Lecture 13 - February 19

Lecturer: John Duchi
Scribe: Zhaonan Qu

Warning: these notes may contain factual errors

Outline:

- concentration inequalities for functions with bounded differences
- ULLN for bounded class via concentration and chaining
- growth rates, moduli of continuity

Reading: VDV 18-19, HDP 8

Recap: Recall that if a process $\left\{X_{t}\right\}_{t \in T}$ is sub-Gaussian, i.e.

$$
\mathbb{E} \exp \left(\lambda\left(X_{s}-X_{t}\right)\right) \leq \exp \left(\frac{\lambda^{2} d(s, t)^{2}}{2}\right), \forall s, t \in T
$$

then $\exists C<\infty$ such that

$$
\mathbb{E}\left[\sup _{t \in T} X_{t}\right] \leq C \int_{0}^{\operatorname{diam}(T)} \sqrt{\log N(T, d, \varepsilon)} d \varepsilon
$$

where N is the covering number. As a corollary, if we define the entropy integral

$$
J(T ; \delta)=\int_{\delta}^{\infty} \sqrt{\log N(T, d, \varepsilon)} d \varepsilon
$$

Then

$$
\mathbb{E}\left[\sup _{t \in T} X_{t}\right] \leq C\left(\mathbb{E} \sup _{d(t, s) \leq \delta}\left|X_{t}-X_{s}\right|\right)+J(T ; \delta)
$$

where we note that the integral in $J(T ; \delta)$ has upper limit $\operatorname{diam}(T)$ since for $\varepsilon>\operatorname{diam}(T)$, covering number is 1 .

Example: Let $\mathcal{F} \subset\{\mathcal{X} \rightarrow \mathbb{R}\}$ be a VC class, with $\|f\|_{\infty} \leq b$ for all $f \in \mathcal{F}$. Then

$$
\sqrt{n} P_{n}^{0} f:=\frac{1}{\sqrt{n}} \sum_{i} \varepsilon_{i} f\left(X_{i}\right)
$$

where ε_{i} are iid Rademacher, is sub-Gaussian for fixed $X_{1: n}$, in terms of the $\|\cdot\|_{L_{2}\left(P_{n}\right)}$ norm. Applying chaining, we obtain

$$
\sqrt{n} \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|P_{n}^{0} f\right|\right] \leq C \int_{0}^{\infty} \sqrt{\log N\left(F,\|\cdot\|_{L_{2}\left(P_{n}\right)}, \varepsilon\right)} d \varepsilon=*
$$

Recall the following bound on the covering number for uniformly bounded VC class \mathcal{F} :

$$
\begin{aligned}
\sup _{P} N\left(F,\|\cdot\|_{L_{r}(P)}, \varepsilon\right) & \leq c_{r}\left(\frac{b}{\varepsilon}\right)^{r V C(\mathcal{F})} \\
& \leq c_{r}\left(1+\frac{b}{\varepsilon}\right)^{r V C(\mathcal{F})}
\end{aligned}
$$

Applying this we have

$$
\begin{aligned}
* & \leq C \int_{0}^{b} \sqrt{C+V C(\mathcal{F}) \log \left(1+\frac{b}{\varepsilon}\right)} d \varepsilon \\
& \leq C \int_{0}^{b} \sqrt{1+V C(\mathcal{F}) \cdot \frac{b}{\varepsilon}} d \varepsilon \leq C \sqrt{V C(\mathcal{F})} \cdot b
\end{aligned}
$$

which gives the bound

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|P_{n}^{0} f\right|\right] \leq C b \sqrt{\frac{V C(\mathcal{F})}{n}}
$$

1 Concentration Inequalities(revisited)

Remark Often we want to understand concentration of more sophisticated things than iid sums, e.g. $\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|$, which is what we care about for ULLN. We want to answer the following question: If $X_{1: n}$ are independent, when does $f\left(X_{1: n}\right)$ concentrate around $\mathbb{E} f\left(X_{1: n}\right)$, where f : $\mathcal{X}^{n} \rightarrow \mathbb{R}$? The idea is that if f depends "little" on individual X_{i}, there should be concentration. We use bounded differences and martingale methods to show this.

Definition 1.1. A sequence $\left\{X_{i}\right\}$ adapted to a filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ (increasing sequence of σ-fields) is a martingale difference sequence (MGD) if

- $X_{i} \in \mathcal{F}_{i}$ for any $i \in \mathbb{N}$
- $\mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=0$ for any $i \in \mathbb{N}$.

Recall $M_{n}=\sum_{i=1}^{n} X_{i}$ is associated martingale $\left(X_{i}=M_{i}-M_{i-1}\right)$ and note that $\mathbb{E}\left[M_{n} \mid \mathcal{F}_{i-1}\right]=$ M_{n-1}.

Definition 1.2. Let X_{i} be a MGD, it is δ_{i}^{2}-sub-Gaussian if

$$
\mathbb{E}\left[\exp \left(\lambda X_{i}\right) \mid \mathcal{F}_{i-1}\right] \leq \exp \left(\frac{\lambda^{2} \delta_{i}^{2}}{2}\right)
$$

for all $i \in \mathbb{N}$.
Theorem 1. If $\left\{X_{i}\right\}$ are σ_{i}^{2}-sub-Gaussian MGD, then

$$
M_{n}:=\sum_{i=1}^{n} X_{i}
$$

is $\sum_{i=1}^{n} \sigma_{i}^{2}$-sub-Gaussian.

Proof We have

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} X_{i}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[e^{\lambda X_{n}} \mid \mathcal{F}_{n-1}\right] \cdot \mathbb{E}\left[\exp ^{\lambda \sum_{i=1}^{n-1} X_{i}} \mid \mathcal{F}_{n-1}\right]\right] \\
& \leq \exp \left(\frac{\lambda^{2} \sigma_{n}^{2}}{2}\right) \cdot \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n-1} X_{i}\right)\right]
\end{aligned}
$$

and proof follows by induction.

Corollary 2. (Azuma-Hoeffding) Under conditions of the previous theorem, we have the bound

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left(-\frac{n t^{2}}{2 \frac{1}{n} \sum_{i} \sigma_{i}^{2}}\right)
$$

Example: Recall that, if $\left|X_{i}\right| \leq c_{i}$, then $\sigma_{i}^{2} \leq c_{i}^{2}$, so the previous bound implies

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left(-\frac{n t^{2}}{2 \frac{1}{n} \sum_{i} c_{i}^{2}}\right)
$$

2 Martingales and Bounded Differences

Let $\left\{X_{i}\right\}_{i=1}^{n}$ be independent, $X_{i} \in \mathcal{X}$. Let $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$. How to use the previous results about martingale to control $f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right]$ Doob martingale provides a useful construction for transforming $f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right]$ with $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ into a sum of MGDs.

2.1 Doob martingale

Definition 2.1. Let $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ and X_{i} be random variables. Let $\mathcal{F}_{i}=\sigma\left(X_{1}, \ldots, X_{i}\right)$. Define

$$
D_{i}:=\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{i}\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{i-1}\right]
$$

Then D_{i} 's are called the Doob MGDs.
Note that

$$
\begin{aligned}
\mathbb{E}\left[D_{i} \mid \mathcal{F}_{i-1}\right] & =0 \\
\sum_{i=1}^{n} D_{i} & =f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right]
\end{aligned}
$$

By the previous theorem, we see that if D_{i} 's are sub-Gaussian, so is $f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right]$. The question becomes: for what f 's are D_{i} 's small? The answer is the class of functions f with bounded differences.

2.2 Bounded differences

Definition 2.2. A function $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ has bounded differences if

$$
\sup _{X_{1: n} \in \mathcal{X}^{n}, X_{i}^{\prime} \in \mathcal{X}}\left|f\left(X_{1: n}\right)-f\left(X_{1: n-1}, X_{i}^{\prime}, X_{i+1: n}\right)\right| \leq c_{i}
$$

Example: Let $X \in[-1,1]$ and $f\left(X_{1: n}\right)=\bar{X}_{n}=\frac{1}{n} \sum_{i} X_{i}$, then

$$
\left|f\left(X_{1: n}\right)-f\left(X_{1: n-1}, X_{i}^{\prime}, X_{i+1: n}\right)\right| \leq \frac{1}{n}\left|X_{i}-X_{i}^{\prime}\right| \leq \frac{2}{n}
$$

Theorem 3. (McDiarmid's inequality) If X_{i} are independent, f has bounded differences, then

$$
\mathbb{P}\left(f\left(X_{1: n}\right)-\mathbb{E} f\left(X_{1: n}\right) \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

and similarly for lower tail.
Proof It suffices to show that bounded differences implies D_{i} 's are $\frac{c_{i}^{2}}{4}$-sub-Gaussian, since then the Azuma-Hoeffding bound will imply the desired bound. We have

$$
\begin{aligned}
D_{i} & =\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{1: i}\right]-\mathbb{E}\left[f\left(X_{1: n}\right) \mid \mathcal{F}_{1: i-1}\right] \\
& \stackrel{\text { ind }}{=} \int f\left(X_{1: i}, X_{i+1: n}\right) d P^{n-i}\left(X_{i+1: n}\right)-\int f\left(X_{1: i-1}, X_{i}, X_{i+1: n}\right) d P\left(X_{i}\right) d P^{n-i}\left(X_{i+1: n}\right) \\
& =\iint\left[f\left(X_{1: i-1}, X_{i}^{\prime}, X_{i+1: n}\right)-f\left(X_{1: i-1}, X_{i}, X_{i+1: n}\right)\right] d P\left(X_{i}\right) d P^{n-i}\left(X_{i+1: n}\right)
\end{aligned}
$$

The term in the integrand is bounded above by c_{i}, so that D_{i} is $\frac{c_{i}^{2}}{4}$-sub-Gaussian.

Example Supremum of bounded function classes Let $\mathcal{F} \subset\{\mathcal{X} \rightarrow \mathbb{R}\}$ and assume $|f(X)| \in[a, b]$. Suppose P_{n}, P_{n}^{\prime} differ only in X_{i} and X_{i}^{\prime}. Then the supremum $\sup _{f}\left|P_{n} f-P f\right|$ has bounded differences:

$$
\begin{aligned}
& \sup _{f}\left|P_{n} f-P f\right|-\sup _{f}\left|P_{n}^{\prime} f-P f\right| \\
& \leq \sup _{f}\left|P_{n} f-P f\right|-\left|P_{n}^{\prime} f-P f\right| \\
& \text { triangle } \\
& \stackrel{\sup _{f}\left|P_{n} f-P_{n}^{\prime} f\right|}{ } \\
& =\sup _{f \in \mathcal{F}}\left|f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right| / n \leq \frac{b-a}{n}
\end{aligned}
$$

Corollary 4. Let $\mathcal{F} \subset\{\mathcal{X} \rightarrow[a, b]\}$. Then

$$
\mathbb{P}\left(\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|-\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|\right] \geq t\right) \leq \exp \left(-\frac{2 n t^{2}}{(b-a)^{2}}\right)
$$

Proof Set $c_{i}^{2}=\frac{(b-a)^{2}}{n^{2}}$ in McDiarmid.

If we want ULLN for bounded class \mathcal{F}, all we need is control over $\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}}$. But this is precisely what we can do with chaining. Applying the bound on $\mathbb{E}\left\|P_{n}-P\right\|_{\mathcal{F}}$, we get the following convergence rate result.

Corollary 5. Let \mathcal{F} be a bounded VC class, $f(x) \in[a, b]$. Then

$$
\mathbb{P}\left(\left\|P_{n}-P\right\|_{\mathcal{F}} \geq C \sqrt{\frac{V C(\mathcal{F})}{n}}+t\right) \leq \exp \left(-\frac{2 n t^{2}}{(b-a)^{2}}\right)
$$

where C depends on the VC class bound.
As a consequence, letting $\mathcal{F}=\left\{1(X \leq t), t \in \mathbb{R}^{d}\right\}$, then

$$
\mathbb{P}\left(\sup _{t \in \mathbb{R}^{d}}\left|P_{n}(X \leq t)-P(X \leq t)\right| \geq C \sqrt{\frac{d}{n}}+\varepsilon\right) \leq \exp \left(-2 n \varepsilon^{2}\right)
$$

which is the DKW inequality, up to sharp constants.

3 Convergence Rates

Next we move on to rates of convergence for model parameters, which are solutions of optimization problems. Our setting is empirical minimization (M-estimation).
Let $\ell: \Theta \times \mathcal{X} \rightarrow \mathbb{R}$ be the loss function and

$$
\begin{aligned}
L(\theta) & :=\mathbb{E}(\ell(\theta ; X)) \\
L_{n}(\theta) & :=P_{n} \ell(\theta ; X)
\end{aligned}
$$

If

$$
\begin{aligned}
\hat{\theta}_{n} & =\arg \min _{\theta} L_{n}(\theta) \\
\theta^{*} & =\arg \min L(\theta)
\end{aligned}
$$

How quickly does $\hat{\theta}_{n} \rightarrow \theta^{*}$? We hope that the growth in L near $\theta^{*} \gg$ variation of $L_{n}(\theta)-L_{n}\left(\theta^{*}\right)$ for θ near θ^{*}. Our goal is to show $L_{n}(\theta)>L_{n}\left(\theta^{*}\right)$ for θ "far enough" from θ^{*}.

