Stats 300b: Theory of Statistics

Winter 2019

Lecture 8 – January 31

Lecturer: John Duchi

Scribe: Chen Lu, Linjia Wu

Warning: these notes may contain factual errors

Reading: VDV Chapter 11, 12

Outline: Asymptotics of U-Statistics

- Projections in Hilbert spaces
- Conditional expectations
- Hájek projections
- Aymptotic normality of U-statistics

Recap: Recall these definitions that we set up last lecture: Given a symmetric kernel function $h : \mathcal{X}^r \to \mathbb{R}$, the goal is to estimate

$$\theta := \mathbb{E}[h(X_1, ..., X_r)], X_i \stackrel{iid}{\sim} P.$$

Define the U-Statistic as

$$U_n := \frac{1}{\binom{n}{r}} \sum_{\beta \subseteq [n], |\beta| = r} h(X_\beta)$$

For each $c \in \{0, \ldots, r\}$, define

$$h_c(x_{1:c}) := \mathbb{E}[h(X_{1:r}|X_{1:c} = x_{1:c}]]$$

and define

$$\zeta_c := \operatorname{Var}[h_c(X_{1:c})] = \operatorname{Cov}(h(X_A), h(X_B)),$$

where $|A \cap B| = c$.

$$\operatorname{Var}(U_n) = \frac{r^2}{n}\zeta_1 + O(n^{-2}),$$

1 Projections

Definition 1.1. A vector space \mathcal{H} is a Hilbert space if it is a complete normed vector space with inner product $\langle \cdot, \cdot \rangle$, where the norm $||u||^2 = \langle u, u \rangle$ and

$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle = \alpha \langle y, x \rangle, all \ \alpha \in \mathbb{R},$$

and

$$\langle x + y, u + v \rangle = \langle x, u \rangle + \langle y, u \rangle + \langle x, v \rangle + \langle y, v \rangle$$

Example: \mathbb{R}^n with $\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$

Example: $L^2(P) = \{f : \mathcal{X} \to \mathbb{R}, \int f(x)^2 dP(x) < \infty\}$ with $\langle f, g \rangle = \int f(x)g(x)dP(x)$, we have $\langle f, g \rangle \leq ||f|||g|||$ by Cauchy-Schwartz inequality.

Let $S \subseteq H$ be a closed linear subspace of H (i.e. S contains 0 and all the <u>linear combinations</u> of elements in itself).

Definition 1.2. For any $v \in \mathcal{H}$, we define the projection of v onto S as

$$\pi_{\mathcal{S}}(v) := \operatorname*{argmin}_{s \in \mathcal{S}} \{ \|s - v\|_2^2 \}.$$

Theorem 1. The projection $\pi_{\mathcal{S}}(v)$ exists, is unique, and is unique and characterized by

$$\langle v - \pi_{\mathcal{S}}(v), s \rangle = 0 \tag{1}$$

for all $s \in S$ (orthogonality).

Example: In $L^2(P)$, let S be a collection of random variables (or functions) with $\mathbb{E}(s^2) < \infty$ for all $s \in S$ and closed under linear combinations (i.e. $\forall s_1, s_2 \in S$ then $\alpha_1 s_1 + \alpha_2 s_2 \in S$). Then \hat{s} is a projection of T onto S iff

$$\mathbb{E}[(T-\hat{s})s] = 0$$

for all $s \in \mathcal{S}$.

Proposition 2 (Moreau Decomposition). For any $v \in \mathcal{H}$ and S is a subspace, we have

$$||v||^{2} = ||\pi(v)||^{2} + ||v - \pi(v)||^{2}.$$

Proof of Proposition Since $(y - \pi(y), \pi(y)) = 0$ then

Since
$$\langle v - \pi(v), \pi(v) \rangle \equiv 0$$
, then

$$|v||^{2} = ||v - \pi(v) + \pi(v)||^{2} = ||\pi(v)||^{2} + ||v - \pi(v)||^{2} + 2\langle v - \pi(v), \pi(v) \rangle = 0.$$

Conditional Expectations (Projections in $L^2(P)$)

Let's define $S = \{ \text{linear span of } g(Y) \text{ for all measurable functions } g \text{ and some random variable } Y \}.$

Definition 1.3. Define conditional expectation as the projection of X onto S. That is how well we can approximate X as the function of Y.

$$\mathbb{E}[X|Y] := Projections of X onto S$$

= Best "predictor" of X onto S.

 $\mathbb{E}[X|Y]$ is the unique (up to measure 0 sets) function of Y such that

$$\mathbb{E}\left[\left(X - \mathbb{E}[X|Y]\right)g(Y)\right] = 0$$

for all $g \in S$.

A few consequences:

- 1. (Tower Property) $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$ (take g = 1)
- 2. For any measurable f, $\mathbb{E}[f(Y)X \mid Y] = f(Y)\mathbb{E}[X \mid Y]$
- 3. (Tower property) \mathbb{E} : $\mathbb{E}[\mathbb{E}[X|Y, Z]|Y] = \mathbb{E}[X|Y]$

Sketch of Proof

For 2,

$$\mathbb{E}[f(Y)X - f(Y)\mathbb{E}[X|Y])g(Y)] = \mathbb{E}[(X - \mathbb{E}[X|Y]f(Y)g(Y)] = 0$$

for all measurable g.

Consequence: This allows us to ignore smaller order staff!

Let T_n be random variables and S_n be a sequence of subspaces of $L^2(P)$. Let's define

$$\hat{S}_n = \pi_{\mathcal{S}_n}(T_n) = \mathbb{E}[T_n | \mathcal{S}_n].$$

Proposition 3. Let $\sigma^2(X) = \operatorname{Var}(X)$, if $\frac{\sigma^2(T_n)}{\sigma^2(\widehat{S}_n)} \to 1$ as $n \to \infty$ then

$$\frac{T_n - \mathbb{E}[T_n]}{\sigma(T_n)} - \frac{\widehat{S}_n - \mathbb{E}[\widehat{S}_n]}{\sigma(\widehat{S}_n)} \xrightarrow{p} 0$$

Proof Let $A_n = \frac{T_n - \mathbb{E}[T_n]}{\sigma(T_n)} - \frac{\widehat{S}_n - \mathbb{E}[\widehat{S}_n]}{\sigma(\widehat{S}_n)}$. Note that $\mathbb{E}[A_n] = 0$. Thus, if we can show that $\operatorname{Var}(A_n) \to 0$, we are done.

$$\operatorname{Var}(A_n) = \operatorname{Var}\left(\frac{T_n - \mathbb{E}[T_n]}{\sigma(T_n)}\right) + \operatorname{Var}\left(\frac{\widehat{S}_n - \mathbb{E}[\widehat{S}_n]}{\sigma(\widehat{S}_n)}\right) - \frac{2\operatorname{Cov}(T_n, \widehat{S}_n)}{\sigma(T_n)\sigma(\widehat{S}_n)}$$
$$= 2 - \frac{2\operatorname{Cov}(T_n, \widehat{S}_n)}{\sigma(T_n)\sigma(\widehat{S}_n)}$$

Now using the fact that $T_n - \widehat{S}_n$ is orthogonal to \widehat{S}_n we have:

$$Cov(T_n, \widehat{S}_n) = \mathbb{E}[T_n \widehat{S}_n] - \mathbb{E}[T_n] \mathbb{E}[\widehat{S}_n]$$

= $\mathbb{E}[(T_n - \widehat{S}_n + \widehat{S}_n)\widehat{S}_n] - \mathbb{E}[\mathbb{E}[T_n \mid S_n]] \mathbb{E}[\widehat{S}_n]$
= $\mathbb{E}[(T_n - \mathbb{E}[T_n \mid S_n])\widehat{S}_n] + \mathbb{E}[\widehat{S}_n^2] - \mathbb{E}[\widehat{S}_n]^2$
= $\mathbb{E}[\widehat{S}_n^2] - \mathbb{E}[\widehat{S}_n]^2$
= $Var(\widehat{S}_n).$

Hence,

$$\operatorname{Var}(A_n) = 2\left(1 - \frac{\sigma(\widehat{S}_n)}{\sigma(T_n)}\right) \to 0$$

Which also gives us $A_n \to 0$ in $L_2(P)$.

Hájek Projections

Lemma 4 (11.10 in VDV). Let X_1, \ldots, X_n be independent. Let $S = \left\{ \sum_{i=1}^n g_i(X_i) : g_i \in L_2(P) \right\}$. If $\mathbb{E}[T^2] < \infty$, let $\widehat{S} = \pi_{\mathcal{S}}(T)$, then

$$\widehat{S} = \sum_{i=1}^{n} \mathbb{E}[T \mid X_i] - (n-1)\mathbb{E}[T].$$
(2)

Proof Note that, by independence of X_i s,

$$\mathbb{E}\left[\mathbb{E}[T \mid X_i] \mid X_j\right] = \begin{cases} \mathbb{E}[T \mid X_i] & \text{if } i = j, \\ \mathbb{E}[T] & \text{if } i \neq j. \end{cases}$$

If \widehat{S} is as stated in Equation 2, we prove that $T - \widehat{S}$ is orthogonal to \mathcal{S} . We have:

$$\mathbb{E}[\widehat{S} \mid X_j] = (n-1)\mathbb{E}T + \mathbb{E}[T \mid X_j] - (n-1)\mathbb{E}T$$
$$= \mathbb{E}[T \mid X_j]$$

Thus

$$\mathbb{E}[(T - \widehat{S})g_j(X_j)] = \mathbb{E}[\mathbb{E}[T - \widehat{S} \mid X_j]g_j(X_j)]$$
$$= 0,$$
$$\mathbb{E}\left[(T - \widehat{S})\sum_{j=1}^n g_j(X_j)\right] = 0.$$

Thus, $T - \hat{S}$ must be orthogonal to S, so \hat{S} is the projection of T.

2 Application to U-statistics

The main idea is to use (Hájek) projections onto sets of the form :

$$\mathcal{S}_n = \Big\{ \sum_{i=1}^n g_i(X_i) : g_i(X_i) \in L_2(P) \Big\}.$$

to approximate U_n by a sum of independent random variables.

Theorem 5. Let h be a symmetric kernel (function) of order r and let $\mathbb{E}[h^2] < \infty$, U_n be the associated U-statistic, $\theta = \mathbb{E}[U_n] = \mathbb{E}[h(X_1, \ldots, X_n)]$. If \hat{U}_n is the projection of $U_n - \theta$ onto S_n then

$$\widehat{U}_n = \sum_{i=1}^n \mathbb{E}[U_n - \theta | X_i] = \frac{r}{n} \sum_{i=1}^n h_1(X_i)$$

where $h_1(x) = \mathbb{E}[h(x, X_2, ..., X_r)] - \theta$.

Proof The first equality is just a direct application of Lemma 4, noting that $\mathbb{E}[U_n - \theta] = 0$. We now show the second equality. Let $\beta \subseteq [n]$, $|\beta| = r$, then

$$\mathbb{E}[h(X_{\beta}) - \theta | X_i] = \begin{cases} 0 & i \notin \beta \\ h_1(X_i) & i \in \beta \end{cases}$$

Then

$$\mathbb{E}[U_n - \theta | X_i] = \binom{n}{r}^{-1} \sum_{|\beta|=r} \mathbb{E}[h(X_\beta) - \theta | X_i = x]$$
$$= \binom{n}{r}^{-1} \sum_{|\beta|=r, i \in \beta} h_1(X_i)$$
$$= \binom{n}{r}^{-1} \binom{n-1}{r-1} h_1(X_i) = \frac{r}{n} h_1(X_i)$$

It follows that

$$\widehat{U}_n = \sum_{i=1}^n \mathbb{E}[U_n - \theta | X_i] = \frac{r}{n} \sum_{i=1}^n h_1(X_i)$$

Theorem 6. Using the same notations as in the preceding theorem, we have:

1.

$$\sqrt{n}(U_n - \theta - \widehat{U}_n) \xrightarrow{\mathbb{P}} 0$$

2.
 $\sqrt{n}\widehat{U}_n \xrightarrow{d} \mathsf{N}(0, r^2\zeta_1)$
3.
 $\sqrt{n}(U_n - \theta) \xrightarrow{d} \mathsf{N}(0, r^2\zeta_1)$

Proof $\sqrt{n}\widehat{U}_n \xrightarrow{d} \mathsf{N}(0, r^2\zeta_1)$ is by direct application of the CLT. Then, since

$$\operatorname{Var}(U_n) = \frac{r^2}{n}\zeta_1 + O(n^{-2})$$
$$\operatorname{Var}(\widehat{U}_n) = \frac{r^2}{n}\zeta_1$$

we have $\frac{\operatorname{Var}(U_n)}{\operatorname{Var}(\widehat{U}_n)} \to 1$ as $n \to \infty$.

Using, Property 3, we get that $\sqrt{n}(U_n - \theta) - \sqrt{n}\widehat{U}_n \xrightarrow{\mathbb{P}} 0$ By application of Slutsky's theorem we can conclude the desired results.

Example 1 (Signed Rank Test): This example shows how the U-statistics can be useful because it requires minimal modelling assumptions. Consider $\theta = \mathbb{P}[X_1 + X_2 > 0]$, with $U_n = \binom{n}{2}^{-1} \sum_{i < j} \mathbf{1} \{X_i + X_j > 0\}$. Let

 $H_0: \{ \text{Distribution } P \text{ of } X_i \text{ is symmetric about } 0 \text{ and has continuous CDF} \} \\ \equiv \{ F(x) = \mathbb{P}[X \le x] = 1 - F(-x) \forall x \in \mathbb{R} \}$

Note that, given X_i ,

$$h_1(X_i) = \mathbb{E}[\mathbf{1} \{X_i + X_j > 0\} \mid X_i]$$
$$= \mathbb{P}[X_j > -X_i \mid X_i]$$
$$= 1 - F(-X_i)$$

As a result, we have

$$\widehat{U}_n = \sum_{i=1}^n \mathbb{E}[U_n - \theta \mid X_i]$$
$$= -\frac{2}{n} \sum_{i=1}^n \left(F(-X_i) - \mathbb{E}[F(-X_i)]\right)$$

Under H_0 , we have F(x) = 1 - F(x) and $\theta = \frac{1}{2}$. Becuase we assumed that F(x) is continuous, $F(X_i) \sim \text{Unif}[0, 1]$. Thus we have

$$\widehat{U}_n \stackrel{d}{=} \frac{2}{n} \sum_{i=1}^n (Y_i - \frac{1}{2})$$

where $Y_i \stackrel{iid}{\sim} \text{Unif}[0,1]$. Because the variance of a uniform random variable is $\frac{1}{12}$, the central limit theorem gives us $\sqrt{n}\widehat{U}_n \stackrel{d}{\to} N(0,\frac{1}{3})$. We can then test using quantiles of the normal distribution.