Lecture 7- January 29
Lecturer: John Duchi
Scribes: Kevin Han, Yuchen Wu
(2) Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1, VDV Chapter 11, 12

Outline:

- Finish "basic" tests
- U-Statistics
- Definitions
- Examples
- Variance calculation

1 Recap: Wald, Likelihood Ratio Tests

Goal: For fixed $\alpha>0$, find regions \mathcal{C}_{n} such that for $H_{0}:\left\{\theta \in \Theta_{0}\right\}$,

$$
\sup _{\theta \in \Theta_{0}} \limsup _{n \rightarrow \infty} P_{\theta}\left(T_{n} \notin \mathcal{C}_{n}\right) \leq \alpha
$$

How to deal with nuisance/composite nulls, e.g.

$$
\Theta_{0}=\left\{\theta:[\theta]_{1: k}=\left[\theta^{0}\right]_{1: k}, \theta_{k+1}, \cdots, \theta_{d} \text { unspecified }\right\}
$$

1.1 Wald Test

Let $\Sigma^{(k)}(\theta)=$ First $k \times k$ block of $I(\theta)^{-1}$.

$$
\mathcal{C}_{n, \alpha}=\left\{\theta \in \mathbb{R}^{d}:\left([\theta]_{1: k}-\left[\theta^{0}\right]_{1: k}\right)^{T}\left[\Sigma^{(k)}\left(\theta^{0}\right)\right]^{-1}\left([\theta]_{1: k}-\left[\theta^{0}\right]_{1: k}\right) \leq u_{k, \alpha}^{2} / n\right\}
$$

where $u_{k, \alpha}^{2}$ was quantile of χ_{k}^{2}, i.e. $P\left(\|w\|_{2}^{2}\right) \geq u_{k, \alpha}^{2}=\alpha$ for $w \sim \mathcal{N}\left(0, I_{k \times k}\right)$.

$$
T_{n}:= \begin{cases}\text { Reject } & \text { if } \hat{\theta}_{n} \notin C_{n, \alpha} \\ \text { Don't Reject } & \text { otherwise }\end{cases}
$$

2 Rao Test (Score Test)

We know the (limiting) distribution of $P_{n} \nabla \ell_{\theta}=P_{n} \dot{\ell}_{\theta}=\frac{1}{n} \sum_{i=1}^{n} \nabla \ell_{\theta}\left(X_{i}\right)$ under P_{θ}, i.e.

$$
\sqrt{n}\left(P_{n} \dot{\varphi}_{\theta}\right) \underset{P_{\theta}}{\xrightarrow{d}} \mathcal{N}\left(0, I_{\theta}\right) .
$$

In $H_{0}: \theta=\theta_{0} \in \mathbf{R}^{d}$, then

$$
n\left(P_{n} \nabla \ell_{\theta_{0}}\right)^{T} I_{\theta_{0}}^{-1}\left(P_{n} \nabla \ell_{\theta_{0}}\right) \xrightarrow[H_{0}]{\stackrel{d}{\rightarrow}} \chi_{d}^{2} .
$$

Definition 2.1. Rao test is to define rejection region

$$
\left(P_{n} \dot{\theta}_{\theta_{0}}\right)^{T} I_{\theta_{0}}^{-1}\left(P_{n} \dot{\varphi}_{\theta_{0}}\right) \geq \frac{u_{d, \alpha}^{2}}{n}
$$

Immediately, we have

$$
\lim _{n \rightarrow \infty} P_{H_{0}}(\text { reject })=\alpha
$$

Remark

- All of these tests (related score/asymptotic normality) strongly related to optimality. In future, we compute powers under alternatives of form

$$
H_{0}: \theta=\theta_{0} \quad H_{1, n}: \theta=\theta_{0}+\frac{h}{\sqrt{n}}
$$

Look at $\operatorname{Power}(h):=\lim _{n \rightarrow \infty} P_{H_{1}, n}\left(T_{n}\right.$ rejects $)$

- Rao test has analogues for composite nulls

3 U-Statistics

3.1 Introduction

Suppose we have a function h of k variables, want to estimate $\theta:=\mathbb{E}\left[h\left(X_{1}, \cdots, X_{k}\right)\right]$ where X_{i} are independent. How should we estimate θ given $\left\{X_{i}\right\}_{i=1}^{n}$?
Example: $P\left(X_{1} \geq X_{2}+t\right) \quad h(y, z)=\mathbb{1}(y \geq z+t) \boldsymbol{\ell}$
Example:

$$
\begin{aligned}
\operatorname{Var}(X)=\frac{1}{2} \mathbb{E}\left[\left(X_{1}-X_{2}\right)^{2}\right] & =\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2} . \quad X_{i} \text { 's are i.i.d. } \\
h(x, y) & =\frac{1}{2}(x-y)^{2}
\end{aligned}
$$

To do this, use U-statistics.
Developed by Hoeffding (1940s-ish), one of fathers of nonparametric statistics. Idea is to develop more "robust" tests, e.g. of location, that don't make parametric modeling assumptions. e.g. want more robustness than something like,

$$
X \sim N\left(\theta_{1}, 1\right) \quad \text { and } \quad Y \sim N\left(\theta_{2}, 1\right), \quad \text { is } \theta_{1}<\theta_{2} ?
$$

Allow us to abstract away many annoying details, still perform inference, testing, estimation.

3.2 Definitions

Definition 3.1 (U-Statistic). For $X_{i} \stackrel{i . i . d}{\sim} P$, denote $\theta(P):=E_{P}\left[h\left(X_{1}, \ldots, X_{r}\right)\right]$. A U-statistic is a random variable of the form

$$
U_{n}:=\frac{1}{\binom{n}{r}} \sum_{|\beta|=r, \beta \subset[n]} h\left(X_{\beta}\right)
$$

where $h: X^{r} \rightarrow \mathbb{R}$ is a symmetric (kernel) function, β ranges over all size r subsets of $[n]:=\{1, \ldots, n\}$, and $X_{\beta}:=\left(X_{i_{1}}, \ldots, X_{i_{r}}\right)$ for $\beta=\left(i_{1}, \ldots, i_{r}\right)$.

Remark The U in "U-statistics" is because $\mathbb{E}_{P}\left[U_{n}\right]=\theta(P):=\mathbb{E}\left[h\left(X_{1}, \ldots, X_{r}\right)\right]$, so U_{n} is unbiased.

Why use a U-statistic at all? Why not use

$$
h\left(X_{1}, X_{2}, \ldots, X_{r}\right)
$$

or

$$
\frac{1}{\left(\frac{n}{r}\right)} \sum_{\ell=1}^{\frac{n}{r}} h\left(X_{\ell(r-1)+1}, \ldots, X_{\ell r}\right) ?
$$

Let $\left\{X_{(1)}, \ldots, X_{(n)}\right\}$ be the sample with "index" information removed. (e.g. Order Statistics. Generally a histogram. In EE terminology, called "type" of the sample.) Then, under $X_{i} \stackrel{i . i . d}{\sim} P$, $\left\{X_{(i)}\right\}_{i=1}^{n}$ is a sufficient statistic. Observe that

$$
\mathbb{E}\left\{h\left(X_{1}, \ldots, X_{r}\right) \mid X_{(1)}, \ldots, X_{(n)}\right\}=U_{n}:=\frac{1}{\binom{n}{r}} \sum_{|\beta|=r, \beta \subset[n]} h\left(X_{\beta}\right)
$$

By Rao-Blackwellization, we know that for any convex (loss) function L and any r.v. Z_{n} such that $\mathbb{E}\left[Z_{n} \mid\left(X_{(i)}\right)_{1 \leq i \leq n}\right]=U_{n}$,

$$
\mathbb{E}\left[L\left(Z_{n}\right)\right] \geq \mathbb{E}\left[L\left(U_{n}\right)\right]
$$

3.3 Examples

Example (Sample Variance): Consider $h(x, y)=\frac{1}{2}(x-y)^{2}$. Then $\mathbb{E}\left[h\left(X_{1}, X_{2}\right)\right]=\frac{1}{2}\left(\mathbb{E}\left[X_{1}^{2}\right]+\mathbb{E}\left[X_{2}^{2}\right]\right)-$ $\mathbb{E}\left[X_{1}, X_{2}\right]=\operatorname{Var}(X)$. When we have more than two samples, we use

$$
\begin{aligned}
U_{n} & =\frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} \frac{1}{2}\left(X_{i}-X_{j}\right)^{2} \\
& =\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} \frac{1}{2}\left(X_{i}-X_{j}\right)^{2} \\
& =\frac{1}{2 n(n-1)} \sum_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)^{2}
\end{aligned}
$$

Example (Gini's Mean-Difference): $\quad h(x, y)=|x-y|$ and $\mathbb{E}\left[U_{n}\right]=\mathbb{E}\left[\left|X_{1}-X_{2}\right|\right]$.
Example (Quantiles, $r=1$):

$$
\theta(P)=P(X \leq t) \text { and } h(X)=\mathbf{1}\{X \leq t\}
$$

This is a first order U-statistic.
Example (Signed Rank Statistic): Provide information about location of distributions

$$
\theta(P):=P\left(X_{1}+X_{2}>0\right),
$$

This means $h(x, y)=\mathbf{1}\{x+y>0\}$ and $U_{n}=\frac{1}{\binom{n}{2}} \sum_{i<j} \mathbf{1}\left\{X_{i}+X_{j}>0\right\}$.

Definition 3.2 (Two-sample U-Statistic). Given two samples $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\}, N=$ $n+m$, a two-sample U-statistic is a random variable of the form

$$
U=\frac{1}{\binom{n}{r}\binom{m}{s}} \sum_{|\alpha|=s, \alpha \subset[m]|\beta|=r, \beta \subset[n]} \sum_{\left(X_{\beta}, Y_{\alpha}\right)}
$$

where $h: X^{r} \times Y^{s} \rightarrow \mathbb{R}$. h is symmetric in its first r arguments and in its last s arguments.

Big Use: Are samples coming from same distribution or not?
Example (Mann-Whitney Statistic): Test difference in locations of X and Y

$$
\begin{aligned}
U_{n, m} & =\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{1}\left\{X_{i} \leq Y_{j}\right\}, \\
\mathrm{E}\left(U_{N}\right) & =\mathrm{P}(X \leq Y), \\
\text { NULL: } H_{0} & =\left\{P(X \leq Y)=\frac{1}{2}\right\}, \text { i.e. same location }
\end{aligned}
$$

Q Game Plan: Can we get asymptotics of these U-statistics under appropriate distributions?
The answer is yes. Project out annoying(lower order) terms, see what is left(iid sums).

3.4 Variance of U-Statistics(Hoeffding)

This is a precursor to asymptotic normality because "1st order terms" dominate everything else.
Definition 3.3. Assume that $E\left[|h|^{2}\right]<\infty, X_{i} \sim P$, iid, for any $c<r$. Define

$$
h_{c}\left(X_{1}, \ldots, X_{c}\right):=E[h(\underbrace{X_{1}, \ldots, X_{c}}_{\text {fixed }}, \underbrace{X_{c+1}, \ldots, X_{r}}_{\text {i.i.d } P})] .
$$

Remark

1. $h_{0}=E\left[h\left(X_{1}, \ldots, X_{r}\right)\right]=\theta(P)$
2. $E\left[h_{c}\left(X_{1}, \ldots, X_{c}\right)\right]=E\left[h\left(X_{1}, \ldots, X_{r}\right)\right]=\theta(P)$

Definition 3.4.

$$
\begin{aligned}
\hat{h}_{c}: & =h_{c}-E\left[h_{c}\right]=h_{c}-\theta(P) \\
E\left[\hat{h}_{c}\right] & =0
\end{aligned}
$$

Then define

$$
\zeta_{c}:=\operatorname{Var}\left(h_{c}\left(X_{1}, \ldots, X_{c}\right)\right)=E\left[\hat{h}_{c}^{2}\right]
$$

$\left(\right.$ Note that $\left.\hat{h}\left(x_{1: r}\right)=h\left(x_{1: r}\right)-\theta(P).\right)$
Consider Variances: Fix $A, B \subset[n],|A|=|B|=r$, let $|A \cap B|=c$
Define: $\zeta_{C}=\mathbb{E}\left[\hat{h}\left(X_{A}\right) \hat{h}\left(X_{B}\right)\right]$
Claim: $\zeta_{C}=\mathbb{E}\left[\hat{h}_{C}(x 1: C)^{2}\right]=\operatorname{Var}\left(\hat{h}_{C}\right)$
Proof Using the symmetry of h,

$$
\begin{aligned}
\mathbb{E}\left[\hat{h}\left(X_{A}\right) \hat{h}\left(X_{B}\right)\right] & =\mathbb{E}\left[\hat{h}\left(X_{A \backslash S}, X_{S}\right) \hat{h}\left(X_{B \backslash S}, X_{S}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\hat{h}\left(X_{A \backslash S}, X_{S}\right) \mid X_{S}\right] \cdot \mathbb{E}\left[\hat{h}\left(X_{B \backslash S}, X_{S}\right) \mid X_{S}\right]\right] \quad \text { (since } X_{A \backslash S}, X_{B \backslash S} \text { indep.) } \\
& =\mathbb{E}\left[\hat{h}_{c}\left(X_{S}\right) \cdot \hat{h}_{c}\left(X_{S}\right)\right] \\
& =\zeta_{c} .
\end{aligned}
$$

Now let's compute the variance of U_{n}
Theorem 1. Let U_{n} be an $r^{\text {th }}$ order U-statistic. Then

$$
\operatorname{Var} U_{n}=\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right)
$$

Proof There are $\binom{n}{r}\binom{r}{c}\binom{n-r}{r-c}$ ways to select a pair of subsets of $[n]$, each of size r, with c common elements. Hence,

$$
\begin{aligned}
U_{n}-\theta & =\binom{n}{r}^{-1} \sum_{|B|=r} \hat{h}\left(X_{B}\right), \\
\operatorname{Var} U_{n} & =\binom{n}{r}^{-2} \sum_{|A|=r} \sum_{|B|=r} \mathbb{E}\left[\hat{h}\left(X_{A}\right) \hat{h}\left(X_{B}\right)\right] \\
& =\binom{n}{r}^{-2} \sum_{c=1}^{r}\binom{n}{r}\binom{r}{c}\binom{n-r}{r-c} \zeta_{c} \\
& =\sum_{c=1}^{r} \frac{r!^{2}}{c!(r-c)!^{2}} \frac{(n-r)(n-r-1) \ldots(n-2 r+c+1)}{n(n-1) \ldots(n-r+1)} \zeta_{c} .
\end{aligned}
$$

For fixed $c, \frac{(n-r)(n-r-1) \ldots(n-2 r+c+1)}{n(n-1) \ldots(n-r+1)}$ has $r-c$ terms in the numerator and r terms in the denominator. Hence,

$$
\begin{aligned}
\operatorname{Var} U_{n} & =r^{2} \frac{(n-r)(n-r-1) \ldots(n-2 r+2)}{n(n-1) \ldots(n-r+1)} \zeta_{1}+\sum_{c=2}^{r} O\left(\frac{n^{r-c}}{n^{r}}\right) \zeta_{c} \\
& =r^{2}\left[\frac{1}{n}+O\left(n^{-2}\right)\right] \zeta_{1}+O\left(n^{-2}\right) \\
& =\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right) .
\end{aligned}
$$

