Stats 300b: Theory of Statistics

Winter 2019

Lecture 11 – February 12

Lecturer: John Duchi

Scribe: Souvik Ray

Warning: these notes may contain factual errors

Reading: VdV ch. 19

Outline:

- Sub-Gaussian processes.
- Entropy numbers.
- Classes with small/finite entropy numbers (non-parametric but smooth classes, VC classes).

1 Sub-Gaussian Processes

Let $\{X_t\}_{t\in T}$ be a collection of real valued random variables. **Remark** As usual, all processes we deal with in this class will be separable

Remark As usual, all processes we deal with in this class will be separable, i.e. there exists a countable set $T' \subset T$ such that $\{X_t\}_{t \in T}$ is determined by $\{X_t\}_{t \in T'}$, i.e.,

$$\sup_{t,s\in T} |X_t - X_s| = \sup_{t,s\in T'} |X_t - X_s|.$$

Definition 1.1. Let (T, d) be a metric space. We say $\{X_t\}_{t \in T}$ is a Sub-Gaussian process if

$$\mathbb{E}\left[\exp\left(\lambda(X_s - X_t)\right)\right] \le \exp\left(\frac{1}{2}\lambda^2 d(s, t)^2\right),\tag{1}$$

for all $\lambda \in \mathbb{R}$; $s, t \in T$.

Remark We say $\{X_t\}_{t \in T}$ is a σ^2 -Sub-Gaussian process if

$$\mathbb{E}\left[\exp\left(\lambda(X_s - X_t)\right)\right] \le \exp\left(\frac{1}{2}\lambda^2\sigma^2 d(s,t)^2\right),\tag{2}$$

for all $\lambda \in \mathbb{R}$; $s, t \in T$. However, the metric d can be chosen so that the sub-gaussian constant is absorbed into the metric d.

Example 1: (Gaussian process)

A Gaussian process on \mathbb{R}^d is an example of a Sub-Gaussian process. To see this, let $T = \mathbb{R}^d$, and $Z \sim \mathcal{N}(0, \sigma^2 I_d)$. Then define $X_t = \langle Z, t \rangle$. Note that

$$X_s - X_t = \langle Z, s - t \rangle \sim N(0, \sigma^2 ||t - s||_2^2),$$

and therefore,

$$\mathbb{E}[e^{\lambda(X_s - X_t)}] \le \exp\left(\frac{1}{2}\lambda^2\sigma^2||s - t||_2^2\right).$$

So this is σ^2 -sub-Gaussian w.r.t. L_2 norm on \mathbb{R}^d .

Example 2: (Rademacher Process)

Let $T \subset \mathbb{V}$, where \mathbb{V} is a vector space equipped with a norm $|| \cdot ||$. Let $\ell : T \times \mathcal{X} \to \mathbb{R}$ is 1-Lipschitz in its first argument, meaning that

$$|\ell(t,x) - \ell(s,x)| \le ||t-s|| \text{ for all } x \in \mathcal{X}; s, t \in T.$$

Let $\{\epsilon_i\}_{i=1}^n \overset{i.i.d.}{\sim} \text{Uniform}(\{\pm 1\})$. Fix $x_1, \ldots, x_n \in \mathcal{X}$. Consider the process

$$Z_t := \sum_{i=1}^n \epsilon_i \ell(t, x_i).$$

Note that for all $t, s \in T$, $\epsilon_i(\ell(t, x_i) - \ell(s, x_i))$ is bounded between $-|\ell(t, x_i) - \ell(s, x_i)|$ and $|\ell(t, x_i) - \ell(s, x_i)|$ and $|\ell(t, x_i) - \ell(s, x_i)|$ and hence is $(\ell(t, x_i) - \ell(s, x_i))^2$ -sub-Gaussian. Therefore,

$$\mathbb{E}\left[\exp\left(\lambda(Z_t - Z_s)\right)\right] = \mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^n \epsilon_i(\ell(t, x_i) - \ell(s, x_i))\right)\right]$$
$$= \prod_{i=1}^n \mathbb{E}\left[\exp\left(\lambda\epsilon_i(\ell(t, x_i) - \ell(s, x_i))\right)\right]$$
$$\leq \prod_{i=1}^n \mathbb{E}\left[\exp\left(\frac{\lambda^2}{2}(\ell(t, x_i) - \ell(s, x_i))^2\right)\right]$$
$$\leq \prod_{i=1}^n \mathbb{E}\left[\exp\left(\frac{\lambda^2}{2}||t - s||^2\right)\right] \quad (\text{ by Lipschitz condition })$$
$$= \exp\left(\frac{\lambda^2 n||s - t||^2}{2}\right)$$

So $\{Z_t\}_{t\in T}$ is *n*-sub-Gaussian for norm $||\cdot||$.

Remark Let's use sub-Gaussianity and Radamacher symmetrization to control ULLN. All we want to argue is that

$$\mathbb{E}\sup_{f\in\mathcal{F}}|P_nf-Pf|=o(1).$$

2 Uniform laws via Entropy/Covering numbers

Definition 2.1. For empirical distribution P_n , let $L_p(P_n)$ norm be defined as

$$||f - g||_{L_p(P_n)}^p := \int |f(x) - g(x)|^p dP_n(x) = \frac{1}{n} \sum_{i=1}^n |f(X_i) - g(X_i)|^p.$$

We shall use this for symmetrized process.

Theorem 1. Let \mathcal{F} be a class of functions $f : \mathcal{X} \longrightarrow \mathbb{R}$, with envelope $F : \mathcal{X} \longrightarrow \mathbb{R}^+$ (i.e. $|f(x)| \leq F(x), \forall x \in \mathcal{X}, f \in \mathcal{F}$). Suppose $F \in L_1(P)$. Let $\mathcal{F}_M := \{f_M = fI(|f| \leq M) : f \in \mathcal{F}\}$. If

$$\log N(\mathcal{F}_M, L_1(P_n), \epsilon) = o_p(n), \ \epsilon > 0, M < \infty,$$

then

$$\sup_{f \in \mathcal{F}} |P_n(f) - P(f)| = ||P_n - P||_{\mathcal{F}} \xrightarrow{P} 0, \quad as \ n \longrightarrow \infty.$$

Proof Let $P_n^0 f := \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i)$ be the symmetrized process. Note that $|P_n^0 f| \le P_n |f| = ||f||_{L_1(P_n)}$.

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}|P_nf - Pf|\right] \leq 2\mathbb{E}\left[\sup_{f\in\mathcal{F}}|P_n^0f|\right]$$
$$\leq 2\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n\epsilon_i(f(X_i) - f_M(X_i))\right|\right] + 2\mathbb{E}\left[\sup_{f\in\mathcal{F}_M}|P_n^0f|\right]$$

Note that, $|f - f_M| = |f|I(|f| > M) \le FI(F > M)$, and therefore

$$\operatorname{RHS} \le 2\mathbb{E}\left[F(X)I(F(X) > M\right] + 2\mathbb{E}\left[||P_n^0||_{\mathcal{F}_M}\right]$$

Fix $\epsilon > 0$ and \mathcal{G} be a minimal ϵ -cover of \mathcal{F}_M w.r.t. norm $L_1(P_n)$. Then

$$\sup_{f \in \mathcal{F}_M} |P_n^0 f| \le \sup_{g \in \mathcal{G}} |P_n^0 g| + \epsilon.$$
(3)

Now conditional on $X_1^n := (X_1, \ldots, X_n)$, we have $nP_n^0 g$ is $\sum_{i=1}^n g(X_i)^2 = n||g||_{L_2(P_n)}^2$ sub-Gaussian, and therefore,

$$\sqrt{n}\mathbb{E}\left[\sup_{g\in\mathcal{G}}|P_n^0g| \left| X_1^n \right] \le \sqrt{2\sigma^2(X_1^n)\log(2|\mathcal{G}|)} = \sqrt{2\sigma^2(X_1^n)\log(2N(\mathcal{F}_M, L_1(P_n), \epsilon))}, \quad (4)$$

where, $\sigma^2(X_1^n) := \sup_{g \in \mathcal{G}} ||g||_{L_2(P_n)}^2 \leq M^2$. By assumption, $\sqrt{\log(2N(\mathcal{F}_M, L_1(P_n), \epsilon))} = o_p(\sqrt{n})$, which gives,

$$\mathbb{E}\left[||P_n - P||_{\mathcal{F}}\right] \le 2\mathbb{E}\left[F(X)I(F(X) > M\right] + 2\mathbb{E}\left[M \land o_p(1)\right] + 2\epsilon$$

Now the result follows by taking $n \to \infty$ first and then $M \uparrow \infty$ and $\epsilon \downarrow 0$ along with the fact that $\mathbb{E}F(X) < \infty$.

Remark Goal : Describe classes of functions \mathcal{F} such that the metric entropy $\log N(\mathcal{F}, L_1(P), \epsilon)$ are (uniformly) small for all distributions P.

Example 3: Let \mathcal{F} be a collection of 1-Lipschitz functions on [0, 1] with f(0) = 0. Fix $\epsilon > 0$. What is the ϵ -covering number in sup-norm?

Take $x_0 = 0 < x_1 < \cdots < x_n = 1$ such that $x_{i+1} - x_i = \epsilon$, for all $i = 0, \cdots, n-2$, and $1 - x_{n-1} \leq \epsilon$. Construct family of piecewise-linear functions with constant slope (-1, 0 or +1) in each $[x_i, x_{i+1}]$, for all $i = 0, \ldots, n-1$. Since at each position $x_0, x_1, \ldots, x_{n-1}$ we have three choices (up, down, flat) and we have $\left\lceil \frac{1}{\epsilon} \right\rceil$ many choice points, then we have $3^{\left\lceil \frac{1}{\epsilon} \right\rceil}$ such functions.

Any $f \in \mathcal{F}$ has some function g among these such that $||f - g||_{\infty} \leq \epsilon$. Also there is a subcollection of at least $3^{\lfloor \frac{1}{\epsilon} \rfloor}$ of these functions s.t. $||g - g'||_{\infty} \geq \epsilon$, for all $g, g' \in$ subcollection. So,

$$\log N(\mathcal{F}, || \cdot ||_{\infty}, \epsilon) \asymp \frac{1}{\epsilon} \log 3.$$

Consequently, as $L_1(P_n) \leq || \cdot ||_{\infty}$, we have

$$\frac{1}{n}\log N(\mathcal{F}, L_1(P_n), \epsilon) \le \frac{1}{n}\log N(\mathcal{F}, ||\cdot||_{\infty}, \epsilon) \le \frac{C}{n\epsilon}$$

Therefore, using (3) and (4), we get

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}|P_n^0f|\right] \leq \mathbb{E}\left[\sup_{g\in\mathcal{G}}|P_n^0g|\right] + \epsilon \leq \frac{C'}{\sqrt{n\epsilon}} + \epsilon, \ \forall \epsilon > 0.$$

Therefore,

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}|P_n^0f|\right] \le C_1 n^{-\frac{1}{3}}.$$

÷

Remark This rate of convergence is somewhat tight.

3 VC Classes

VC classes are big examples of classes allowing uniform laws and uniform entropy numbers. i.e., $\log N(\mathcal{F}, L_p(Q), \epsilon)$ is bounded independent of Q.

Definition 3.1. (Vapnik-Chervonenkis classes) Let C be a collection of subsets of \mathcal{X} and $\{x_1, \ldots, x_n\} \subset \mathcal{X}$ be a collection of points. A labelling of $x_1^n := (x_1, \ldots, x_n)$ is a vector $\mathbf{y} \in \{\pm 1\}^n$. We say that C shatters x_1^n if for all labelling $\mathbf{y} \in \{\pm 1\}^n$ of x_1^n , $\exists A_{\mathbf{y}} \in C$, s.t.

$$\begin{cases} x_i \in A_{\mathbf{y}}, & \text{if } y_i = 1, \\ x_i \notin A_{\mathbf{y}}, & \text{if } y_i = -1. \end{cases}$$

Example 4: Let $x_1, x_2, x_3 \in \mathbb{R}^2$ and they are not collinear. \mathcal{C} =Collection of half-spaces in \mathbb{R}^2 . Then \mathcal{C} shatters $\{x_1, x_2, x_3\}$.

Definition 3.2. Shattering number Given $C \subset 2^{\mathcal{X}}$ and $x_1, \ldots, x_n \in \mathcal{X}$, the shattering number of C on $x_1^n = (x_1, x_2, \ldots, x_n)$ is the number of labellings of x_n^1 that C realizes, i.e.,

$$\Delta_n(\mathcal{C}, x_1^n) := Card\{A \cap x_1, \dots, x_n : A \in \mathcal{C}\}.$$

Definition 3.3. (VC dimension) The VC dimension is the size of the largest shattered set, i.e.,

$$VC(\mathcal{C}) := \sup \left\{ n \in \mathbb{N} : \exists x_1, \dots, x_n \in \mathcal{X} \text{ s.t. } \Delta_n(\mathcal{C}, x_1^n) = 2^n \right\}.$$

Example 5: Let C is the collection of half spaces on \mathbb{R}^2 . We have shown $VC(\mathcal{C}) \geq 3$. Consider any 4 points on \mathbb{R}^2 . It is not possible to shatter these four points by C (for example, if you can form a convex quadrilateral joining these four points, label two diagonally opposite points by 1 and other two by -1. It is not possible to shatter this set for this labelling). So $VC(\mathcal{C}) = 3$.

Example 6: Let C is the collection of half spaces on \mathbb{R}^d . Then VC(C) = d + 1.

Lemma 2. Sauer-Shelah lemma For any collection of sets $C \subset 2^{\mathcal{X}}$,

$$\max_{x_1^n \in \mathcal{X}^n} \Delta_n(\mathcal{C}, x_1^n) \le \sum_{j=0}^{VC(\mathcal{C})} \binom{n}{j} = O(n^{VC(\mathcal{C})}).$$

Remark Consequence of Sauer-Shelah Lemma

If $\max_{x_1^n \in \mathcal{X}^n} \Delta_n(\mathcal{C}, x_1^n) < 2^n$, then $VC(\mathcal{C}) < n$ and hence

$$\Delta_m(\mathcal{C}, x_1^m) \le O(m^{VC(\mathcal{C})}) << 2^m.$$

Additional lectures notes on the course website provide a further reference on this topic.