$$
\text { Lecture } 8 \text { - January } 31
$$

Lecturer: John Duchi
Scribe: Chen Lu, Linjia Wu

(2)Warning: these notes may contain factual errors

Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-Statistics

- Projections in Hilbert spaces
- Conditional expectations
- Hájek projections
- Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture:
Given a symmetric kernel function $h: \mathcal{X}^{r} \rightarrow \mathbb{R}$, the goal is to estimate

$$
\theta:=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{r}\right)\right], X_{i} \stackrel{i i d}{\sim} P .
$$

Define the U-Statistic as

$$
U_{n}:=\frac{1}{\binom{n}{r}} \sum_{\beta \subseteq[n],|\beta|=r} h\left(X_{\beta}\right) .
$$

For each $c \in\{0, \ldots, r\}$, define

$$
h_{c}\left(x_{1: c}\right):=\mathbb{E}\left[h\left(X_{1: r} \mid X_{1: c}=x_{1: c}\right] .\right.
$$

and define

$$
\zeta_{c}:=\operatorname{Var}\left[h_{c}\left(X_{1: c}\right)\right]=\operatorname{Cov}\left(h\left(X_{A}\right), h\left(X_{B}\right)\right),
$$

where $|A \cap B|=c$.

$$
\operatorname{Var}\left(U_{n}\right)=\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right)
$$

1 Projections

Definition 1.1. A vector space \mathcal{H} is a Hilbert space if it is a complete normed vector space with inner product $\langle\cdot, \cdot\rangle$, where the norm $\|u\|^{2}=\langle u, u\rangle$ and

$$
\langle\alpha x, y\rangle=\alpha\langle x, y\rangle=\alpha\langle y, x\rangle, \text { all } \alpha \in \mathbb{R},
$$

and

$$
\langle x+y, u+v\rangle=\langle x, u\rangle+\langle y, u\rangle+\langle x, v\rangle+\langle y, v\rangle .
$$

Example: \mathbb{R}^{n} with $\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}$
Example: $L^{2}(P)=\left\{f: \mathcal{X} \rightarrow \mathbb{R}, \int f(x)^{2} d P(x)<\infty\right\}$ with $\langle f, g\rangle=\int f(x) g(x) d P(x)$, we have $\langle f, g\rangle \leq\|f\| \mid\|g\| \|$ by Cauchy-Schwartz inequality.

Let $\mathcal{S} \subseteq \mathcal{H}$ be a closed linear subspace of \mathcal{H} (i.e. \mathcal{S} contains 0 and all the linear combinations of elements in itself).

Definition 1.2. For any $v \in \mathcal{H}$, we define the projection of v onto \mathcal{S} as

$$
\pi_{\mathcal{S}}(v):=\underset{s \in \mathcal{S}}{\operatorname{argmin}}\left\{\|s-v\|_{2}^{2}\right\} .
$$

Theorem 1. The projection $\pi_{\mathcal{S}}(v)$ exists, is unique, and is unique and characterized by

$$
\begin{equation*}
\left\langle v-\pi_{\mathcal{S}}(v), s\right\rangle=0 \tag{1}
\end{equation*}
$$

for all $s \in \mathcal{S}$ (orthogonality).
Example: In $L^{2}(P)$, let \mathcal{S} be a collection of random variables (or functions) with $\mathbb{E}\left(s^{2}\right)<\infty$ for all $s \in \mathcal{S}$ and closed under linear combinations (i.e. $\forall s_{1}, s_{2} \in \mathcal{S}$ then $\alpha_{1} s_{1}+\alpha_{2} s_{2} \in \mathcal{S}$). Then \hat{s} is a projection of T onto \mathcal{S} iff

$$
\mathbb{E}[(T-\hat{s}) s]=0
$$

for all $s \in \mathcal{S}$.

Proposition 2 (Moreau Decomposition). For any $v \in \mathcal{H}$ and \mathcal{S} is a subspace, we have

$$
\|v\|^{2}=\|\pi(v)\|^{2}+\|v-\pi(v)\|^{2} .
$$

Proof of Proposition

Since $\langle v-\pi(v), \pi(v)\rangle=0$, then

$$
\|v\|^{2}=\|v-\pi(v)+\pi(v)\|^{2}=\|\pi(v)\|^{2}+\|v-\pi(v)\|^{2}+2\langle v-\pi(v), \pi(v)\rangle=0 .
$$

Conditional Expectations(Projections in $L^{2}(P)$)

Let's define $\mathcal{S}=\{$ linear span of $g(Y)$ for all measurable functions g and some random variable $Y\}$.
Definition 1.3. Define conditional expectation as the projection of X onto \mathcal{S}. That is how well we can approximate X as the function of Y.

$$
\begin{aligned}
\mathbb{E}[X \mid Y] & :=\text { Projections of } X \text { onto } \mathcal{S} \\
& =\text { Best "predictor" of } X \text { onto } \mathcal{S} .
\end{aligned}
$$

$\mathbb{E}[X \mid Y]$ is the unique (up to measure 0 sets) function of Y such that

$$
\mathbb{E}[(X-\mathbb{E}[X \mid Y]) g(Y)]=0
$$

for all $g \in \mathcal{S}$.

A few consequences:

1. (Tower Property) $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$ (take $g=1$)
2. For any measurable $f, \mathbb{E}[f(Y) X \mid Y]=f(Y) \mathbb{E}[X \mid Y]$
3. (Tower property) $\mathbb{E}: \mathbb{E}[\mathbb{E}[X \mid Y, Z] \mid Y]=\mathbb{E}[X \mid Y]$

Sketch of Proof

For 2,

$$
\mathbb{E}[f(Y) X-f(Y) \mathbb{E}[X \mid Y]) g(Y)]=\mathbb{E}[(X-\mathbb{E}[X \mid Y] f(Y) g(Y)]=0
$$

for all measurable g.

Consequence: This allows us to ignore smaller order staff!
Let T_{n} be random variables and \mathcal{S}_{n} be a sequence of subspaces of $L^{2}(P)$. Let's define

$$
\hat{S}_{n}=\pi_{\mathcal{S}_{n}}\left(T_{n}\right)=\mathbb{E}\left[T_{n} \mid \mathcal{S}_{n}\right] .
$$

Proposition 3. Let $\sigma^{2}(X)=\operatorname{Var}(X)$, if $\frac{\sigma^{2}\left(T_{n}\right)}{\sigma^{2}\left(\widehat{S}_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$ then

$$
\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sigma\left(T_{n}\right)}-\frac{\widehat{S}_{n}-\mathbb{E}\left[\widehat{S}_{n}\right]}{\sigma\left(\widehat{S}_{n}\right)} \xrightarrow{p} 0
$$

Proof Let $A_{n}=\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sigma\left(T_{n}\right)}-\frac{\widehat{S}_{n}-\mathbb{E}\left[\widehat{S}_{n}\right]}{\sigma\left(\widehat{S}_{n}\right)}$. Note that $\mathbb{E}\left[A_{n}\right]=0$. Thus, if we can show that $\operatorname{Var}\left(A_{n}\right) \rightarrow$ 0 , we are done.

$$
\begin{gathered}
\operatorname{Var}\left(A_{n}\right)=\operatorname{Var}\left(\frac{T_{n}-\mathbb{E}\left[T_{n}\right]}{\sigma\left(T_{n}\right)}\right)+\operatorname{Var}\left(\frac{\widehat{S}_{n}-\mathbb{E}\left[\widehat{S}_{n}\right]}{\sigma\left(\widehat{S}_{n}\right)}\right)-\frac{2 \operatorname{Cov}\left(T_{n}, \widehat{S}_{n}\right)}{\sigma\left(T_{n}\right) \sigma\left(\widehat{S}_{n}\right)} \\
=2-\frac{2 \operatorname{Cov}\left(T_{n}, \widehat{S}_{n}\right)}{\sigma\left(T_{n}\right) \sigma\left(\widehat{S}_{n}\right)}
\end{gathered}
$$

Now using the fact that $T_{n}-\widehat{S}_{n}$ is orthogonal to \widehat{S}_{n} we have:

$$
\begin{aligned}
\operatorname{Cov}\left(T_{n}, \widehat{S}_{n}\right) & =\mathbb{E}\left[T_{n} \widehat{S}_{n}\right]-\mathbb{E}\left[T_{n}\right] \mathbb{E}\left[\widehat{S}_{n}\right] \\
& =\mathbb{E}\left[\left(T_{n}-\widehat{S}_{n}+\widehat{S}_{n}\right) \widehat{S}_{n}\right]-\mathbb{E}\left[\mathbb{E}\left[T_{n} \mid \mathcal{S}_{n}\right]\right] \mathbb{E}\left[\widehat{S}_{n}\right] \\
& =\mathbb{E}\left[\left(T_{n}-\mathbb{E}\left[T_{n} \mid \mathcal{S}_{n}\right]\right) \widehat{S}_{n}\right]+\mathbb{E}\left[\widehat{S}_{n}^{2}\right]-\mathbb{E}\left[\widehat{S}_{n}\right]^{2} \\
& =\mathbb{E}\left[\widehat{S}_{n}^{2}\right]-\mathbb{E}\left[\widehat{S}_{n}\right]^{2} \\
& =\operatorname{Var}\left(\widehat{S}_{n}\right) .
\end{aligned}
$$

Hence,

$$
\operatorname{Var}\left(A_{n}\right)=2\left(1-\frac{\sigma\left(\widehat{S}_{n}\right)}{\sigma\left(T_{n}\right)}\right) \rightarrow 0
$$

Which also gives us $A_{n} \rightarrow 0$ in $L_{2}(P)$.

Hájek Projections

Lemma 4 (11.10 in VDV). Let X_{1}, \ldots, X_{n} be independent. Let $\mathcal{S}=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right): g_{i} \in L_{2}(P)\right\}$. If $\mathbb{E}\left[T^{2}\right]<\infty$, let $\widehat{S}=\pi_{\mathcal{S}}(T)$, then

$$
\begin{equation*}
\widehat{S}=\sum_{i=1}^{n} \mathbb{E}\left[T \mid X_{i}\right]-(n-1) \mathbb{E}[T] . \tag{2}
\end{equation*}
$$

Proof Note that, by independence of $X_{i} \mathrm{~S}$,

$$
\mathbb{E}\left[\mathbb{E}\left[T \mid X_{i}\right] \mid X_{j}\right]= \begin{cases}\mathbb{E}\left[T \mid X_{i}\right] & \text { if } i=j, \\ \mathbb{E}[T] & \text { if } i \neq j .\end{cases}
$$

If \widehat{S} is as stated in Equation 2, we prove that $T-\widehat{S}$ is orthogonal to \mathcal{S}. We have:

$$
\begin{aligned}
\mathbb{E}\left[\widehat{S} \mid X_{j}\right] & =(n-1) \mathbb{E} T+\mathbb{E}\left[T \mid X_{j}\right]-(n-1) \mathbb{E} T \\
& =\mathbb{E}\left[T \mid X_{j}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{E}\left[(T-\widehat{S}) g_{j}\left(X_{j}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[T-\widehat{S} \mid X_{j}\right] g_{j}\left(X_{j}\right)\right] \\
& =0, \\
\mathbb{E}\left[(T-\widehat{S}) \sum_{j=1}^{n} g_{j}\left(X_{j}\right)\right] & =0 .
\end{aligned}
$$

Thus, $T-\widehat{S}$ must be orthogonal to \mathcal{S}, so \widehat{S} is the projection of T.

2 Application to U-statistics

The main idea is to use (Hájek) projections onto sets of the form :

$$
\mathcal{S}_{n}=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right): g_{i}\left(X_{i}\right) \in L_{2}(P)\right\} .
$$

to approximate U_{n} by a sum of independent random variables.
Theorem 5. Let h be a symmetric kernel (function) of order r and let $\mathbb{E}\left[h^{2}\right]<\infty$, U_{n} be the associated U-statistic, $\theta=\mathbb{E}\left[U_{n}\right]=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{n}\right)\right]$. If \widehat{U}_{n} is the projection of $U_{n}-\theta$ onto \mathcal{S}_{n} then

$$
\widehat{U}_{n}=\sum_{i=1}^{n} \mathbb{E}\left[U_{n}-\theta \mid X_{i}\right]=\frac{r}{n} \sum_{i=1}^{n} h_{1}\left(X_{i}\right)
$$

where $h_{1}(x)=\mathbb{E}\left[h\left(x, X_{2}, \ldots, X_{r}\right)\right]-\theta$.

Proof The first equality is just a direct application of Lemma 4, noting that $\mathbb{E}\left[U_{n}-\theta\right]=0$. We now show the second equality. Let $\beta \subseteq[n],|\beta|=r$, then

$$
\mathbb{E}\left[h\left(X_{\beta}\right)-\theta \mid X_{i}\right]=\left\{\begin{array}{ll}
0 & i \notin \beta \\
h_{1}\left(X_{i}\right) & i \in \beta
\end{array} .\right.
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[U_{n}-\theta \mid X_{i}\right] & =\binom{n}{r}^{-1} \sum_{|\beta|=r} \mathbb{E}\left[h\left(X_{\beta}\right)-\theta \mid X_{i}=x\right] \\
& =\binom{n}{r}^{-1} \sum_{|\beta|=r, i \in \beta} h_{1}\left(X_{i}\right) \\
& =\binom{n}{r}^{-1}\binom{n-1}{r-1} h_{1}\left(X_{i}\right)=\frac{r}{n} h_{1}\left(X_{i}\right)
\end{aligned}
$$

It follows that

$$
\widehat{U}_{n}=\sum_{i=1}^{n} \mathbb{E}\left[U_{n}-\theta \mid X_{i}\right]=\frac{r}{n} \sum_{i=1}^{n} h_{1}\left(X_{i}\right)
$$

Theorem 6. Using the same notations as in the preceding theorem, we have:
1.

$$
\sqrt{n}\left(U_{n}-\theta-\widehat{U}_{n}\right) \xrightarrow{\mathbb{P}} 0
$$

2.

$$
\sqrt{n} \widehat{U}_{n} \xrightarrow{d} \mathrm{~N}\left(0, r^{2} \zeta_{1}\right)
$$

3.

$$
\sqrt{n}\left(U_{n}-\theta\right) \xrightarrow{d} \mathrm{~N}\left(0, r^{2} \zeta_{1}\right)
$$

Proof $\sqrt{n} \widehat{U}_{n} \xrightarrow{d} \mathrm{~N}\left(0, r^{2} \zeta_{1}\right)$ is by direct application of the CLT.
Then, since

$$
\begin{aligned}
\operatorname{Var}\left(U_{n}\right) & =\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right) \\
\operatorname{Var}\left(\widehat{U}_{n}\right) & =\frac{r^{2}}{n} \zeta_{1}
\end{aligned}
$$

we have $\frac{\operatorname{Var}\left(U_{n}\right)}{\operatorname{Var}\left(\hat{U}_{n}\right)} \rightarrow 1$ as $n \rightarrow \infty$.
Using, Property 3 , we get that $\sqrt{n}\left(U_{n}-\theta\right)-\sqrt{n} \widehat{U}_{n} \xrightarrow{\mathbb{P}} 0$
By application of Slutsky's theorem we can conclude the desired results.

Example 1 (Signed Rank Test): This example shows how the U-statistics can be useful because it requires minimal modelling assumptions. Consider $\theta=\mathbb{P}\left[X_{1}+X_{2}>0\right]$, with $U_{n}=$ $\binom{n}{2}^{-1} \sum_{i<j} \mathbf{1}\left\{X_{i}+X_{j}>0\right\}$. Let

$$
\begin{aligned}
H_{0} & :\left\{\text { Distribution } P \text { of } X_{i} \text { is symmetric about } 0 \text { and has continuous CDF }\right\} \\
& \equiv\{F(x)=\mathbb{P}[X \leq x]=1-F(-x) \forall x \in \mathbb{R}\}
\end{aligned}
$$

Note that, given X_{i},

$$
\begin{aligned}
h_{1}\left(X_{i}\right) & =\mathbb{E}\left[1\left\{X_{i}+X_{j}>0\right\} \mid X_{i}\right] \\
& =\mathbb{P}\left[X_{j}>-X_{i} \mid X_{i}\right] \\
& =1-F\left(-X_{i}\right)
\end{aligned}
$$

As a result, we have

$$
\begin{aligned}
\widehat{U}_{n} & =\sum_{i=1}^{n} \mathbb{E}\left[U_{n}-\theta \mid X_{i}\right] \\
& =-\frac{2}{n} \sum_{i=1}^{n}\left(F\left(-X_{i}\right)-\mathbb{E}\left[F\left(-X_{i}\right)\right]\right)
\end{aligned}
$$

Under H_{0}, we have $F(x)=1-F(x)$ and $\theta=\frac{1}{2}$. Becuase we assumed that $F(x)$ is continuous, $F\left(X_{i}\right) \sim \operatorname{Unif}[0,1]$. Thus we have

$$
\widehat{U}_{n} \stackrel{d}{=} \frac{2}{n} \sum_{i=1}^{n}\left(Y_{i}-\frac{1}{2}\right)
$$

where $Y_{i} \stackrel{i i d}{\sim} \operatorname{Unif}[0,1]$. Because the variance of a uniform random vairable is $\frac{1}{12}$, the central limit theorem gives us $\sqrt{n} \widehat{U}_{n} \xrightarrow{d} N\left(0, \frac{1}{3}\right)$. We can then test using quantiles of the normal distribution.

