
Stats 300B: Theory of Statistics Winter 2019

Lecture 6 – January 24

Lecturer: John Duchi Scribe: Samyak Rajanala, Hui Xu

� Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1 and Testing Statistical Hypotheses
Ch. 12.4

Outline:

• Testing (continued)

– Likelihood Ratio Tests (a.k.a. Wilks tests)

– Wald Tests

1 Introduction

The p-value is a probability under the null of observing data ”at least as extreme” as what you
actually saw.

For a given level α, we find a confidence set Cn,α such that PH0(X1, . . . Xn ∈ Cn,α) ≥ 1 −
α. If X1, . . . , Xn /∈ Cn,α, we reject the null. In general, any set Cn such that we can compute
PH0(X1, . . . Xn ∈ Cn) can function as a confidence set.

Example 1: To test H0 : Xi
iid∼ P0 = N (0, 1). The ”natural” p-value is P0(|Z̄| ≥ |θ̂|), where

θ̂ = 1
n

∑n
i=1Xi, and Z̄ = 1

n

∑n
i=1 Zi for Zi

iid∼ P0 ♣

Goal: Understand confidence regions and asymptotic levels of tests.

Definition 1.1. Let Cn be a sequence of regions, and let H0 : {θ ∈ Θ0}, where the model family is
{Pθ}θ∈Θ. We say that Cn is uniformly level α asymptotically if

lim
n→∞

sup
θ∈Θ0

Pθ(θ /∈ Cn) ≤ α.

2 Generalized Likelihood Ratio Tests

Goal: Test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ, assuming Θ0 ( Θ.

We make use of the following test statistic:

T (x) := log
supθ∈Θ pθ(x)

supθ∈Θ0
pθ(x)

= log
pθ̂MLE(x)

supθ∈Θ0
pθ(x)

.

and we reject the null if T (x) is big (which indicates that Θ is much more likely than Θ0).
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Proposition 1 (Wilks’, simplified). Let Θ0 = {θ0},Θ ⊆ Rd be open. Let Ln(X; θ) =
∑n

i=1 `θ(Xi) =∑n
i=1 log pθ(Xi). Define ∆n := Ln(X; θ̂n) − Ln(X; θ0) = T (X), where θ̂n := argmaxθ∈Θ Ln(X; θ).

Then under typical smoothness conditions (such as consistency and asymptotic normality) of the
MLE,

2∆n
d→
H0

χ2
d.

Note χ2
d
dist
= ‖w‖22 where w ∼ N (0, Id×d).

Hence we obtain confidence regions for level α tests:
Reject if T (X) = ∆n ≥ ud,α, where P (χ2

d ≥ 2ud,α) ≤ α

Proof Under H0, θ̂n
p→ θ0. For large enough n,

0 = ∇Ln(X; θ̂n) = ∇Ln(X; θ0) +∇2Ln(X; θ0)(θ̂n − θ0) +

n∑
i=1

Err(i)(θ̂n − θ0),

where Err(i) = Op(||θ̂n − θ0||). This was a Taylor approximation of the gradient of Ln. In addition,
we take a second-order Taylor approximation of Ln:

Ln(X; θ̂n) = Ln(X; θ0) +∇Ln(X; θ0)(θ̂n − θ0) +
1

2
(θ̂n − θ0)T∇2Ln(X; θ0)(θ̂n − θ0) + op(||θ̂n − θ0||).

After substituting the first equation into the second,

∆n = Ln(X; θ̂n)− Ln(X; θ0)

= −1

2
(θ̂n − θ0)T∇2Ln(X; θ0)(θ̂n − θ0) +

n∑
i=1

(θ̂n − θ0)Err(i)(θ̂n − θ0) + op(1).

Now let wn =
√
n(θ̂n − θ0), so wn

d→
H0

N (0, I−1
θ0

). With this new notation,

∆n = −1

2
wTn

(
1

n
∇2Ln(X; θ0)

)
︸ ︷︷ ︸

p→−Iθ0

wn + wTn

(
1

n

n∑
i=1

Err(i)

)
︸ ︷︷ ︸

p→0

wn + op(1)

=
1

2
wTn Iθ0wn + op(1)

d→ 1

2
χ2
d.

Thus 2∆n
d→ χ2

d.

Remark

• Could use likelihood ratio test for testing H0 : θ = θ0, but may require substantial computa-
tion; e.g., to get the MLE under H0.

• Can we use simpler tests to get the same asymptotic χ2 behavior?

• Note that everything is quadratic. Let’s just start with quadratics instead - Wald tests do
this.
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3 Wald Tests

Definition 3.1. A Wald confidence ellipse is

Cn,r = {θ ∈ Rd : (θ − θ̂n)T Iθ̂n(θ − θ̂n) ≤ r/n}

where θ̂n is the estimator of θ.

Remark We have shown that for a point null H0 : {Pθ0} we have n(θ̂n − θ0)Iθ0(θ̂n − θ0)
d→
H0

χ2
d

dist
= ‖w‖22 , w ∼ N (0, Id×d).

Definition 3.2. A Wald test of point null θ = θ0 (against θ 6= θ0) is constructed as follows: Let

Cn,α = {θ ∈ Rd : (θ − θ0)T Iθ̂n(θ − θ0) ≤ u2
d,α/n}

where u2
d,α is uniquely determined by P(χ2

d ≥ U2
d,α) = α).

Tn(X) : =

{
Reject if θ̂n /∈ Cn,α
Don’t Reject otherwise

= Reject iff (θ0 − θ̂n)T Iθ̂n(θ0 − θ̂n) > u2
d,α/n.

.

Proposition 2. For testing H0 : θ = θ0, a Wald test is asymptotically level α.

Proof Immediate from earlier results.

Remark

• For the Fisher Information, we can replace Iθ̂n with Iθ0 and the asymptotic level is the same.

• One weakness is that likelihood ratio and Wald tests can only handle point nulls. What if we
have a composite null, e.g. if we have nuisance parameters?

Example 2: Xi
iid∼ N (µ, σ2). H0 = {µ = 0,

”nuisance parameter”︷ ︸︸ ︷
σ2 ≥ 0 }. None of the results we have

gathered so far apply in this case. ♣

Let us now consider smooth problems with I(θ) ∈ Rd×d. Define Σ(θ) := I(θ)−1. Assume the

MLE
√
n(θ̂n − θ0)

d→
Pθ
N (0,Σ(θ). We will consider the case where we only care about estimating

functions of θ, usually just certain coordinates. Define

[v]1:k =


v1

v2

...
vk

 .
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That is, just the first k coordinates of v ∈ Rd, k ≤ d.
Similarly, define Σ(k) ∈ Rk×k as the leading principal minor (of order k). Specifically,

Σ =

[
Σ(k) · · ·
...

. . .

]
.

Then automatically due to the properties of the multivariate normal,

√
n([θ̂n]1:k − [θ0]1:k)

d→
pθ0
N (0,Σ(k)(θ0)).

Note that Σ(k)(θ) acts as the inverse Fisher Information for the first k coordinates.

Lemma 3 (Schur Complement). Suppose

A =

[
A11 A12

A21 A22

]
, A = AT , A � 0.

If M = A−1, then M11 =
(
A11 −A12A

−1
22 A21

)−1
.

When θ̂n is the MLE of θ, then

n([θ̂n]1:k − [θ0]1:k)
T
[
Σ(k)(θ̂n)

]−1
([θ̂n]1:k − [θ0]1:k)

d→ χ2
k,

where [
Σ(k)(θ̂n)

]−1
= I11(θ̂n)− I12(θ̂n)I22(θ̂n)−1I21(θ̂n).

Now we can design a Wald-type test of these composite nulls with nuisance parameters.

Definition 3.3 (Wald Test, Composite). Let H0 : {θ ∈ Rd : [θ]1:k = [θ0]1:k, θk+1, . . . , θd unspecified}.
Define the acceptance region as

Cn,α =

{
θ ∈ Rd : ([θ]1:k − [θ0]1:k)

T
[
Σ(k)(θ̂n)

]−1
([θ]1:k − [θ0]1:k) ≤ U2

k,α/n

}
where Udk,α is [uniquely] determined by P(χ2

k ≥ U2
k,α) = α. The Wald test for composite nulls is

given by

Tn :=

{
Reject if θ̂n /∈ Cn,α
Don’t Reject otherwise

.

Proposition 4. If θ̂n is efficient for θ in model {Pθ}θ∈Θ, then Tn is pointwise asymptotic level α.
That is,

sup
θ∈Θ0

lim sup
n→∞

Pθ(Tn rejects) = α.

Remark

• Cannot substitute θ0 for θ̂n in Iθ̂n because we must estimate the nuisance parameters.
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