
Stats 300b: Theory of Statistics Winter 2019

Lecture 15 – February 26

Lecturer: John Duchi Scribe: Dan Kluger

� Warning: these notes may contain factual errors

Reading: There is no reading corresponding to this lecture.

Oultline:

• Gaussian Sequence Models

– Hard Thresholding

– Soft Thresholding

• Basis Pursuit/Noiseless recovery

– l1 -relaxations

– Isometry properties of matrices

1 Gaussian Sequence Model Recap

Recall the Gaussian Sequence Model that Y = θ + σε where θ ∈ Rn and ε ∼ N(0, In).

Question: When can we recover θ to reasonable accuracy?

Answer: When using structural (sparsity) assumptions on θ.

Assume: θ is k-sparse, meaning that ||θ||0 ≡
n∑
j=1

1(θj 6= 0) ≤ k.

Goal: Use k-sparse assumption on θ to achieve better MSE than the naive estimator θ̂naive = Y

2 Hard Thresholding for Gaussian Sequence Model

For the Gaussian Sequence Model, a hard thresholding estimator is an estimator given by

θ̂j =

{
Yi if |Yj | > τ

0 if |Yj | ≤ τ

for some threshold τ ≥ 0.

Idea: Since ||ε||∞ .
√

2log(n) we can set τ ≈ σ
√

2log(n), and in such a case any non-zero

entries of θ̂ should be ”true” non-zero entries in θ.
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2.1 Upper bound on l2 risk of the Hard Thresholding Estimator

We will now compute an upper bound on the l2 risk of the Hard thresholding estimator for an
arbitrary τ . To do this let S = {j ∈ [n] : θj 6= 0} (i.e let S be the support of θ). We will first find

an upperbound on E[(θ̂j − θj)2] for j ∈ S. For j ∈ S,

E[(θ̂j − θj)2] ≤ E[(Yj − θj)2]︸ ︷︷ ︸
=σ2

+θ2j P (|Yj | ≤ τ)︸ ︷︷ ︸
≡T2

We will now find an upper bound on T2. To do so first consider the case where θj ≥ τ . Note that
in this case

|θj + σεj | ≤ τ ⇒ θj + σεj ≤ τ ⇒ θj − τ ≤ −σεj ⇒ (|θj | − τ)+ ≤ −σεj

Thus noting that −σεj ∼ N(0, σ2), and thus −σεj is σ2-subgaussian, by Chernoff’s bound and the
fact that |θj + σεj | ≤ τ ⇒ (|θj | − τ)+ ≤ −σεj in the case where θj ≥ τ we have that

P (|θj + σεj | ≤ τ) ≤ P
(
− σεj ≥ (|θj | − τ)+

)
≤ exp

(−(|θj | − τ)2+
2σ2

)
In the case where θj ≤ −τ , by similar reasoning we can also show P (|θj+σεj | ≤ τ) ≤ exp

(
−(|θj |−τ)2+

2σ2

)
,

and finally this inequality holds trivially in the case where |θj | < τ . Thus no matter what value θj
takes on

T2 ≡ P (|Yj | ≤ τ) = P (|θj + σεj | ≤ τ) ≤ exp
(−(|θj | − τ)2+

2σ2

)
Fact 1. For u ≥ 0, there exists a constant C1 such that u2 exp

(
−(u−τ)2+

2σ2

)
≤ C1(τ

2 + σ2)

Proof Let u ≥ 0. Note that by convexity of y 7→ (y)2+,

u2 = (u− τ + τ)2+ = 4
(1

2
(u− τ) +

1

2
τ
)2
+
≤ 2(u− τ)2+ + 2τ2

Thus

u2 exp
(−(u− τ)2+

2σ2

)
≤2(u− τ)2+ exp

(−(u− τ)2+
2σ2

)
+ 2τ2 exp

(−(u− τ)2+
2σ2

)
≤2

(
sup
v
v2 exp

(−v2
2σ2

))
+ 2τ2 exp

(−(u− τ)2+
2σ2

)
≤4σ2e−1 + 2τ2

where the last inequality holds because we can show sup
v
v2 exp(−v

2

2σ2 ) = 2σ2e−1 by taking the log

and taking derivatives and noting the expression is maximized for v2 = 2σ2. Letting C1 = 3, we

have thus shown for u ≥ 0, u2 exp
(
−(u−τ)2+

2σ2

)
≤ C1(σ

2 + τ2)

Putting the previous results together and using the above fact we have that for any j ∈ S,

E[(θ̂j − θj)2] ≤ σ2 + T2 ≤ σ2 + |θj |2 exp
(−(|θj | − τ)2+

2σ2

)
≤ σ2 + C1(σ

2 + τ2)

2



Now for j /∈ S note

E[(θ̂j − θj)2] =E
[
|σεj |21(|εj | ≥

τ

σ
)
]

≤
√
E
[
σ4ε4j

]
P
(
|εj | ≥

τ

σ

)
(by Cauchy Schwartz )

=
√

3σ2
√
P
(
|εj | ≥

τ

σ

)
(Using 4th moment of a Gaussian)

≤
√

3σ2
√

2 exp
(−τ2

2σ2

)
(since εj is 1-sub-Gaussian)

=
√

6σ2 exp
(−τ2

4σ2

)
Thus the complete l2 risk (MSE) for hard thresholding is bounded above by

E[||θ̂ − θ||22] =
∑
j∈S

E[(θ̂j − θj)2] +
∑
j∈Sc

E[(θ̂j − θj)2]

≤
∑
j∈S

(
σ2 + C1(σ

2 + τ2)
)

+
∑
j /∈Sc

√
6σ2 exp

(−τ2
4σ2

)
≤σ2|S|+ C1|S|(σ2 + τ2) + C1|Sc|σ2 exp

(−τ2
4σ2

)
≤kσ2 + C1k(τ2 + σ2) + C1nσ

2 exp
(−τ2

4σ2

)
Thus we have an upper bound on E[||θ̂ − θ||22] when θ̂ is a hard thresholding estimator with

τ ≥ 0. This upper bound can be used to immediately prove the following theorem.

Theorem 2. Let θ̂ be a hard thresholding estimator with τ = 2σ
√
log(nk ). Then

sup
||θ||0≤k

E[||θ̂ − θ||22] ≤ Ckσ2
(

1 + log(
n

k
)
)

for some numerical constant C <∞

Proof Letting τ = 2σ
√
log(nk ), simply plug this value into the derived inequality that

E[||θ̂ − θ||22] ≤ kσ2 + C1k(τ2 + σ2) + C1nσ
2 exp

(−τ2
4σ2

)
and note that the above inequality holds for any θ such that ||θ||0 ≤ k.

Note: This hard thresholding estimator with τ = 2σ
√
log(nk ) is unimprovable and minimax

optimal.

3 Soft Thresholding for Gaussian Sequence Model

Idea: Instead of just chopping of observations in Y , let’s shrink them.
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Definition 3.1. Define the soft thresholding operator to be given by

Sλ(v) ≡ sgn(v)(|v| − λ)+ = argmin
u∈R

{1

2
(u− v)2 + λ|u|

}

Definition 3.2. Define the soft thresholding estimator to be given by

θ̂ ≡ Sλ(Y ) = argmin
u∈R2

{1

2
||u− Y ||22 + λ||u||1

}
Theorem 3. If θ̂ is a soft thresholding estimator for the Gaussian Sequence Model, the choice
λ =

√
2σ2log(nk ) yields E[||θ̂ − θ||22] ≤ Ckσ2(1 + log(nk )) if θ is k-sparse. (For sharp constants, see

Johnstone 2108 monograph )

Proof
For θj = 0,

E[(θ̂j − θj)2] =E[(σ|εj | − λ)2+]

=

∫ ∞
0

P
(

(σ|εj | − λ)2+ > a
)
da

≤
∫ ∞
0

P
(
σ|εj | − λ ≥

√
a
)
da

=2

∫ ∞
λ

(t− λ)P (σ|εj | ≥ t)dt (letting t =
√
a+ λ)

≤2

∫ ∞
λ

tP (σ|εj | ≥ t)dt

≤4

∫ ∞
λ

t exp
(−t2

2σ2

)
dt (since σεj ∼ N(0, σ2))

=− 4σ2 exp
(−t2

2σ2

)∣∣∣t=∞
t=λ

=4σ2 exp
(−λ2

2σ2

)
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While for θj 6= 0, since Sλ is 1-Lipschitz,

E[(θ̂j − θj)2] =E
[(
θ̂j − Sλ(θj) + Sλ(θj)− θj

)2]
≤2E

[
(θ̂j − Sλ(θj))

2
]

+ 2(Sλ(θj)− θj)2 (since (a+ b)2 ≤ 2a2 + 2b2)

=2E
[
(Sλ(Yj)− Sλ(θj))

2
]

+ 2(Sλ(θj)− θj)2

≤2E
[
(Yj − θj)2

]
+ 2λ2 (since Sλ is 1 -Lipschitz)

=2σ2 + 2λ2

Thus combining these two cases and using our choice λ =
√

2σ2log(nk ), we get

E[||θ̂ − θ||22] ≤2k(σ2 + λ2) + 4nσ2 exp
(−λ2

2σ2

)
=2k

(
σ2 + 2σ2log(

n

k
)
)

+ 4kσ2

=Ckσ2(1 + log(
n

k
))

for some constant C <∞.

4 Sparse Solutions to Linear Equations

Suppose we have observations Y given by Y = Xθ, where X ∈ Rn×d, d� n.

Hope : If θ is structured (i.e. sparse), it can hopefully be recovered.

Example 1: : (Signal Processing) Consider an example with observation points t1, t2, ..., tn and
frequencies ω1, ω2, ..., ωd and a matrix X ∈ Rn×d given by

X =


cos(ω1t1) cos(ω2t1) . . . cos(ωdt1)
cos(ω1t2) cos(ω2t2) . . . cos(ωdt2)

...
...

. . .
...

cos(ω1tn) cos(ω2tn) . . . cos(ωdtn)


Our observation Y = Xθ will be the observation of superpositions of sinusoids at times t1, t2, ..., tn.

Note that for a true continuous signal, Y (t) =
d∑
j=1

θjcos(ωjt). If ||θ||0 ≤ n, maybe it is possible to

recover θ. ♣

Idea: Find the sparsest solution to Y = Xθ. This is equivalent to solving the optimization
problem

minimize ||θ||0
subject to Y = Xθ

The problem is that this optimization problem is computationally intractable. One possible solution
to this issue is to replace || · ||0 with a convex approximation such as || · ||1.
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Definition 4.1. The basis pursuit linear program (Chen, Donoho, Saunders 1998) is the
following optimization problem

minimize ||θ||1
subject to Y = Xθ

Question: If θ∗ minimizes ||θ||0 subject to Y = Xθ, does the basis pursuit linear program
recover θ∗?

Answer: Sometimes it works. In figure 2a and figure 2b, the diamonds are l1 balls, and θ∗ lies on
the corner of an l1 ball to indicate it is sparse. Whether or not the the basis pursuit linear program
recovers θ∗ depends on the null space of the matrix X, because the output to the basis pursuit
linear program will find the minimizer of the l1 norm in the affine subspace θ∗ + null(X). Thus
figure 2a represents the cases in which the basis pursuit linear program will succeed in recovering
θ∗, while figure 2b represents the cases in which the basis pursuit linear program will fail to recover
θ∗.

We will formalize this with some definitions and a theorm.

Definition 4.2. For a set S ⊆ {1, ..., d} the critical cone is the subset of Rd given by

C(S) ≡
{

∆ ∈ Rd : ||∆Sc ||1 ≤ ||∆S ||1
}

Definition 4.3. A matrix X is said to satisfy the restricted null spaces property with respect
to S if

Null(X) ∩ C(S) = {0}

where Null(X) ≡
{

∆ ∈ Rd : X∆ = 0
}

Intuition: If S is the support of θ∗ (i.e. S = {j : θj 6= 0}) and X satisfies the restricted
null spaces property (w.r.t. S) moving from θ∗ along null(X) increases the l1 norm. Figure 2a
corresponds to the case where X satisfies restricted null spaces property with respect to S, where
S is the support of θ∗.

Theorem 4. The following two statements are equivalent:

(1) X satisfies the restricted null spaces property with respect to S

(2) For any θ∗ such that supp θ∗ = S and Y = Xθ∗, θ∗ is the unique solution to basis pursuit linear program
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Proof To show (1) ⇒ (2), assume (1) holds and let θ̂ be a solution to the basis pursuit linear
program and let θ∗ satisfy supp θ∗ = S and Y = Xθ∗. Now define ∆ so that θ̂ = θ∗ + ∆. We will
show that ∆ ∈ Null(X) ∩ C(S) and hence by (1), ∆ = 0. To show this first note that

||θ∗S ||1 =||θ∗||1
≥||θ̂||1 (since θ̂ minimizes ||θ||1 subject to Y = Xθ)

=||θ∗ + ∆||1
=||θ∗S + ∆S ||1 + ||∆Sc ||1 (by decomposition of l1-norm)

≥||θ∗S ||1 − ||∆S ||1 + ||∆Sc ||1 (by the triangle inequality)

Adding ||∆S ||1 − ||θ∗S ||1 to each side we get ||∆Sc ||1 ≤ ||∆S ||1, and thus ∆ ∈ C(S).

To show ∆ ∈ Null(X) note that Y = Xθ∗ and also Y = Xθ̂. Thus

0 = Y − Y = X(θ̂ − θ∗) = X∆⇒ ∆ ∈ Null(X)

Thus since ∆ ∈ Null(X) ∩ C(S), and since by (1), Null(X) ∩ C(S) = {0} , we have that
∆ = 0. Thus θ∗ = θ̂. Hence if (1) holds then for any θ∗ such that supp θ∗ = S and Y =
Xθ∗, θ∗ is the unique solution to basis pursuit linear program.

Showing that (2)⇒ (1) will be an exercise left to the reader.
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