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1 Rates of Convergence

Consider an M-estimation problem with loss function ` : Θ × X → R . Define the population
risk L(θ) := P`(θ,X) and empirical risk Ln(θ) := Pn`(θ,X). We would like to estimate θ∗ =
argminθ∈Θ L(θ). A natural estimator is the minimizer of the empirical risk, θ̂n = argminθ∈Θ Ln(θ).

When can we prove that θ̂n will be close to θ∗?

One way to prove that θ̂n is close to θ∗ is to show that for all θ ”far” from θ∗, we have Ln(θ) > Ln(θ∗).
This means that θ ”far” from θ∗ do not minimize the empirical risk, so θ̂n cannot be ”far” from
θ∗. Intuitively, it should be enough that the ”growth” of the function L overwhelms the local
”fluctuations” |Ln − L|, which can be seen in the following picture:
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In black is the function L(θ), and in dashed lines are a few samples of Ln(θ). It is pretty clear
that |θ̂n− θ∗| ≥ 2 will almost never happen, because the growth of the function L is fast enough to
ensure that L(θ)− L(θ∗) is much larger than the fluctuations |Ln(θ)− L(θ)| for θ ≥ 2. In simpler
terms, we would have to be extraordinarily unlucky for Ln(θ) to deviate so far from L(θ) that it
drops below Ln(θ∗) for some θ with |θ| ≥ 2. Therefore, we can expect |θ̂n−θ| ≤ 2 almost all the time.

To make this heuristic argument more rigorous, we will decompose the gap Ln(θ)− Ln(θ∗) into a
”fluctuation” component and a ”growth” component:

Ln(θ)− Ln(θ∗) = (Ln(θ)− L(θ))− (Ln(θ∗)− L(θ∗))︸ ︷︷ ︸
”Fluctuation”

+ (L(θ)− L(θ∗))︸ ︷︷ ︸
”Growth”

(1)

We give the collection of fluctuations a name:

Definition 1.1. The localized process ∆n(θ) is a stochastic process indexed by θ ∈ Θ defined by:

∆n(θ) := (Ln(θ)− L(θ))− (Ln(θ∗)− L(θ∗))

In words, ∆n(θ) is the size of the fluctuation of Ln at θ relative to the size of the fluctuation of Ln
at θ∗.

We will now give a definition and make an assumption that allows us to control the localized
process.

Definition 1.2. Define the modulus of continuity ωn(δ) of the localized process by:

ωn(δ) := sup
θ:d(θ,θ∗)≤δ

|∆n(θ)|

Fluctuation assumption. Assume that the modulus of continuity satisfies:

E[ωn(δ)] ≤ M√
n
δα (2)

for some M <∞ and α > 0. In other words, we assume that the fluctuations Ln(θ)−L(θ) are not
too large (on average) compared to the fluctuations Ln(θ∗)−L(θ∗), where ”too large” is measured
relative to the distance between θ and θ∗.

We will also make an assumption on the ”Growth” term.

Growth assumption. For a metric d on Θ and constants β ≥ 1, λ > 0, assume that the population
risk L(·) satisfies:

L(θ) ≥ L(θ∗) + λd(θ, θ∗)β (3)

for all θ satisfying d(θ, θ∗) ≤ ε.

Using the above assumptions, we can actually compute a rate of convergence for the M-estimator
θ̂n, if we additionally assume that the estimator is consistent.
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Theorem 1. Suppose that θ̂n
p−→ θ∗ and the Fluctuation Assumption and Growth Assumption are

satisfied with α < β. Then we have the convergence rate

d(θ̂n, θ
∗) = OP

(
n
− 1

2(β−α)
)

(4)

Remark. Where does the rate in (4) come from? We expect Ln(θ) > Ln(θ∗) whenever the
”growth” exceeds the ”fluctuation.” By comparing the upper bounds from the Growth and Fluc-

tuation assumptions, this happens when λδβ ≥ Mδα/
√
n. Solving for δ gives δ � n

− 1
2(β−α) . Of

course, we justify these intuitions in the proof of the theorem.

Proof . Set δn = ( M
λ
√
n

)
1

β−α . Fix C > 1. If d(θ̂n, θ
∗) ≥ Cδn, then (at least) one of the following

must occur:

• The distance between θ̂n and θ∗ exceeds ε, so the inequality (3) does not apply (recall that
the Growth Assumption only assumes that (3) holds in an ε-neighborhood of θ∗).

• There exists an integer j ∈ [0, blog2(ε/Cδn)c] such that d(θ̂n, θ
∗) ∈ [2jCδn, 2

j+1Cδn].

In the second case, we have subdivided the set {θ ∈ Θ : Cδn ≤ d(θ, θ∗) ≤ Cδn2blog2(ε/Cδn)c} into
concentric ”shells” of doubling width1, as illustrated in the following picture:

We will show that the localized process is well-controlled on each shell. This argument is known as

1The ”outermost” shell may contain points farther from θ∗ than ε unless ε is exactly a multiple of 2 times Cδn.
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peeling. Taking a union bound gives:

P
(
d(θ̂n, θ

∗) ≥ Cδn
)
≤ P

(
d(θ̂n, θ

∗) ∈ [Cδn, ε)
)

+ P
(
d(θ̂n, θ

∗) ≥ ε
)

≤
blog2(ε/Cδn)c∑

j=0

P
(
d(θ̂n, θ

∗) ∈ [C2jδn, C2j+1δn]
)

+ P
(
d(θ̂n, θ

∗) ≥ ε
)

Note that the event d(θ̂n, θ
∗) ∈ [C2jδn, C2j+1δn] implies ωn(C2j+1δn) is at least λ(C2jδn)β. This

is because d(θ̂n, θ
∗) 6= 0 means Ln(θ̂n)−Ln(θ∗) < 0. By (1), this implies that 0 ≤ ∆n(θ) + (L(θ)−

L(θ∗)), which guarantees |∆n(θ)| ≥ L(θ) − L(θ∗). By the Growth Assumption and the fact that
ωn is an increasing function of its argument, we have:

ωn(C2j+1δn) ≥ ωn(d(θ̂n, θ
∗)) ≥ |∆n(θ̂n)| ≥ L(θ̂n)− L(θ∗) ≥ λd(θ̂n, θ

∗)β ≥ λ(C2jδn)β

Therefore, we can further upper bound P(d(θ̂n, θ
∗) ≥ Cδn) by enlarging the events {d(θ̂n, θ

∗) ∈
[C2jδn, C2j+1δn]}:

P
(
d(θ̂n, θ

∗) ≥ Cδn
)
≤
blog2(ε/Cδn)c∑

j=0

P
(
ωn(C2j+1δn) ≥ λ(C2jδn)β

)
+ P

(
d(θ̂n, θ

∗) ≥ ε
)

Applying Markov’s inequality and the Fluctuation Assumption lets us write:

P
(
d(θ̂n, θ

∗) ≥ Cδn
)
≤
∑
j≥0

E[ωn(C2j+1δn)]

λ(C2jδn)β
+ P

(
d(θ̂n, θ

∗) ≥ ε
)

≤
∑
j≥0

M

λ
√
n

(C2j+1δn)α

(C2jδn)β
+ P

(
d(θ̂n, θ

∗) ≥ ε
)

≤ 2α

Cβ−α

∞∑
j=0

2j(α−β) M

λ
√
n
δα−β + P

(
d(θ̂n, θ

∗) ≥ ε
)

Recall that δn =
(

M
λ
√
n

) 1
β−α

so δα−βn = λ
√
n

M . Therefore, M
λ
√
n
δα−β = 1 and we can forget about that

term. Summing the geometric series gives the bound:

P
(
d(θ̂n, θ

∗) ≥ Cδn
)
≤ 2α

Cβ−α
1

1− 2α−β
+ P

(
d(θ̂n, θ

∗) ≥ ε
)

Since θ̂n is consistent for θ∗, P(d(θ̂n, θ
∗) ≥ ε) = o(1). Since C is arbitrary, we can choose C large

enough to make the first term in this final sum as small as we’d like. Hence, d(θ̂n, θ
∗)/δn is uni-

formly tight and we can conclude d(θ̂n, θ
∗) = OP (δn) = OP (n

− 1
2(β−α) ).

Example 1: Very Smooth Losses. Suppose Θ ⊂ Rd, and the map θ 7→ `(θ, x) is C3 for every x.
Moreover, suppose that in a neighborhood of θ∗, θ 7→ `(θ, x) is M(x)-Lipschitz with E[M(X)2] <∞.
We will show that the Growth and Fluctuation Assumptions are satisfied in this setting, so that a
consistent empirical-risk minimizer is also

√
n-consistent.
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First, we will show that it satisfies the Growth Assumption. Taking a Taylor expansion of L(·) at
θ∗ gives:

L(θ) = L(θ∗) +∇L(θ∗)(θ − θ∗) +
1

2
(θ − θ∗)>∇2L(θ∗)(θ − θ∗) +O(||θ − θ∗||3)

Since θ∗ is a global minimizer of L, ∇L(θ∗) = 0 and ∇2L(θ∗) is positive-definite. Therefore, for θ
close enough to θ∗ we have:

L(θ) ≥ L(θ∗) +
1

4
λmin(∇2L(θ∗)) · ||θ − θ∗||2

Therefore, the growth condition is satisfied with λ = 1
4λmin(∇2L(θ∗)) and β = 2.

Next, we will show that the Fluctuation Assumption is satisfied as well. This uses the familiar
tools of symmetrization and chaining.

E[ωn(δ)] = E

[
sup

θ:d(θ,θ∗)≤δ
∆n(θ)

]
≤ 2E

[
E

[
sup

d(θ,θ∗)≤δ

∣∣∣∣∣ 1n
n∑
i=1

εi(`(θ,Xi)− `(θ∗, Xi))

∣∣∣∣∣
∣∣∣∣∣X1:n

]]

Conditioned on X1:n, the quantity 1√
n

∑n
i=1 εi(`(θ,Xi) − `(θ∗, Xi)) is a

√
1
n

∑n
i=1M(Xi)2-sub-

Gaussian process in the Euclidean norm on the set {θ ∈ Θ : d(θ, θ∗) ≤ δ} by the Lipschitz
assumption. Therefore, by Dudley’s Entropy Integral inequality we get:

E[ωn(δ)] ≤ C√
n
E

∫ 2δ

0

(
1

n

n∑
i=1

M(Xi)
2

)1/2

logN(δB, || · ||2, ε)dε


≤ C√

n
E

( 1

n

n∑
i=1

M(Xi)
2

)1/2 ∫ 2δ

0

√
d log

(
1 +

2δ

ε

)
dε


≤ C ′δ

√
d

n
E
[
M(Xi)

2
]1/2

Therefore, the Fluctuation Assumption is satisfied with α = 1 and M = C ′
√
dE[M(Xi)

2]1/2. ♣

2 High-Dimensional Statistics

Changing gears away from rates of convergence, we are now going to discuss high-dimensional
statistics. In many modern problems, the problem dimension d scales with the sample size n, and
we may even have d � n. As a result, many of the results of classical asymptotic theory do not
apply. What can we do in such settings?

Here are a few motivating examples of high-dimensional problems:
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• Genome-Wise Association Study (GWAS). In GWAS, biologists try to discover which
genes are associated with certain phenotypes. In this problem, we often have d = millions
(one parameter to estimate for each gene) but n = hundreds, since obtaining a sample requires
sequencing an individual’s genome.

• Signal Reconstruction. Suppose there is a discrete signal x ∈ Rd, and engineers collect n
Fourier measurements about x, i.e. engineers observe y = Ax for an n× p matrix A. If n is
much smaller than d, is it possible to reconstruct the complete signal x? It turns out that if x
is a sparse linear combination of only a few pure frequencies, it is often possible to perfectly
recover x from only a few measurements.

In order to make any progress on high-dimensional problems, we lean heavily on two tools:

• Concentration Inequalities. If the problem dimension d is allowed to grow with n, it
often does not make sense to talk about the ”asymptotic regime” unless the scaling relation
of d and n is well-specified. Instead, high-dimensional statistics often aims to obtain non-
asymptotic/finite-sample error guarantees, and concentration inequalities are a useful tool to
prove such results.

• Growth conditions/Identifiability. To obtain meaningful results in high-dimensional
problems, it is often necessary to impose additional ”structural” constraints on the parameters
being estimated in order to reduce the ”effective dimension” of the problem. One canonical
example is to assume that among the d parameters to be estimated, only k � d are nonzero.

Next, we will study a prototypical high-dimensional problem to illustrate how concentration in-
equalities and growth/identifiability assumptions can tame a seemingly intractable problem.

2.1 Gaussian Sequence Model

The Gaussian Sequence Model studies the following problem: given an observation Y = θ+ σε
for θ ∈ Rn and ε ∼ N (0, In×n), how can we estimate θ? This is certainly a high-dimensional
problem, since the number of parameters to estimate d is the same as the sample size n.

A natural first idea is to use θ̂ = Y ; after all, this estimator is the MLE, it is the minimum-variance
unbiased estimator, and it is minimax optimal over the parameter space Θ = Rn. Unfortunately, it
has pretty terrible risk: E[||θ̂− θ||2] = nσ2. Can we do better if we make the structural assumption
that only k of the coordinates of θ are nonzero? Certainly it is possible for an ”oracle” with
knowledge of the underlying support S ⊂ [d] to achieve better risk, using the estimator θ̂o defined
by:

θ̂0
j =


Yj if j ∈ S

0 if j 6∈ S

This estimator achieves risk E[||θ̂0 − θ||2] = kσ2, a substantial improvement if k � d. Obviously,
this estimator cannot actually be implemented since, unlike the oracle, we do not have access to
the true support S.
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However, it turns out we can do almost as well by guessing the support of θ and mimicking the
oracle on the estimated support Ŝ. A natural way to construct Ŝ is to guess that if |Yj | < τ for
some threshold τ , then j 6∈ S but if |Yj | ≥ τ , then j ∈ S. This gives rise to the hard-thresholding
estimator:

θ̂τj =


Yj if |Yj | ≥ τ

0 if |Yj | < τ

The following theorem, which will be proved next time, asserts that the risk of the hard-thresholding
estimator (for an optimal choice of τ) comes within a logarithmic factor of the risk of the oracle
estimator.

Theorem 2. . Let τ2 = 4σ2 log(n/k). Then E[||θ̂τ − θ||2] ≤ Ckσ2 log(n/k) for C a universal
constant.
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