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Recap: Recall the setting of the problem to recover a sparse parameter θ∗. We observe Y = Xθ∗,
as well as design matrix X ∈ Rn×d, and we want to solve the basis pursuit LP problem

min ‖θ‖1
s.t. Y = Xθ

and to solve this we introduced the restricted null space property for X.
For a set S ⊂ [d], v ∈ Rd, let vS = [vj ]j∈S . X satisfies restricted null space property if

C(S) := {∆ ∈ Rd s.t. ‖∆SC‖1 ≤ ‖∆S‖1}

satisfies

null(X) ∩ C(S) = {0}

Theorem 1. If X satisfies restricted nullspace property with respect to S = supp(θ∗), then θ∗

uniquely solves the basis pursuit LP problem.

1 Incoherent Matrices

With the above result demonstrating the usefulness of the restricted nullspace property, the next
question is then how we may obtain matrices with the restricted nullspace property. To do this,
we use incoherent matrices and concentration inequalities.

Definition 1.1. Let X =

 | . . . |
x1 . . . xd
| . . . |

 ∈ Rn×d. The pairwise incoherence of X is defined as

δpw(X) := ‖ 1

n
XTX − Id×d‖∞ = max

i,j
| 1
n
〈Xi, Xj〉 − 1(i = j)|

1



Note that as n � d, XTX has a large null-space, so the condition number of XTX is ∞.
However, what pairwise incoherence tries to capture is that in some restricted subspaces, XTX is
“well-conditioned”. We showed the following result in homework.

Proposition 2. If X has incoherence δpw(X) < 1
2k , then X satisfies restricted nullspce property

for any set S with |S| ≤ k.

The next step in the analysis is then to construct incoherent matrices. We do this by showing
that random matrices with sub-Gaussian entries are incoherent with high probability.

Definition 1.2. Let ψq(t) = exp(|t|q) − 1 with q ∈ [1, 2]. The Orlicz norm over random variable
X is defined as

‖X‖ψq := inf{t ∈ R+, s.t. E[ψq(
X

t
)] ≤ 1}

In homework, we showed that

P(|X| ≥ t) ≤ 2 exp(− tq

‖X‖ψq
)

which subsumes two special classes of random variables we are particularly interested in: when
q = 1, ‖X‖ψ1 < ∞ is equivalent to X being sub-exponential, and when q = 2, ‖X‖ψ2 < ∞ is
equivalent to X being sub-Gaussian.

Proposition 3. Let ‖X‖ψ1 <∞ and EX = 0. Then

E[eλX ] ≤ 1 +
2λ2‖X‖2ψ1

(1− λ‖X‖ψ1)+

and if furthermore |λ| < 1
2‖X‖ψ1

,

E[eλX ] ≤ exp(4λ2‖X‖2ψ1
)

Proof Note that by integration by parts (assuming |X| has density which decays faster than
tk−1)

E|X|k = k

∫ ∞
0

tk−1P(|X| ≥ t)dt

≤ 2k

∫ ∞
0

tk−1 exp(− t

‖X‖ψ1

)dt (by definition of ‖X‖ψ1)

= 2k‖X‖kψ1

∫ ∞
0

uk−1e−udu (u =
t

‖X‖ψ1

)

= 2‖X‖kψ1
k!
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On the other hand, noting that EX = 0, we have the expansion

E(eλX) = 1 +

∞∑
k=2

λkEXk

k!

≤ 1 + 2

∞∑
k=2

λk‖X‖kψ1

= 1 + 2λ2‖X‖2ψ1
·
∞∑
k=0

λk‖X‖kψ1

= 1 +
2λ2‖X‖2ψ1

(1− λ‖X‖ψ1)+

Now if |λ| < 1
2‖X‖ψ1

, 2
(1−λ‖X‖ψ1 )+

≤ 4, so

exp(4λ2‖X‖2ψ1
) ≥ 1 + 4λ2‖X‖2ψ1

≥ 1 +
2λ2‖X‖2ψ1

(1− λ‖X‖ψ1)+

So we have shown that random variables with bounded Orlicz 1 norm are ‖X‖2ψ1
-sub-Gaussian when

λ is small, and sub-exponential when λ is large. Next we show a Bernstein-type tail bound for sums
of variables with bounded Orlicz 1 norms that also makes this transition between sub-Gaussian and
sub-exponential behavior explicit.

Proposition 4. Let Xi be independent, EXi = 0, ai ∈ R. Then

P(
∑
i

aiXi ≥ t) ≤ exp(−C min{ t2∑
i a

2
i ‖Xi‖2ψ1

,
t

maxi |ai|‖Xi‖ψ1

})

Proof First note that if λ ≤ mini
1

2|ai|‖Xi‖ψ1
, by the previous proposition, E[eλaiXi ] ≤ exp(4λ2a2i ‖Xi‖2ψ1

)

for all i, so that

E[exp(λaTX)] ≤ exp(4λ2
∑
i

a2i ‖Xi‖2ψ1
)

Now apply Chernoff bound to conclude

P(aTX ≥ t) ≤ E[exp(λaTX − λt)]

≤ exp(4λ2
∑
i

a2i ‖Xi‖2ψ1
− λt)

and choosing λ = min{ t
8
∑
i a

2
i ‖Xi‖2ψi

, 1
2maxi |ai|‖Xi‖ψ1

} gives the claimed bound.

Corollary 5. Let σ = maxi ‖Xi‖ψ1 and assume EXi = 0. Then

P(|aTX| ≥ t) ≤ 2 exp(−C min{ t2

‖a‖2σ2
,

t

‖a‖∞σ
}
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The above result enables us to bound the tail of the diagonal terms of XTX.

Corollary 6. [Sum] Let Xi be σ2-sub Gaussian, and EX2
i = 1. Then

P(| 1
n

∑
i

(X2
i − 1)| ≥ t) ≤ 2 exp(−Cnmin{ t

2

σ4
,
t

σ2
})

Proof Note that ‖X2
i ‖ψ1 = ‖Xi‖2ψ2

, since E exp(
X2
i

‖Xi‖2ψ2
) = 2. This implies ‖X2

i ‖ψ1 ≤ σ2. Letting

ai = 1
n in the previous corollary gives the result.

Now we provide another result that controls the off-diagonal entries of XTX.

Proposition 7. [Product] Let X1, X2 ∈ Rn be independent vectors with σ2-sub-Gaussian entries.
Then ‖〈X1, X2〉‖ψ1 ≤ Cσ2

√
n.

Proof We compute moment generating functions of 〈X1, X2〉.

E[exp(λ〈X1, X2〉)] ≤ E[exp(
λ2σ2

2
‖X2‖22)] (by E over X1)

= E[exp(λσ〈Z,X2〉)] (Z ∼ N (0, I))

≤ E[exp(
λ2σ4

2
‖Z‖22)] (by E over X2)

= (
1

(1− λ2σ4)+
)n/2

= exp(−n
2

log(1− λ2σ4)+)

Taking λ2 = 1
2nσ4 , we get

E[exp(
〈X1, X2〉√

2nσ4
)] ≤ exp 2

and finally

‖〈X1, X2〉‖ψ1 ≤ Cσ2
√
n

Theorem 8. Let X =

 | . . . |
x1 . . . xd
| . . . |

 ∈ Rn×d have independent O(1)-sub-Gaussian entries, and

EX2
ij = 1 (e.g. Xij are iid N (0, 1)). Then

P(‖ 1

n
XTX − Id×d‖∞ ≥ t) ≤ 2d2 exp(−C

√
nt) + 2d exp(−Cnmin{t2, t})
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Proof For i 6= j, proposition [Product] implies

P(
1

n
|〈Xi, Xj〉| ≥ t) ≤ 2 exp(−C nt

σ2
√
n

)

≤ 2 exp(−C
√
nt)

For i = j, by proposition [Sum] we have

P(
1

n
|〈Xi, Xj〉 − 1| ≥ t) ≤ 2 exp(−Cnmin{t2, t})

Applying union bound gives the result.

The theorem implies that with high probability, matrix X has small pairwise incoherence. More
precisely, we have the following corollary.

Corollary 9. With probability at least 1− δ,

δpw(X) ≤ C ·
log d+ log 1

δ√
n

In other words, to recover k-sparse signals Y = Xθ∗ where ‖θ∗‖0 ≤ k with high probability
requires at most n ≥ Ck2 log2 d, which is exponentially better than n ≥ d.

2 LASSO (linear model in high dimensions)

Now we turn to the setting where there is noise in observations, i.e.

Y = Xθ∗ + ε

In order to recover a sparse θ∗ with precision, we again want to penalize the non-zeroes of θ. As X
is a fat matrix, there will be lots of null directions in θ space of the loss surface, i.e. those directions
of θ which does not change the loss much. In order to recover with precision, we want to penalize
the null directions.

First let’s consider the constrained form. Suppose we know ‖θ∗‖1 = b. Then we can try to solve
the problem

min
1

2
‖Xθ − Y ‖22

s.t. ‖θ1‖ ≤ b

and we want to show that the solution θ̂ = θ∗ + ∆ with ∆ small.
Observe first that

∆ ∈ C(S) := {∆ s.t. ‖∆SC‖1 ≤ ‖∆S‖1}

where S = supp(θ∗). This is because

‖θ∗‖1 = ‖θ∗S‖1 ≥ ‖θ̂‖1 = ‖θ∗ + ∆‖1
= ‖θ∗S + ∆S‖1 + ‖∆Sc‖1
≥ ‖θ∗S‖1 − ‖∆S‖1 + ‖∆SC‖1
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which implies ‖∆SC‖1 ≤ ‖∆S‖1.
Also, we have the basic inequality

∆TXTX∆ ≤ 2∆TXε

To see this, note

1

2
‖X∆− ε‖22 =

1

2
‖Xθ̂ − Y ‖22 ≤

1

2
‖Xθ∗ − Y ‖22 =

1

2
‖ε‖22

and expanding gives the claimed inequality.
If X is “nice” on C(S), i.e. if 1

n∆TXTX∆ ≥ µ‖∆‖22 for ∆ ∈ C(S), then

nµ‖∆‖22 ≤ 2∆TXT ε

≤ 2‖∆‖1‖XT ε‖∞
≤ 4‖∆S‖1‖XT ε‖∞
≤ 4
√
k‖∆S‖2‖XT ε‖∞

which implies

‖∆‖2 = ‖θ̂ − θ∗‖2 ≤
4
√
k‖XT ε‖∞
nµ

≤ O(1)

√
k log d

n

since ‖XT
i ε‖∞ .

√
n log d.
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