stated

above. Then,
√
n(θ̂n − θ0)

d→ N(0, (Pθ0∇2`θ0)−1Pθ0∇`θ0∇`Tθ0(Pθ0∇2`θ0)−1).

Remark Let us rewrite the asymptotic variance. Given that ∇2`θ = ∇
(
∇pθ
pθ

)
= ∇2pθ

pθ
− ∇pθ∇p

T
θ

p2θ
:

Eθ
[
∇2pθ
pθ

]
=

∫
∇2pθ
pθ

pθdµ =

∫
∇2pθdµ = ∇2

∫
pθdµ = 0

As a result:

Eθ[∇2`θ] = −Eθ

[(
∇pθ
pθ

)(
∇pθ
pθ

)T]
= −Cov

θ
(∇`θ(x))

We define the Fisher Information as Iθ := Eθ[∇`θ(x)∇`θ(x)T ] = Covθ∇`θ where the final equality
holds because Eθ[∇`θ(x)] = 0 (θ maximizes Eθ[`θ(x)]). To show this, assume that we can swap

∇,E. Then, ∇`θ(x) = ∇ log pθ(x) = ∇pθ(x)
pθ(x) . Using that result, we see that:

Eθ[∇`θ] = E
[
∇pθ
pθ

]
=

∫
∇pθ
pθ

pθdµ =

∫
∇pθdµ = ∇

∫
pθdµ = ∇(1) = 0.

We now have a more compact representation of the asymptotic distribution described in the
Theorem above.

√
n(θ̂n − θ0)

d→ N(0, I−1
θ0
Iθ0I

−1
θ0

) = N(0, I−1
θ0

)

Consider Iθ = −∇2E[`θ(x)]. If the magnitude of the second derivative is “large,” that implies that
the log-likelihood is steep around the global maximum (making it “easy” to find). Alternatively, if
the magnitude of −∇2E[`θ(x)] is “small,” we do not have sufficient curvature to find the optimal
θ.
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Proof Let r̂(x) ∈ Rd×d be the remainder matrix in Taylor expansion of the gradients of the
individual log likelihood terms around θ0 guaranteed by Taylor’s theorem (which certainly depends
on θ̂n − θ0), that is,

∇`
θ̂n

(x) = ∇`θ0(x) +∇2`θ0(x)(θ̂n − θ0) + r̂(x)(θ̂n − θ0),

where by Taylor’s theorem |||r̂(x)|||op ≤M(x)‖θ̂n − θ0‖. Writing this out using the empirical distri-

bution and that θ̂n = argmaxθ Pn`θ(X), we have

∇Pn`θ̂n = 0 = Pn∇`θ0 + Pn∇2`θ0(θ̂n − θ0) + Pnr̂(X)(θ̂n − θ0). (1)

But of course, expanding the term Pnr̂(X) ∈ Rd×d, we find that

Pnr̂(X) =
1

n

n∑
i=1

r̂(Xi) and |||Pnr̂|||op ≤
1

n

n∑
i=1

M(Xi)︸ ︷︷ ︸
a.s.→ Eθ0 [M(X)]

‖θ̂n − θ0‖︸ ︷︷ ︸
p→0

= oP (1).

In particular, revisiting expression (1), we have

0 = Pn∇`θ0 + Pn∇2`θ0(θ̂n − θ0) + oP (1)(θ̂n − θ0).

= Pn∇`θ0 +
(
Pθ0∇2`θ0 + (Pn − Pθ0)∇2`θ0 + oP (1)

)
(θ̂n − θ0).

The strong law of large numbers guarantees that (Pn − Pθ0)∇2`θ0 = oP (1), and multiplying each
side by

√
n yields √

n(Pθ0∇2`θ0 + oP (1))(θ̂n − θ0) = −
√
nPn∇`θ0 .

Applying Slutsky’s theorem gives the result: indeed, we have Tn =
√
nPn∇`θ0 satisfies Tn

d→
N(0, Iθ0) by the central limit theorem, and noting that Pθ0∇2`θ0 + oP (1) is eventually invertible
gives

√
n(θ̂n − θ0)

d→ N(0, (Pθ0∇2`θ0)−1Iθ0(Pθ0∇2`θ0)−1)

as desired.
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