Stats 300b: Theory of Statistics Winter 2019

Lecture 11 — February 12

Lecturer: John Duchi Scribe: Souvik Ray

@ Warning: these notes may contain factual errors
Reading: VdV ch. 19

Outline:
e Sub-Gaussian processes.
e Entropy numbers.

e Classes with small/finite entropy numbers (non-parametric but smooth classes, VC classes).

1 Sub-Gaussian Processes

Let {X¢}+er be a collection of real valued random variables.
Remark  As usual, all processes we deal with in this class will be separable, i.e. there exists a
countable set 7" C T such that {X;},.p is determined by {X;},cp, e,

sup | X; — X,| = sup [X; — X,|.
t,seT t,seT’

Definition 1.1. Let (T,d) be a metric space. We say {X;}ier is a Sub-Gaussian process if

E fexp (A(X, — X,))] < exp (;vd(s,w?) , W

forall N € R;s,t €T.

Remark  We say {X;}ser is a 0>-Sub-Gaussian process if

E [exp (A(X, — X0))] < exp (;Wd(s,t)?) , @)

for all A € R;s,t € T. However, the metric d can be chosen so that the sub-gaussian constant is
absorbed into the metric d.

Example 1: (Gaussian process)
A Gaussian process on R? is an example of a Sub-Gaussian process. To see this, let T = R¢, and
7 ~ N(0,0%1;). Then define X; = (Z,t). Note that

Xs = Xe=(Z,5 —t) ~ N(0,0°[|t - 5][3),

and therefore,
1
E[e)\(Xs*Xt)] < exp (2)\2U2|8 - tH%) :
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So this is o2-sub-Gaussian w.r.t. Ly norm on R%. &

Example 2: (Rademacher Process)
Let T C V, where V is a vector space equipped with a norm ||-||. Let £: T x X — R is 1-Lipschitz
in its first argument, meaning that

|0(t,x) — l(s,z)| < ||t —s|| for all x € X;s,t € T.

Let {e;}7 S Uniform({+1}). Fix z1,...,z, € X. Consider the process

n

Zt = Z Gig(t, .Z‘Z)

=1

Note that for all t,s € T, €;(¢(t, ;) — £(s,x;)) is bounded between —|{(t, z;) — (s, x;)| and [€(t, z;) —
(s, ;)| and hence is ((t, z;) — £(s,z;))?-sub-Gaussian. Therefore,

exp (x\ Z e (0(t,x;) — (s, xﬁ))]

=1

Elexp (MZy — Zs))] = E

I

@
I
=

E [exp (Ae; (£(t, ;) — £(s,25)))]

E [exp <);(€(t,ml-) — E(s,xi))2>]

IA

1=1

)\2
E [exp <2Ht — s]2>] ( by Lipschitz condition )

IN

=1

()\Qn||s — t||2>
=ep | 5 —

So {Zi},erp is n-sub-Gaussian for norm || - |[. &

Remark  Let’s use sub-Gaussianity and Radamacher symmetrization to control ULLN. All we
want to argue is that

Esup [P.f — Pf| = o(1).
fer

2 Uniform laws via Entropy/Covering numbers

Definition 2.1. For empirical distribution Py, let L,(P,) norm be defined as

17 =l 1y = [ 150 = g(a)PdPu(o) = 3T IFCX) — 9D
i=1

We shall use this for symmetrized process.



Theorem 1. Let F be a class of functions f : X — R, with envelope F : X — R (i.e.
lf(x)| < F(z), Ve e X, feF) Suppose F € Li(P). Let Fpr :={fm = fI(|fI<M): feF}. If

log N(Fur, L1(Pr), €) = op(n), €>0,M < oo,
then

P
?UP|Pn(f)—P(f)|:HPn—PH]-‘—>O, as n — 00.
eF

1
Proof Let PJf := =3 " ¢ f(X;) be the symmetrized process. Note that |PJf| < P,|f| =
n

fllLy(Pa)-
E |sup|P.f — Pf|| < 2E |sup|P}f|
feF fer
1 0
< 2B |sup |- > 6(f(X) = fur(Xa)|| +2E | sup |PYf|
ferF n i=1 feFnm
Note that, |f — far| = |fII(|f| > M) < FI(F > M), and therefore
RHS < 2E [F(X)I(F(X) > M] +2E [||P}||7,] -

Fix € > 0 and G be a minimal e-cover of Fj; w.r.t. norm Li(F,). Then

sup |P2f] < sup | Pog| + . (3)

feFnm geg
Now conditional on X} := (Xj,..., X,), we have nPlg is > I, g(X;)* = anH%Q(Pn) sub-Gaussian,

and therefore,

VnE

sup |Pg|
geG

X?] < \/QUQ(X{L) log(2|G|) = \/202(X?)log(2N(fM,L1(Pn)76))7 (4)

where, 0%(X') := sup,eg HgH%Q(Pn) < M?. By assumption, \/log(2N(Far, L1(P,),€)) = 0,(v/n),
which gives,

E[||P, — P||7] <2E[F(X)I(F(X) > M] +2E [M A 0,(1)] + 2e.
Now the result follows by taking n — oo first and then M 1 oo and € | 0 along with the fact that
EF(X) < oc. O

Remark  Goal : Describe classes of functions F such that the metric entropy log N (F, L1(P),€)
are (uniformly) small for all distributions P.

Example 3: Let F be a collection of 1-Lipschitz functions on [0,1] with f(0) = 0. Fix ¢ > 0.
What is the e-covering number in sup-norm?

Take zg = 0 < 1 < -+ < x, = 1 such that ;41 —2z; = ¢, forall ¢ = 0,--- ;n — 2, and
1 — 2,1 < e. Construct family of piecewise-linear functions with constant slope (-1, 0 or +1) in
each [x;, z;41], for all = 0,...,n — 1. Since at each position zg,x1,...,z,—1 we have three choices

(up, down, flat) and we have [%] many choice points, then we have 371 such functions.



18

XX
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Any f € F has some function g among these such that ||f — g|lcc < €. Also there is a
subcollection of at least 3L¢) of these functions s.t. llg — ¢'|loo = €, for all g, ¢’ € subcollection. So,

1
log N(F, || - [|oc, €) < ElogS.
Consequently, as L1 (Py,) < || - ||oo, we have
1 1 c
Mo N(F, Li(P).0) < Hog N(F |- o) < <

Therefore, using (3) and (4), we get

!/
sup|P0f| <E sup| VIl +e< +e Vex>0.
feF geg ne
Therefore,
E [sup [POf]| < Cin7s.
feFr
&

Remark  This rate of convergence is somewhat tight.

3 VC Classes

VC classes are big examples of classes allowing uniform laws and uniform entropy numbers. i.e.,
log N(F, L,(Q),€) is bounded independent of Q.



Definition 3.1. (Vapnik-Chervonenkis classes) Let C be a collection of subsets of X and
{z1,..., 2} C X be a collection of points. A labelling of x} := (x1,...,xy) is a vector'y € {£1}".
We say that C shatters ¥ if for all labelling y € {£1}" of 2}, A, € C, s.t.

T; € Ay7 ny’b = 17
Xy ¢ Aya nyz = -1

Example 4: Let x1, 72,23 € R? and they are not collinear. C=Collection of half-spaces in R2.
Then C shatters {z1,z2,23}. &
Definition 3.2. Shattering number Given C C 2% and x1,...,x, € X, the shattering number
of C on z% = (w1, 22, ...7,) is the number of labellings of xL that C realizes, i.e.,
A, (Cy2}) = Card{ANxy,...x, : A€ C}.
Definition 3.3. (VC dimension) The VC dimension is the size of the largest shattered set, i.e.,
VCO(C) :=sup{n e N:3Jzy,...,z, € X s.t. A,(C,2])=2"}.

Example 5: Let C is the collection of half spaces on R2. We have shown VC(C) > 3. Consider
any 4 points on R?. It is not possible to shatter these four points by C ( for example, if you can
form a convex quadrilateral joining these four points, label two diagonally opposite points by 1 and
other two by —1. It is not possible to shatter this set for this labelling). So VC(C) =3. &

Example 6: Let C is the collection of half spaces on RY. Then VC(C) =d+1. &

Lemma 2. Sauer-Shelah lemma For any collection of sets C C 2%,

Ve (e) n
max An(C,2}) < Y () = 0(n"c©),
TreXx™ 2o i

Remark Consequence of Sauer-Shelah Lemma
If maxgnexn Ap(C,27) < 2", then VC(C) < n and hence

A (C, 2T < O(mYCO)) << 2™,

Additional lectures notes on the course website provide a further reference on this topic.



