
Stats 300b: Theory of Statistics Winter 2019

Lecture 11 – February 12

Lecturer: John Duchi Scribe: Souvik Ray

� Warning: these notes may contain factual errors

Reading: VdV ch. 19

Outline:

• Sub-Gaussian processes.

• Entropy numbers.

• Classes with small/finite entropy numbers (non-parametric but smooth classes, VC classes).

1 Sub-Gaussian Processes

Let {Xt}t∈T be a collection of real valued random variables.
Remark As usual, all processes we deal with in this class will be separable, i.e. there exists a
countable set T ′ ⊂ T such that {Xt}t∈T is determined by {Xt}t∈T ′ , i.e.,

sup
t,s∈T

|Xt −Xs| = sup
t,s∈T ′

|Xt −Xs|.

Definition 1.1. Let (T, d) be a metric space. We say {Xt}t∈T is a Sub-Gaussian process if

E [exp (λ(Xs −Xt))] ≤ exp

(
1

2
λ2d(s, t)2

)
, (1)

for all λ ∈ R; s, t ∈ T .

Remark We say {Xt}t∈T is a σ2-Sub-Gaussian process if

E [exp (λ(Xs −Xt))] ≤ exp

(
1

2
λ2σ2d(s, t)2

)
, (2)

for all λ ∈ R; s, t ∈ T . However, the metric d can be chosen so that the sub-gaussian constant is
absorbed into the metric d.

Example 1: (Gaussian process)
A Gaussian process on Rd is an example of a Sub-Gaussian process. To see this, let T = Rd, and
Z ∼ N (0, σ2Id). Then define Xt = 〈Z, t〉. Note that

Xs −Xt = 〈Z, s− t〉 ∼ N(0, σ2||t− s||22),

and therefore,

E[eλ(Xs−Xt)] ≤ exp

(
1

2
λ2σ2||s− t||22

)
.
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So this is σ2-sub-Gaussian w.r.t. L2 norm on Rd. ♣

Example 2: (Rademacher Process)
Let T ⊂ V, where V is a vector space equipped with a norm || · ||. Let ` : T ×X → R is 1-Lipschitz
in its first argument, meaning that

|`(t, x)− `(s, x)| ≤ ||t− s|| for all x ∈ X ; s, t ∈ T.

Let {εi}ni=1
i.i.d.∼ Uniform({±1}). Fix x1, . . . , xn ∈ X . Consider the process

Zt :=

n∑
i=1

εi`(t, xi).

Note that for all t, s ∈ T , εi(`(t, xi)−`(s, xi)) is bounded between −|`(t, xi)−`(s, xi)| and |`(t, xi)−
`(s, xi)| and hence is (`(t, xi)− `(s, xi))2-sub-Gaussian. Therefore,

E [exp (λ(Zt − Zs))] = E

[
exp

(
λ

n∑
i=1

εi(`(t, xi)− `(s, xi))

)]

=

n∏
i=1

E [exp (λεi(`(t, xi)− `(s, xi)))]

≤
n∏
i=1

E
[
exp

(
λ2

2
(`(t, xi)− `(s, xi))2

)]

≤
n∏
i=1

E
[
exp

(
λ2

2
||t− s||2

)]
( by Lipschitz condition )

= exp

(
λ2n||s− t||2

2

)
So {Zt}t∈T is n-sub-Gaussian for norm || · ||. ♣

Remark Let’s use sub-Gaussianity and Radamacher symmetrization to control ULLN. All we
want to argue is that

E sup
f∈F
|Pnf − Pf | = o(1).

2 Uniform laws via Entropy/Covering numbers

Definition 2.1. For empirical distribution Pn, let Lp(Pn) norm be defined as

||f − g||pLp(Pn) :=

∫
|f(x)− g(x)|pdPn(x) =

1

n

n∑
i=1

|f(Xi)− g(Xi)|p.

We shall use this for symmetrized process.
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Theorem 1. Let F be a class of functions f : X −→ R, with envelope F : X −→ R+ (i.e.
|f(x)| ≤ F (x), ∀ x ∈ X , f ∈ F). Suppose F ∈ L1(P ). Let FM := {fM = fI(|f | ≤M) : f ∈ F} . If

logN(FM , L1(Pn), ε) = op(n), ε > 0,M <∞,

then
sup
f∈F
|Pn(f)− P (f)| = ||Pn − P ||F

P−→ 0, as n −→∞.

Proof Let P 0
nf :=

1

n

∑n
i=1 εif(Xi) be the symmetrized process. Note that |P 0

nf | ≤ Pn|f | =

||f ||L1(Pn).

E

[
sup
f∈F
|Pnf − Pf |

]
≤ 2E

[
sup
f∈F
|P 0
nf |

]

≤ 2E

[
sup
f∈F
| 1
n

n∑
i=1

εi(f(Xi)− fM (Xi))|

]
+ 2E

[
sup
f∈FM

|P 0
nf |

]
.

Note that, |f − fM | = |f |I(|f | > M) ≤ FI(F > M), and therefore

RHS ≤ 2E [F (X)I(F (X) > M ] + 2E
[
||P 0

n ||FM
]
.

Fix ε > 0 and G be a minimal ε-cover of FM w.r.t. norm L1(Pn). Then

sup
f∈FM

|P 0
nf | ≤ sup

g∈G
|P 0
ng|+ ε. (3)

Now conditional on Xn
1 := (X1, . . . , Xn), we have nP 0

ng is
∑n

i=1 g(Xi)
2 = n||g||2L2(Pn)

sub-Gaussian,
and therefore,

√
nE

[
sup
g∈G
|P 0
ng|
∣∣∣∣Xn

1

]
≤
√

2σ2(Xn
1 ) log(2|G|) =

√
2σ2(Xn

1 ) log(2N(FM , L1(Pn), ε)), (4)

where, σ2(Xn
1 ) := supg∈G ||g||2L2(Pn)

≤ M2. By assumption,
√

log(2N(FM , L1(Pn), ε)) = op(
√
n),

which gives,
E [||Pn − P ||F ] ≤ 2E [F (X)I(F (X) > M ] + 2E [M ∧ op(1)] + 2ε.

Now the result follows by taking n −→∞ first and then M ↑ ∞ and ε ↓ 0 along with the fact that
EF (X) <∞.

Remark Goal : Describe classes of functions F such that the metric entropy logN(F , L1(P ), ε)
are (uniformly) small for all distributions P .

Example 3: Let F be a collection of 1-Lipschitz functions on [0, 1] with f(0) = 0. Fix ε > 0.
What is the ε-covering number in sup-norm?

Take x0 = 0 < x1 < · · · < xn = 1 such that xi+1 − xi = ε, for all i = 0, · · · , n − 2, and
1 − xn−1 ≤ ε. Construct family of piecewise-linear functions with constant slope (-1, 0 or +1) in
each [xi, xi+1], for all i = 0, . . . , n− 1. Since at each position x0, x1, . . . , xn−1 we have three choices

(up, down, flat) and we have d1ε e many choice points, then we have 3d
1
ε
e such functions.
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Any f ∈ F has some function g among these such that ||f − g||∞ ≤ ε. Also there is a

subcollection of at least 3b
1
ε
c of these functions s.t. ||g − g′||∞ ≥ ε, for all g, g′ ∈ subcollection. So,

logN(F , || · ||∞, ε) �
1

ε
log 3.

Consequently, as L1(Pn) ≤ || · ||∞, we have

1

n
logN(F , L1(Pn), ε) ≤ 1

n
logN(F , || · ||∞, ε) ≤

C

nε
.

Therefore, using (3) and (4), we get

E

[
sup
f∈F
|P 0
nf |

]
≤ E

[
sup
g∈G
|P 0
ng|

]
+ ε ≤ C ′√

nε
+ ε, ∀ ε > 0.

Therefore,

E

[
sup
f∈F
|P 0
nf |

]
≤ C1n

− 1
3 .

♣

Remark This rate of convergence is somewhat tight.

3 VC Classes

VC classes are big examples of classes allowing uniform laws and uniform entropy numbers. i.e.,
logN(F , Lp(Q), ε) is bounded independent of Q.
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Definition 3.1. (Vapnik-Chervonenkis classes) Let C be a collection of subsets of X and
{x1, . . . , xn} ⊂ X be a collection of points. A labelling of xn1 := (x1, . . . , xn) is a vector y ∈ {±1}n.
We say that C shatters xn1 if for all labelling y ∈ {±1}n of xn1 , ∃Ay ∈ C, s.t.{

xi ∈ Ay, if yi = 1,

xi /∈ Ay, if yi = −1.

Example 4: Let x1, x2, x3 ∈ R2 and they are not collinear. C=Collection of half-spaces in R2.
Then C shatters {x1, x2, x3} . ♣

Definition 3.2. Shattering number Given C ⊂ 2X and x1, . . . , xn ∈ X , the shattering number
of C on xn1 = (x1, x2, ...xn) is the number of labellings of x1n that C realizes, i.e.,

∆n(C, xn1 ) := Card{A ∩ x1, ....xn : A ∈ C}.

Definition 3.3. (VC dimension) The VC dimension is the size of the largest shattered set, i.e.,

VC(C) := sup {n ∈ N : ∃ x1, . . . , xn ∈ X s.t. ∆n(C, xn1 ) = 2n} .

Example 5: Let C is the collection of half spaces on R2. We have shown V C(C) ≥ 3. Consider
any 4 points on R2. It is not possible to shatter these four points by C ( for example, if you can
form a convex quadrilateral joining these four points, label two diagonally opposite points by 1 and
other two by −1. It is not possible to shatter this set for this labelling). So V C(C) = 3. ♣

Example 6: Let C is the collection of half spaces on Rd. Then V C(C) = d+ 1. ♣

Lemma 2. Sauer-Shelah lemma For any collection of sets C ⊂ 2X ,

max
xn1∈Xn

∆n(C, xn1 ) ≤
V C(C)∑
j=0

(
n

j

)
= O(nV C(C)).

Remark Consequence of Sauer-Shelah Lemma
If maxxn1∈Xn ∆n(C, xn1 ) < 2n, then V C(C) < n and hence

∆m(C, xm1 ) ≤ O(mV C(C)) << 2m.

Additional lectures notes on the course website provide a further reference on this topic.
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