
Stats 300b: Theory of Statistics Winter 2019

Lecture 12 – February 14

Lecturer: John Duchi Scribe: Benjamin Seiler

� Warning: these notes may contain factual errors

Reading: HDP Ch.8, VdV 18-19

Outline:

• Uniform Entropy Bounds

VC Classes

VC Function Classes

• Chaining

Entropy Integrals

Sub-Gaussian Processes

Recap: VC Classes of Sets

Definition 0.1. Given C a collection of sets, the shattering coefficient of C on x1, x2, ...xn is
∆n(C, x1:n) := card{A ∩ x1, ....xn : A ∈ C} = the number of labelings C can realize on x1:n.

Definition 0.2. The VC-dimension (Vapnik-Chervonenkis) of C is
V C(C) := sup{n ∈ N : maxX1:n∈Xn ∆n(C, x1:n) = 2n} = the size of the largest set of points that C
can shatter.

Fact 1. Half Spaces C in Rd have V C(C) = d+ 1

Lemma 2. Sauer-Shelah lemma For any class C of sets,

max
x1:n∈Xn

∆n(C, x1:n) ≤
V C(C)∑
j=0

(
n

j

)
= O(nV C(C))

Consequence: If maxx1:n∈Xn ∆n(C, x1:n) < 2n, then V C(C) < n and

∆n(C, x1:n) ≤ O(1) · nV C(C)

. Additional lectures notes on the course website provide a further reference on this topic.

New Material: Uniform Entropy Bounds (continued)

Definition 0.3. We will define the Lr(P ) norm on sets using indicator functions as follows: ||1A−
1B||Lr(P ) = (

∫
|1A − 1B|rdP )

1
r
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Theorem 3. (Uniform covering numbers in Lr(P )) For a collection of sets C, there ∃ constant
K <∞ s.t.,

sup
P
N(C, Lr(P ), ε) ≤ KV C(C)(4e)V C(C)(1

ε

)rV C(C)

i.e.

logN(C, Lr(P ), ε) . rV C(C) log
(1

ε

)
Note: this is true for all P simultaneously and here e ≈ 2.718281828459045

Sketch of Proof The rough idea is that if we take our space and cover it with ε-balls of
probability we can only shatter so many 0, 1 functions on these balls. We have 1

ε such balls so C
can only realize 1

ε

V C(C)
different 0, 1-valued functions on them and the covering number must be

less than the total number of such functions.
Note: Much like Paul ”The Truth” Pierce who could not win an NBA championship on his

own, a full treatment of this proof requires outside help and can be found on the course website in
the additional notes section.

Example 1: Lower Left Rectangles: Let F = {f(x) = 1{X≤t}, t ∈ Rd}. Then V C(F)=O(d)
and ∃C <∞ s.t.

sup
P

logN(F , Lr(P ), ε) ≤ Crd log(
1

ε
)

As a consequence, we have the classical Glivenko Cantelli theorem in Rd:

E[ sup
t∈Rd
|Pn(X ≤ t)− P(X ≤ t)|] = E[sup

f∈F
|Pnf − Pf |]

≤ C(
1√
n

√
logN(F , L1(P ), ε) + ε)

≤ C(

√
d

n
log

1

ε
+ ε)

Let ε =
√
d/n

≤ C
√
d

n
log

n

d

Note: this is not the tightest bound we will get (with chaining we will be able to lose the logn
term) ♣

VC Classes of Functions:

Definition 0.4. The subgraph of a function f : X→ R is the set subf ⊂ X×R s.t. subf = {(x, t) :
f(x) > t}.

Definition 0.5. F ⊂ {X → R} is a VC-class if C = {subf : f ∈ F} forms a VC collection in
X× R i.e. V C(C) <∞. and V C(F) := V C({subf : f ∈ F}).
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Theorem 4. If V C(F) <∞ and F has an envelope function F i.e. F (x) ≥ |f(x)| ∀f ∈ F where
F ∈ Lr(P ) i.e. E[F r(x)] ≤ ∞, then ∃K ≤ ∞ s.t.

sup
P
N(F , Lr(P ), ||F ||Lr(P )ε) ≤ KV C(F)(16e)V C(F)(

1

ε
)rV C(F)

if 0 < ε < 1

Sketch of Proof Form subgraphs to approximate f and then apply the previous theorem.

Example 2: Classification Problem
Suppose we have data of the form (x, y) ∈ Rd × {−1, 1} and we train a binary linear classifier on
the data to predict y. We compute some θ ∈ Rd s.t. our predictions are of the form sgn(θTx) =
1{θT x>0} − 1{θT x≤0}. Our goal then is to find θ s.t. P (sgn(θTx) 6= y) is small.

Consider F = {f(x) = θTx, θ ∈ Rd}. F is a VC-class of functions with V C(F) = d + 1. Given a

sample (xi, yi)
iid∼ P, (i = 1, 2, . . . , n), we can see based on the previous example that there ∃C ≤ ∞

s.t.

E[sup
f∈F
|Pn(sgn(θTx) 6= y)− P (sgn(θTx) 6= y)|] ≤ C

√
d

n
log

n

d

♣

Calculus of VC-Properties:

• If F is a linear space of functions with dim(F) ≤ ∞ then V C(F) = O(1)dim(F)

• Preservation If C and D are VC classes of functions then:

C t D := {C ∪D : C ∈ C, D ∈ D} is VC

C u D := {C ∩D : C ∈ C, D ∈ D} is VC

• Composition If F is a VC collection of functions and φ : R → R is monotone, then φ ◦ F
is VC.

Chaining

Goal: Achieve tighter/sharper bounds on E[supf∈F |Pnf−Pf |] or more specifically for sub-gaussian
processes {Xt}t∈T , we want sharp/tight bounds on E[supt∈T |Xt|].
Recall: {Xt}t∈T is a sub-Gaussian process for a metric don the space T if E[exp(λ(xs − xt))] ≤
exp(λ

2d(s,t)2

2 ) ∀s, t ∈ T , λ ∈ R and that for our purposes, we can assume that {Xt} is a seperable

process i.e. ∃T ′ s.t. T ′ is countable and supt∈T Xt = supt∈T ′ Xt.
Naive Approach: We can approximate E[supt∈T |Xt|] with E[maxt∈Tε |Xt|] where Tε is a dis-
cretization of T . Issues with this approach are that we do not know how finely to discretize and
cannot guarentee a correct discritization level. Instead we consider chaining:
New Approach Let {Xt}t∈T be sub-Gaussian for a metric d, separable, and mean-zero, i.e.
E[Xt] = 0. The idea is to control supt∈TXt by finer and finer approximations to the supre-
mum. We can do this because the process is separable. Let T0, T1, T2, ...T be a sequence of cov-
ers of T , where T = minimal 2−k diam(T ) cover of T in the metric (or semimetric) d, where
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diam(T ) := sups,t∈T d(s, t) (assumed finite), T0 = {t0}, and d(t0, t) ≤ diam(T ) ∀t ∈ T .
For any t ∈ T , consider sequences t0, t1, ..., tk, ... → t where tk ∈ Tk ∀k ∈ N. Let πi(t) =

arg min
ti∈Ti

ρ(ti, t) be the closest point to t in Ti. Fix any k ∈ N. Then xi = xπk−1(t) + xt − xπk−1t).

Let πi(t) := πi(πi+1(...(πk−1(t))...) (a concatenation of projections). Observe that

xt =
k∑
i=1

xiπk(t)− xi−1πk
(t) + x0π(t) =

k∑
i=1

xiπk(t)− xi−1πk
(t) + xt0

as πkk(t) = t. This is the ”chain.”

Remark For any k ∈ N, max
t∈T

(xt) ≤ max
t∈T

(xiπk(t) − xi−1πk
(t)) + x0π(t). How many points are

there in this maximum? πik(t) takes values in Ti and πi−1k (t) = πi−1(πk
i(t)) is a deterministic

function of πik(t). So this is really, at ”worst”, a maximum over points in a set Ti.

We know that if D = diam(T ), d(πii(t), π
i−1
k (t)) ≤ 21−iD as πi−1k (t) = πi−1(π

i
k(t)), Ti−1 is

a 21−i diameter cover of T . Then,

max
t∈T

xt ≤
k∑
i=1

max
t∈T

(xt − xπi−1(t)) + x0

where t ∈ T max(xt − xπi−1(t)) is a finite maximum of 21−iD-sub-Gaussian random variables.
Recall that if {Yi}Ni=1 are σ2-sub-Gaussian, then

E[max
i

(Yi)] ≤
√

(2σ2 log(N))

E[max
t∈Ti

(xt − xπi−1(t))] ≤
√

41−i2D2 log |Ti|

where Card(Ti) = N (T , d, 2−iD). Then,

E[max
t∈Tk

(xt)] ≤
k∑
i=1

√
8 · 4−1D2 logN (2−iD)

= 2
√

(2)D

k∑
i=1

2−i
√

logN (D, 2−i)

Note tht we can think of this as a Riemann integral, so

E[max
t∈Tk

(xt)] ≤ 2
√

(2)D
k∑
i=1

2−i
√

logN (D, 2−i)

≤ 4
√

2D

∞∑
i=1

∫ 2−i

2−i+1

√
logN (Dε)dε

= 4
√

2D

∫ 1

0

√
logN (Dε)dε

4



= 4
√

2

∫ diam(T )

0

√
logN (T , d, ε)dε

where the last equality comes from substituting ε for Dε and letting D = diam(T ).
Finally, note that maxt∈Tk∪T0(xt − xt0) is non-negative, so Fatou’s lemma implies that

E[sup
t∈Tk

(xt)] ≤ 4
√

2

∫ diam(T )

0

√
logN (T , d, ε)dε

and we can use MCT to go from Tk to T .

Definition 0.6. For a metric space (T , ρ) with finite ρ-diameter J(T , d) :=
∫ diam(T )
0

√
logN (T , d, ε)dε

is Dudley’s entropy integral.

Theorem 5. Let {Xt}t∈T be a separable d-sub-Gaussian process. Then E[supt∈T (Xt)] ≤ C ·J(T , d),
where C <∞ is a numerical constant.
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