
Stats 300b: Theory of Statistics Winter 2019

Lecture 7– January 29

Lecturer: John Duchi Scribes: Kevin Han, Yuchen Wu

� Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1, VDV Chapter 11, 12

Outline:

• Finish “basic” tests

• U-Statistics

– Definitions

– Examples

– Variance calculation

1 Recap: Wald, Likelihood Ratio Tests

Goal: For fixed α > 0, find regions Cn such that for H0: {θ ∈ Θ0},

sup
θ∈Θ0

lim sup
n→∞

Pθ(Tn /∈ Cn) ≤ α

How to deal with nuisance/composite nulls, e.g.

Θ0 = {θ : [θ]1:k =
[
θ0
]
1:k
, θk+1, · · · , θd unspecified}

1.1 Wald Test

Let Σ(k)(θ) = First k × k block of I(θ)−1.

Cn,α =

{
θ ∈ Rd : ([θ]1:k − [θ0]1:k)

T
[
Σ(k)(θ0)

]−1
([θ]1:k − [θ0]1:k) ≤ u2

k,α/n

}
where u2

k,α was quantile of χ2
k, i.e. P (‖w‖22) ≥ u2

k,α = α for w ∼ N (0, Ik×k).

Tn : =

{
Reject if θ̂n /∈ Cn,α
Don’t Reject otherwise

2 Rao Test (Score Test)

We know the (limiting) distribution of Pn∇`θ = Pn ˙̀
θ = 1

n

∑n
i=1∇`θ(Xi) under Pθ, i.e.

√
n(Pn ˙̀

θ)
d→
Pθ
N (0, Iθ).

In H0 : θ = θ0 ∈ Rd, then

n (Pn∇`θ0)T I−1
θ0

(Pn∇`θ0)
d→
H0

χ2
d.
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Definition 2.1. Rao test is to define rejection region(
Pn ˙̀

θ0

)T
I−1
θ0

(
Pn ˙̀

θ0

)
≥
u2
d,α

n

Immediately, we have

lim
n→∞

PH0(reject) = α

Remark

• All of these tests (related score/asymptotic normality) strongly related to optimality. In
future, we compute powers under alternatives of form

H0 : θ = θ0 H1,n : θ = θ0 +
h√
n

Look at Power(h) := limn→∞ PH1,n(Tn rejects)

• Rao test has analogues for composite nulls

3 U-Statistics

3.1 Introduction

Suppose we have a function h of k variables, want to estimate θ := E [h(X1, · · · , Xk)] where Xi are
independent. How should we estimate θ given {Xi}ni=1?
Example: P (X1 ≥ X2 + t) h(y, z) = 1(y ≥ z + t) ♣

Example:

Var (X) =
1

2
E
[
(X1 −X2)2

]
= E

[
X2
]
− (EX)2. Xi’s are i.i.d.

h(x, y) =
1

2
(x− y)2

♣

To do this, use U-statistics.
Developed by Hoeffding (1940s-ish), one of fathers of nonparametric statistics. Idea is to develop
more “robust” tests, e.g. of location, that don’t make parametric modeling assumptions. e.g. want
more robustness than something like,

X ∼ N(θ1, 1) and Y ∼ N(θ2, 1), is θ1 <
>
θ2 ?

Allow us to abstract away many annoying details, still perform inference, testing, estimation.
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3.2 Definitions

Definition 3.1 (U-Statistic). For Xi
i.i.d∼ P , denote θ (P ) := EP [h (X1, ..., Xr)]. A U-statistic is a

random variable of the form

Un :=
1(
n
r

) ∑
|β|=r,β⊂[n]

h (Xβ)

where h : Xr → R is a symmetric (kernel) function, β ranges over all size r subsets of
[n] := {1, ..., n}, and Xβ := (Xi1 , ..., Xir) for β = (i1, ..., ir).

Remark The U in ”U-statistics” is because EP [Un] = θ (P ) := E[h(X1, ..., Xr)], so Un is
unbiased.

Why use a U-statistic at all? Why not use

h(X1, X2, ..., Xr)

or

1(
n
r

) n
r∑
`=1

h
(
X`(r−1)+1, ..., X`r

)
?

Let
{
X(1), ..., X(n)

}
be the sample with “index” information removed. (e.g. Order Statistics.

Generally a histogram. In EE terminology, called “type” of the sample.) Then, under Xi
i.i.d∼ P ,{

X(i)

}n
i=1

is a sufficient statistic. Observe that

E
{
h (X1, ..., Xr) |X(1), ..., X(n)

}
= Un :=

1(
n
r

) ∑
|β|=r,β⊂[n]

h (Xβ)

By Rao-Blackwellization, we know that for any convex (loss) function L and any r.v. Zn such that
E[Zn|(X(i))1≤i≤n] = Un,

E[L(Zn)] ≥ E[L(Un)].

3.3 Examples

Example (Sample Variance): Consider h (x, y) = 1
2 (x− y)2. Then E [h (X1, X2)] = 1

2

(
E
[
X2

1

]
+ E

[
X2

2

])
−

E [X1, X2] = Var (X). When we have more than two samples, we use

Un =
1(
n
2

) ∑
1≤i<j≤n

1

2
(Xi −Xj)

2

=
2

n(n− 1)

∑
1≤i<j≤n

1

2
(Xi −Xj)

2

=
1

2n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2

♣

Example (Gini’s Mean-Difference): h (x, y) = |x− y| and E [Un] = E [|X1 −X2|] . ♣

Example (Quantiles, r = 1):
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θ (P ) = P (X ≤ t) and h (X) = 1 {X ≤ t}

This is a first order U-statistic. ♣

Example (Signed Rank Statistic): Provide information about location of distributions

θ (P ) := P (X1 +X2 > 0) ,

This means h (x, y) = 1 {x+ y > 0} and Un = 1

(n2)

∑
i<j 1 {Xi +Xj > 0} . ♣

Definition 3.2 (Two-sample U-Statistic). Given two samples {X1, ..., Xn}and {Y1, ..., Yn}, N =
n+m, a two-sample U-statistic is a random variable of the form

U =
1(

n
r

)(
m
s

) ∑
|α|=s,α⊂[m]

∑
|β|=r,β⊂[n]

h (Xβ, Yα)

where h : Xr × Y s → R. h is symmetric in its first r arguments and in its last s arguments.

Big Use: Are samples coming from same distribution or not?

Example (Mann-Whitney Statistic): Test difference in locations of X and Y

Un,m =
1

nm

n∑
i=1

m∑
j=1

1 {Xi ≤ Yj} ,

E(UN ) = P(X ≤ Y ),

NULL:H0 = {P (X ≤ Y ) =
1

2
}, i.e. same location

♣ Game Plan: Can we get asymptotics of these U-statistics under appropriate distributions?

The answer is yes. Project out annoying(lower order) terms, see what is left(iid sums).

3.4 Variance of U-Statistics(Hoeffding)

This is a precursor to asymptotic normality because ”1st order terms” dominate everything else.

Definition 3.3. Assume that E
[
|h|2
]
<∞, Xi ∼ P , iid, for any c < r. Define

hc (X1, ..., Xc) := E

h
X1, ..., Xc︸ ︷︷ ︸

fixed

, Xc+1, ..., Xr︸ ︷︷ ︸
i.i.d P


 .

Remark

1. h0 = E [h (X1, ..., Xr)] = θ (P )
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2. E [hc (X1, ..., Xc)] = E [h (X1, ..., Xr)] = θ (P )

Definition 3.4.

ĥc : = hc − E [hc] = hc − θ (P )

E
[
ĥc

]
= 0

Then define

ζc := Var (hc (X1, ..., Xc)) = E
[
ĥ2
c

]
(Note that ĥ(x1:r) = h(x1:r)− θ(P ).)

Consider Variances: Fix A,B ⊂ [n], |A| = |B| = r, let |A ∩B| = c

Define: ζC = E
[
ĥ(XA)ĥ(XB)

]
Claim: ζC = E

[
ĥC(x1 : C)2

]
= Var(ĥC)

Proof Using the symmetry of h,

E
[
ĥ(XA)ĥ(XB)

]
= E

[
ĥ(XA\S , XS)ĥ(XB\S , XS)

]
= E

[
E[ĥ(XA\S , XS) | XS ] · E[ĥ(XB\S , XS) | XS ]

]
(since XA\S , XB\S indep.)

= E
[
ĥc(XS) · ĥc(XS)

]
= ζc.

Now let’s compute the variance of Un

Theorem 1. Let Un be an rth order U-statistic. Then

VarUn =
r2

n
ζ1 +O(n−2).

Proof There are
(
n
r

)(
r
c

)(
n−r
r−c
)

ways to select a pair of subsets of [n], each of size r, with c common
elements. Hence,

Un − θ =

(
n

r

)−1 ∑
|B|=r

ĥ(XB),

VarUn =

(
n

r

)−2 ∑
|A|=r

∑
|B|=r

E
[
ĥ(XA)ĥ(XB)

]

=

(
n

r

)−2 r∑
c=1

(
n

r

)(
r

c

)(
n− r
r − c

)
ζc

=

r∑
c=1

r!2

c!(r − c)!2
(n− r)(n− r − 1) . . . (n− 2r + c+ 1)

n(n− 1) . . . (n− r + 1)
ζc.
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For fixed c, (n−r)(n−r−1)...(n−2r+c+1)
n(n−1)...(n−r+1) has r − c terms in the numerator and r terms in the

denominator. Hence,

VarUn = r2 (n− r)(n− r − 1) . . . (n− 2r + 2)

n(n− 1) . . . (n− r + 1)
ζ1 +

r∑
c=2

O

(
nr−c

nr

)
ζc

= r2

[
1

n
+O(n−2)

]
ζ1 +O(n−2)

=
r2

n
ζ1 +O(n−2).
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