Stats 300b: Theory of Statistics	Winter 2019
Lecture 15-February 26	
Lecturer: John Duchi	

(2) Warning: these notes may contain factual errors

Reading: There is no reading corresponding to this lecture.

Oultline:

- Gaussian Sequence Models
- Hard Thresholding
- Soft Thresholding
- Basis Pursuit/Noiseless recovery
- l_{1}-relaxations
- Isometry properties of matrices

1 Gaussian Sequence Model Recap

Recall the Gaussian Sequence Model that $Y=\theta+\sigma \epsilon$ where $\theta \in \mathbb{R}^{n}$ and $\epsilon \sim N\left(0, I_{n}\right)$.
Question: When can we recover θ to reasonable accuracy?
Answer: When using structural (sparsity) assumptions on θ.
Assume: θ is k-sparse, meaning that $\|\theta\|_{0} \equiv \sum_{j=1}^{n} \mathbf{1}\left(\theta_{j} \neq 0\right) \leq k$.
Goal: Use k-sparse assumption on θ to achieve better MSE than the naive estimator $\hat{\theta}^{\text {naive }}=Y$

2 Hard Thresholding for Gaussian Sequence Model

For the Gaussian Sequence Model, a hard thresholding estimator is an estimator given by

$$
\hat{\theta}_{j}= \begin{cases}Y_{i} & \text { if }\left|Y_{j}\right|>\tau \\ 0 & \text { if }\left|Y_{j}\right| \leq \tau\end{cases}
$$

for some threshold $\tau \geq 0$.
Idea: Since $\|\epsilon\|_{\infty} \lesssim \sqrt{2 \log (n)}$ we can set $\tau \approx \sigma \sqrt{2 \log (n)}$, and in such a case any non-zero entries of $\hat{\theta}$ should be "true" non-zero entries in θ.

2.1 Upper bound on l_{2} risk of the Hard Thresholding Estimator

We will now compute an upper bound on the l_{2} risk of the Hard thresholding estimator for an arbitrary τ. To do this let $S=\left\{j \in[n]: \theta_{j} \neq 0\right\}$ (i.e let S be the support of θ). We will first find an upperbound on $E\left[\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}\right]$ for $j \in S$. For $j \in S$,

$$
E\left[\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}\right] \leq \underbrace{E\left[\left(Y_{j}-\theta_{j}\right)^{2}\right]}_{=\sigma^{2}}+\theta_{j}^{2} \underbrace{P\left(\left|Y_{j}\right| \leq \tau\right)}_{\equiv T_{2}}
$$

We will now find an upper bound on T_{2}. To do so first consider the case where $\theta_{j} \geq \tau$. Note that in this case

$$
\left|\theta_{j}+\sigma \epsilon_{j}\right| \leq \tau \Rightarrow \theta_{j}+\sigma \epsilon_{j} \leq \tau \Rightarrow \theta_{j}-\tau \leq-\sigma \epsilon_{j} \Rightarrow\left(\left|\theta_{j}\right|-\tau\right)_{+} \leq-\sigma \epsilon_{j}
$$

Thus noting that $-\sigma \epsilon_{j} \sim N\left(0, \sigma^{2}\right)$, and thus $-\sigma \epsilon_{j}$ is σ^{2}-subgaussian, by Chernoff's bound and the fact that $\left|\theta_{j}+\sigma \epsilon_{j}\right| \leq \tau \Rightarrow\left(\left|\theta_{j}\right|-\tau\right)_{+} \leq-\sigma \epsilon_{j}$ in the case where $\theta_{j} \geq \tau$ we have that

$$
P\left(\left|\theta_{j}+\sigma \epsilon_{j}\right| \leq \tau\right) \leq P\left(-\sigma \epsilon_{j} \geq\left(\left|\theta_{j}\right|-\tau\right)_{+}\right) \leq \exp \left(\frac{-\left(\left|\theta_{j}\right|-\tau\right)_{+}^{2}}{2 \sigma^{2}}\right)
$$

In the case where $\theta_{j} \leq-\tau$, by similar reasoning we can also show $P\left(\left|\theta_{j}+\sigma \epsilon_{j}\right| \leq \tau\right) \leq \exp \left(\frac{-\left(\left|\theta_{j}\right|-\tau\right)^{2}}{2 \sigma^{2}}\right)$, and finally this inequality holds trivially in the case where $\left|\theta_{j}\right|<\tau$. Thus no matter what value θ_{j} takes on

$$
T_{2} \equiv P\left(\left|Y_{j}\right| \leq \tau\right)=P\left(\left|\theta_{j}+\sigma \epsilon_{j}\right| \leq \tau\right) \leq \exp \left(\frac{-\left(\left|\theta_{j}\right|-\tau\right)_{+}^{2}}{2 \sigma^{2}}\right)
$$

Fact 1. For $u \geq 0$, there exists a constant C_{1} such that $u^{2} \exp \left(\frac{-(u-\tau)_{+}^{2}}{2 \sigma^{2}}\right) \leq C_{1}\left(\tau^{2}+\sigma^{2}\right)$
Proof Let $u \geq 0$. Note that by convexity of $y \mapsto(y)_{+}^{2}$,

$$
u^{2}=(u-\tau+\tau)_{+}^{2}=4\left(\frac{1}{2}(u-\tau)+\frac{1}{2} \tau\right)_{+}^{2} \leq 2(u-\tau)_{+}^{2}+2 \tau^{2}
$$

Thus

$$
\begin{aligned}
u^{2} \exp \left(\frac{-(u-\tau)_{+}^{2}}{2 \sigma^{2}}\right) & \leq 2(u-\tau)_{+}^{2} \exp \left(\frac{-(u-\tau)_{+}^{2}}{2 \sigma^{2}}\right)+2 \tau^{2} \exp \left(\frac{-(u-\tau)_{+}^{2}}{2 \sigma^{2}}\right) \\
& \leq 2\left(\sup _{v} v^{2} \exp \left(\frac{-v^{2}}{2 \sigma^{2}}\right)\right)+2 \tau^{2} \exp \left(\frac{-(u-\tau)_{+}^{2}}{2 \sigma^{2}}\right) \\
& \leq 4 \sigma^{2} e^{-1}+2 \tau^{2}
\end{aligned}
$$

where the last inequality holds because we can show $\sup _{v} v^{2} \exp \left(\frac{-v^{2}}{2 \sigma^{2}}\right)=2 \sigma^{2} e^{-1}$ by taking the log and taking derivatives and noting the expression is maximized for $v^{2}=2 \sigma^{2}$. Letting $C_{1}=3$, we have thus shown for $u \geq 0, u^{2} \exp \left(\frac{-(u-\tau)^{2}}{2 \sigma^{2}}\right) \leq C_{1}\left(\sigma^{2}+\tau^{2}\right)$

Putting the previous results together and using the above fact we have that for any $j \in S$,

$$
E\left[\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}\right] \leq \sigma^{2}+T_{2} \leq \sigma^{2}+\left|\theta_{j}\right|^{2} \exp \left(\frac{-\left(\left|\theta_{j}\right|-\tau\right)_{+}^{2}}{2 \sigma^{2}}\right) \leq \sigma^{2}+C_{1}\left(\sigma^{2}+\tau^{2}\right)
$$

Now for $j \notin S$ note

$$
\begin{aligned}
& E\left[\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}\right]=E\left[\left|\sigma \epsilon_{j}\right|^{2} \mathbf{1}\left(\left|\epsilon_{j}\right| \geq \frac{\tau}{\sigma}\right)\right] \\
& \leq \sqrt{E\left[\sigma^{4} \epsilon_{j}^{4}\right] P\left(\left|\epsilon_{j}\right| \geq \frac{\tau}{\sigma}\right)} \quad \text { (by Cauchy Schwartz) } \\
& =\sqrt{3} \sigma^{2} \sqrt{P\left(\left|\epsilon_{j}\right| \geq \frac{\tau}{\sigma}\right)} \quad \text { (Using 4th moment of a Gaussian) } \\
& \leq \sqrt{3} \sigma^{2} \sqrt{2 \exp \left(\frac{-\tau^{2}}{2 \sigma^{2}}\right)} \quad \text { (since } \epsilon_{j} \text { is 1-sub-Gaussian) } \\
& =\sqrt{6} \sigma^{2} \exp \left(\frac{-\tau^{2}}{4 \sigma^{2}}\right)
\end{aligned}
$$

Thus the complete l_{2} risk (MSE) for hard thresholding is bounded above by

$$
\begin{aligned}
E\left[\left|\mid \hat{\theta}-\theta \|_{2}^{2}\right]\right. & =\sum_{j \in S} E\left[\left(\hat{\theta_{j}}-\theta_{j}\right)^{2}\right]+\sum_{j \in S^{c}} E\left[\left(\hat{\theta_{j}}-\theta_{j}\right)^{2}\right] \\
& \leq \sum_{j \in S}\left(\sigma^{2}+C_{1}\left(\sigma^{2}+\tau^{2}\right)\right)+\sum_{j \notin S^{c}} \sqrt{6} \sigma^{2} \exp \left(\frac{-\tau^{2}}{4 \sigma^{2}}\right) \\
& \leq \sigma^{2}|S|+C_{1}|S|\left(\sigma^{2}+\tau^{2}\right)+C_{1}\left|S^{c}\right| \sigma^{2} \exp \left(\frac{-\tau^{2}}{4 \sigma^{2}}\right) \\
& \leq k \sigma^{2}+C_{1} k\left(\tau^{2}+\sigma^{2}\right)+C_{1} n \sigma^{2} \exp \left(\frac{-\tau^{2}}{4 \sigma^{2}}\right)
\end{aligned}
$$

Thus we have an upper bound on $E\left[\|\hat{\theta}-\theta\|_{2}^{2}\right]$ when $\hat{\theta}$ is a hard thresholding estimator with $\tau \geq 0$. This upper bound can be used to immediately prove the following theorem.

Theorem 2. Let $\hat{\theta}$ be a hard thresholding estimator with $\tau=2 \sigma \sqrt{\log \left(\frac{n}{k}\right)}$. Then

$$
\sup _{\|\theta\|_{0} \leq k} E\left[\|\hat{\theta}-\theta\|_{2}^{2}\right] \leq C k \sigma^{2}\left(1+\log \left(\frac{n}{k}\right)\right)
$$

for some numerical constant $C<\infty$
Proof Letting $\tau=2 \sigma \sqrt{\log \left(\frac{n}{k}\right)}$, simply plug this value into the derived inequality that

$$
E\left[\|\hat{\theta}-\theta\|_{2}^{2}\right] \leq k \sigma^{2}+C_{1} k\left(\tau^{2}+\sigma^{2}\right)+C_{1} n \sigma^{2} \exp \left(\frac{-\tau^{2}}{4 \sigma^{2}}\right)
$$

and note that the above inequality holds for any θ such that $\|\theta\|_{0} \leq k$.

Note: This hard thresholding estimator with $\tau=2 \sigma \sqrt{\log \left(\frac{n}{k}\right)}$ is unimprovable and minimax optimal.

3 Soft Thresholding for Gaussian Sequence Model

Idea: Instead of just chopping of observations in Y, let's shrink them.

Definition 3.1. Define the soft thresholding operator to be given by

$$
S_{\lambda}(v) \equiv \operatorname{sgn}(v)(|v|-\lambda)_{+}=\underset{u \in \mathbb{R}}{\operatorname{argmin}}\left\{\frac{1}{2}(u-v)^{2}+\lambda|u|\right\}
$$

Figure 1: A plot of $S_{\lambda}(v)$

Definition 3.2. Define the soft thresholding estimator to be given by

$$
\hat{\theta} \equiv S_{\lambda}(Y)=\underset{u \in \mathbb{R}^{2}}{\operatorname{argmin}}\left\{\frac{1}{2}\|u-Y\|_{2}^{2}+\lambda\|u\|_{1}\right\}
$$

Theorem 3. If $\hat{\theta}$ is a soft thresholding estimator for the Gaussian Sequence Model, the choice $\lambda=\sqrt{2 \sigma^{2} \log \left(\frac{n}{k}\right)}$ yields $E\left[\|\hat{\theta}-\theta\|_{2}^{2}\right] \leq C k \sigma^{2}\left(1+\log \left(\frac{n}{k}\right)\right)$ if θ is k-sparse. (For sharp constants, see Johnstone 2108 monograph)

Proof
For $\theta_{j}=0$,

$$
\begin{aligned}
E\left[\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}\right] & =E\left[\left(\sigma\left|\epsilon_{j}\right|-\lambda\right)_{+}^{2}\right] \\
& =\int_{0}^{\infty} P\left(\left(\sigma\left|\epsilon_{j}\right|-\lambda\right)_{+}^{2}>a\right) d a \\
& \leq \int_{0}^{\infty} P\left(\sigma\left|\epsilon_{j}\right|-\lambda \geq \sqrt{a}\right) d a \\
& =2 \int_{\lambda}^{\infty}(t-\lambda) P\left(\sigma\left|\epsilon_{j}\right| \geq t\right) d t \quad \quad(\text { letting } t=\sqrt{a}+\lambda) \\
& \leq 2 \int_{\lambda}^{\infty} t P\left(\sigma\left|\epsilon_{j}\right| \geq t\right) d t \\
& \leq 4 \int_{\lambda}^{\infty} t \exp \left(\frac{-t^{2}}{2 \sigma^{2}}\right) d t \\
& =-\left.4 \sigma^{2} \exp \left(\frac{-t^{2}}{2 \sigma^{2}}\right)\right|_{t=\lambda} ^{t=\infty} \\
& =4 \sigma^{2} \exp \left(\frac{-\lambda^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

While for $\theta_{j} \neq 0$, since S_{λ} is 1-Lipschitz,

$$
\begin{array}{rlr}
E\left[\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}\right] & =E\left[\left(\hat{\theta}_{j}-S_{\lambda}\left(\theta_{j}\right)+S_{\lambda}\left(\theta_{j}\right)-\theta_{j}\right)^{2}\right] & \\
& \leq 2 E\left[\left(\hat{\theta}_{j}-S_{\lambda}\left(\theta_{j}\right)\right)^{2}\right]+2\left(S_{\lambda}\left(\theta_{j}\right)-\theta_{j}\right)^{2} & \left(\text { since }(a+b)^{2} \leq 2 a^{2}+2 b^{2}\right) \\
& =2 E\left[\left(S_{\lambda}\left(Y_{j}\right)-S_{\lambda}\left(\theta_{j}\right)\right)^{2}\right]+2\left(S_{\lambda}\left(\theta_{j}\right)-\theta_{j}\right)^{2} & \\
& \leq 2 E\left[\left(Y_{j}-\theta_{j}\right)^{2}\right]+2 \lambda^{2} & \text { (since } S_{\lambda} \text { is } 1 \text {-Lipschitz) } \\
& =2 \sigma^{2}+2 \lambda^{2} &
\end{array}
$$

Thus combining these two cases and using our choice $\lambda=\sqrt{2 \sigma^{2} \log \left(\frac{n}{k}\right)}$, we get

$$
\begin{aligned}
E\left[\|\hat{\theta}-\theta\|_{2}^{2}\right] & \leq 2 k\left(\sigma^{2}+\lambda^{2}\right)+4 n \sigma^{2} \exp \left(\frac{-\lambda^{2}}{2 \sigma^{2}}\right) \\
& =2 k\left(\sigma^{2}+2 \sigma^{2} \log \left(\frac{n}{k}\right)\right)+4 k \sigma^{2} \\
& =C k \sigma^{2}\left(1+\log \left(\frac{n}{k}\right)\right)
\end{aligned}
$$

for some constant $C<\infty$.

4 Sparse Solutions to Linear Equations

Suppose we have observations Y given by $Y=X \theta$, where $X \in \mathbb{R}^{n \times d}, d \gg n$.
Hope : If θ is structured (i.e. sparse), it can hopefully be recovered.
Example 1: : (Signal Processing) Consider an example with observation points $t_{1}, t_{2}, \ldots, t_{n}$ and frequencies $\omega_{1}, \omega_{2}, \ldots, \omega_{d}$ and a matrix $X \in \mathbb{R}^{n \times d}$ given by

$$
X=\left[\begin{array}{cccc}
\cos \left(\omega_{1} t_{1}\right) & \cos \left(\omega_{2} t_{1}\right) & \ldots & \cos \left(\omega_{d} t_{1}\right) \\
\cos \left(\omega_{1} t_{2}\right) & \cos \left(\omega_{2} t_{2}\right) & \ldots & \cos \left(\omega_{d} t_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\cos \left(\omega_{1} t_{n}\right) & \cos \left(\omega_{2} t_{n}\right) & \ldots & \cos \left(\omega_{d} t_{n}\right)
\end{array}\right]
$$

Our observation $Y=X \theta$ will be the observation of superpositions of sinusoids at times $t_{1}, t_{2}, \ldots, t_{n}$. Note that for a true continuous signal, $Y(t)=\sum_{j=1}^{d} \theta_{j} \cos \left(\omega_{j} t\right)$. If $\|\theta\|_{0} \leq n$, maybe it is possible to recover θ.

Idea: Find the sparsest solution to $Y=X \theta$. This is equivalent to solving the optimization problem

$$
\begin{array}{ll}
\text { minimize } & \|\theta\|_{0} \\
\text { subject to } & Y=X \theta
\end{array}
$$

The problem is that this optimization problem is computationally intractable. One possible solution to this issue is to replace $\|\cdot\|_{0}$ with a convex approximation such as $\|\cdot\|_{1}$.

Definition 4.1. The basis pursuit linear program (Chen, Donoho, Saunders 1998) is the following optimization problem

$$
\begin{array}{cl}
\text { minimize } & \|\theta\|_{1} \\
\text { subject to } & Y=X \theta
\end{array}
$$

Question: If θ^{*} minimizes $\|\theta\|_{0}$ subject to $Y=X \theta$, does the basis pursuit linear program recover θ^{*} ?

Answer: Sometimes it works. In figure 2a and figure 2b, the diamonds are l_{1} balls, and θ^{*} lies on the corner of an l_{1} ball to indicate it is sparse. Whether or not the the basis pursuit linear program recovers θ^{*} depends on the null space of the matrix X, because the output to the basis pursuit linear program will find the minimizer of the l_{1} norm in the affine subspace $\theta^{*}+\operatorname{null}(X)$. Thus figure 2a represents the cases in which the basis pursuit linear program will succeed in recovering θ^{*}, while figure 2 b represents the cases in which the basis pursuit linear program will fail to recover θ^{*}.

Figure 2a

Figure 2b

We will formalize this with some definitions and a theorm.
Definition 4.2. For a set $S \subseteq\{1, \ldots, d\}$ the critical cone is the subset of \mathbb{R}^{d} given by

$$
\mathbb{C}(S) \equiv\left\{\Delta \in \mathbb{R}^{d}:\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}
$$

Definition 4.3. A matrix X is said to satisfy the restricted null spaces property with respect to S if

$$
\operatorname{Null}(X) \cap \mathbb{C}(S)=\{0\}
$$

where $\operatorname{Null}(X) \equiv\left\{\Delta \in \mathbb{R}^{d}: X \Delta=0\right\}$
Intuition: If S is the support of θ^{*} (i.e. $S=\left\{j: \theta_{j} \neq 0\right\}$) and X satisfies the restricted null spaces property (w.r.t. S) moving from θ^{*} along null (X) increases the l_{1} norm. Figure 2a corresponds to the case where X satisfies restricted null spaces property with respect to S, where S is the support of θ^{*}.

Theorem 4. The following two statements are equivalent:
(1) X satisfies the restricted null spaces property with respect to S
(2) For any θ^{*} such that $\operatorname{supp} \theta^{*}=S$ and $Y=X \theta^{*}, \theta^{*}$ is the unique solution to basis pursuit linear program

Proof To show (1) \Rightarrow (2), assume (1) holds and let $\hat{\theta}$ be a solution to the basis pursuit linear program and let θ^{*} satisfy $\operatorname{supp} \theta^{*}=S$ and $Y=X \theta^{*}$. Now define Δ so that $\hat{\theta}=\theta^{*}+\Delta$. We will show that $\Delta \in \operatorname{Null}(X) \cap \mathbb{C}(S)$ and hence by (1), $\Delta=0$. To show this first note that

$$
\begin{array}{rlr}
\left\|\theta_{S}^{*}\right\|_{1} & =\left\|\theta^{*}\right\|_{1} & \\
& \geq\|\hat{\theta}\|_{1} & \text { (since } \hat{\theta} \text { minimizes }\|\theta\|_{1} \text { subject to } Y=X \theta \text {) } \\
& =\left\|\theta^{*}+\Delta\right\|_{1} & \\
& =\left\|\theta_{S}^{*}+\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} & \text { (by decomposition of } l_{1} \text {-norm) } \\
& \geq\left\|\theta_{S}^{*}\right\|_{1}-\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} & \text { (by the triangle inequality) }
\end{array}
$$

Adding $\left\|\Delta_{S}\right\|_{1}-\left\|\theta_{S}^{*}\right\|_{1}$ to each side we get $\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}$, and thus $\Delta \in \mathbb{C}(S)$.
To show $\Delta \in \operatorname{Null}(X)$ note that $Y=X \theta^{*}$ and also $Y=X \hat{\theta}$. Thus

$$
0=Y-Y=X\left(\hat{\theta}-\theta^{*}\right)=X \Delta \Rightarrow \Delta \in \operatorname{Null}(X)
$$

Thus since $\Delta \in \operatorname{Null}(X) \cap \mathbb{C}(S)$, and since by (1), $\operatorname{Null}(X) \cap \mathbb{C}(S)=\{0\}$, we have that $\Delta=0$. Thus $\theta^{*}=\hat{\theta}$. Hence if (1) holds then for any θ^{*} such that $\operatorname{supp} \theta^{*}=S$ and $Y=$ $X \theta^{*}, \theta^{*}$ is the unique solution to basis pursuit linear program.

Showing that $(2) \Rightarrow(1)$ will be an exercise left to the reader.

