Stats 300b: Theory of Statistics Winter 2019

Lecture 12 — February 14

Lecturer: John Duchi Scribe: Benjamin Seiler

@ Warning: these notes may contain factual errors
Reading: HDP Ch.8, VdV 18-19

Outline:

e Uniform Entropy Bounds

VC Classes
VC Function Classes

e Chaining
Entropy Integrals

Sub-Gaussian Processes

Recap: VC Classes of Sets

Definition 0.1. Given C a collection of sets, the shattering coefficient of C on x1,x2,...x, s
AL (Cyx1.) == card{ANxy, ...t : A € C} = the number of labelings C can realize on x1.,.

Definition 0.2. The VC-dimension (Vapnik-Chervonenkis) of C is
VC(C) :=sup{n € N : maxx,, cxn An(C,z1.n) = 2"} = the size of the largest set of points that C
can shatter.

Fact 1. Half Spaces C in R? have VO(C) =d + 1
Lemma 2. Sauer-Shelah lemma For any class C of sets,

ve(e)

ny _ ve(e)
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g, Ao < Y () = 06e)
J=0

Consequence: If maxy,, exn An(C,21:) <27, then VC(C) < n and

An(C,IEl;n) < 0(1) . nVC(C)

. Additional lectures notes on the course website provide a further reference on this topic.

New Material: Uniform Entropy Bounds (continued)

Definition 0.3. We will define the L,(P) norm on sets using indicator functions as follows: ||14—
1
1L, py = ([ |14 — 1p["dP)~



Theorem 3. (Uniform covering numbers in L,(P)) For a collection of sets C, there 3 constant

K < > s.t.,
l)rVC(C)
€

sup N(C, Lr(P),e) < KVC(C)(4€)VC(C)(
P

i.e.
1
log N(C, Lr(P),e) SrVC(C)log (E)
Note: this is true for all P simultaneously and here e ~ 2.718281828459045

Sketch of Proof The rough idea is that if we take our space and cover it with e-balls of
probability we can only shatter so many 0,1 functions on these balls. We have % such balls so C

. 1VO(
can only realize ¢
less than the total number of such functions.

Note: Much like Paul ”The Truth” Pierce who could not win an NBA championship on his
own, a full treatment of this proof requires outside help and can be found on the course website in
the additional notes section.

©) different 0, 1-valued functions on them and the covering number must be

O

Ezample 1: Lower Left Rectangles: Let F = {f(x) = I{x<4,t € R9}. Then VC(F)=0(d)
and 3C < oo s.t. .
suplog N(F, L.(P),e) < Crdlog(-)
P €
As a consequence, we have the classical Glivenko Cantelli theorem in R%:

E[sup [P (X <) = P(X < 1)|] = E[sup [P f — Pf]]
teRd feF

< c<;ﬁ Viog N(F, Li(P). 6) + ¢

1
gC(\/glog——l—e)
n €
d n
< —log —
_C\/n 08—

Note: this is not the tightest bound we will get (with chaining we will be able to lose the logn
term) &

Let e = /d/n

VC Classes of Functions:

Definition 0.4. The subgraph of a function f : X — R is the set subf C X xR s.t. subf = {(z,1) :
fx) >t}

Definition 0.5. F C {X — R} is a VC-class if C = {subf : f € F} forms a VC collection in
XxRie VC(C)<oo. and VCO(F) :=VC({subf : f € F}).



Theorem 4. If VC(F) < oo and F has an envelope function F i.e. F(x) > |f(x)| Vf € F where
F e L,(P) i.e. E[F"(z)] < 00, then 3K < 00 s.t.

1
sup N (F, Ly (P), ||F||1,(p€) < KVC(F)(16e)" ) (=)rV )
P

€
if0<e<1

Sketch of Proof  Form subgraphs to approrimate f and then apply the previous theorem. 0

Ezxample 2: Classification Problem

Suppose we have data of the form (z,y) € R% x {—1,1} and we train a binary linear classifier on
the data to predict y. We compute some 0 € R? s.t. our predictions are of the form sgn(0Tz) =
Ligrasoy — Lygra<oy- Our goal then is to find 0 s.t. P(sgn(0Tx) # y) is small.

Consider F = {f(x) = 0T2,0 € R?}. F is a VC-class of functions with VC(F) =d + 1. Given a

sample (x;,y;) i P,(i=1,2,...,n), we can see based on the previous example that there 3C < oo

s.t.

n

-

E[sup | P (sgn(8”z) # y) — P(sgn(6"x) # y)[] < C4/ = log
fe]: n

&

Calculus of VC-Properties:
o If F is a linear space of functions with dim(F) < oo then VC(F) = O(1)dim(F)

e Preservation IfC and D are VC classes of functions then:
Cub:={CuD:CeC,Deb}is VC
Cnbh:={CnNnD:CeC,Deb}is VC

e Composition If F is a VC collection of functions and ¢ : R — R is monotone, then ¢ o F
is VC.

Chaining

Goal:  Achieve tighter/sharper bounds on E[sup sc x [Pn f—Pf[] or more specifically for sub-gaussian
processes { X heT, we want sharp/tight bounds on E[sup,cr | X¢|].

Recall: {X;}ieT is a sub-Gaussian process for a metric don the space T if Elexp(A(zs — x¢))] <
exp(w) Vs,t € T,A € R and that for our purposes, we can assume that {X;} is a seperable
process i.e. IT s.t. T is countable and sSup;er Xt = supserr X¢-

Naive Approach: We can approzimate E[sup,cr |X¢|] with Elmaxicr. | X¢|] where Te is a dis-
cretization of T . Issues with this approach are that we do not know how finely to discretize and
cannot guarentee a correct discritization level. Instead we consider chaining:

New Approach Let {X;}ieT be sub-Gaussian for a metric d, separable, and mean-zero, i.e.
E[X:] = 0. The idea is to control supieTX; by finer and finer approzimations to the supre-
mum. We can do this because the process is separable. Let Ty, T1, T2, ...T be a sequence of cov-
ers of T, where T = minimal 27% diam(T) cover of T in the metric (or semimetric) d, where



diam(T) := supg 7 d(s,t) (assumed finite), To = {to}, and d(to,t) < diam(T) Vt € T.
For any t € T, consider sequences to,t1,...,tg,... — t where ty, € T, Vk € N. Let m;(t) =

arg tmi711,o(ti,t) be the closest point to t in T;. Fiz any k € N. Then x; = x5, () + ot —
i€74

Lrp_1t)-

Let ©'(t) := mi(mip1(...(mp_1(t))...) (a concatenation of projections). Observe that
k . . . .
me= S (1) - ai () + a0 = St (1) — 2 () + g
i=1 ‘

as ™ (t) = t. This is the "chain.”

Remark  For any k € N, I?@;((a?t) < 1}12%2((1’1 (t) — i 1(t)) + 29(t). How many points are
€ €

there in this mazimum? i (t) takes values in T; and m, '(t) = mi_1(7x'(t)) is a deterministic
function of m(t). So this is really, at "worst”, a mazimum over points in a set T;.

We know that if D = diam(T), d(xi(t), 7 '(t)) < 217D as 7 '(t) = mi_1(7i(t)), Ti-1 is

a 217 diameter cover of T. Then,

k
maxx; < max(xs —
naxen < 3 max(an — (1)) + a0
1=1
where t € ’Tmax(xt Ty 1(t)) is a finite mazimum of 27! D-sub-Gaussian random variables.
Recall that if {Y;}N., are o%-sub-Gaussian, then

E[mZaX(YfL)] </ (20%10g(N))

Bfmax(z — o, ,(1))] < /41-12D2log T}
S8

where Card(T;) = N(T,d,27'D). Then,

k
E[max(z)] Z \/8 -471D2log N (27¢D)

teTy

k
=2\/(2) D) 27\ /log N'(D,27)
i=1

Note tht we can think of this as a Riemann integral, so

E 1<2/@)DS 271 /log N(D, 2-
[max(a)] < 2/(2) Z og N (D,277)

=1

<4\fDZ/ +1\/log/\f(DE)de
=4v2D / V1og N(D;)de
0



diam(T)
= 4\/5/ V01og N (T, d, €)de
0

where the last equality comes from substituting € for D. and letting D = diam(T).
Finally, note that maxcT, T, (T — T4y) i non-negative, so Fatou’s lemma implies that
diam(T)
E[sup(z;)] < 4V2 V1og N (T, d, €)de
0

teTk

and we can use MCT to go from Ty to T.

Definition 0.6. For a metric space (T, p) with finite p-diameter J(T,d) := fodmm(T) VIog N (T, d, €)de
1s Dudley’s entropy integral.

Theorem 5. Let { X, }eT be a separable d-sub-Gaussian process. Then E[sup,;er(Xy)] < C-J(T,d),
where C' < 00 is a numerical constant.



