Stats 300B: Theory of Statistics

Winter 2019

Lecture 6 – January 24

Lecturer: John Duchi

Scribe: Samyak Rajanala, Hui Xu

Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1 and Testing Statistical Hypotheses Ch. 12.4

Outline:

- Testing (continued)
 - Likelihood Ratio Tests (a.k.a. Wilks tests)
 - Wald Tests

1 Introduction

The *p*-value is a probability under the null of observing data "at least as extreme" as what you actually saw.

For a given level α , we find a *confidence set* $C_{n,\alpha}$ such that $\mathbb{P}_{H_0}(X_1, \ldots, X_n \in C_{n,\alpha}) \geq 1 - \alpha$. If $X_1, \ldots, X_n \notin C_{n,\alpha}$, we reject the null. In general, any set C_n such that we can compute $\mathbb{P}_{H_0}(X_1, \ldots, X_n \in C_n)$ can function as a confidence set.

Example 1: To test $H_0: X_i \stackrel{iid}{\sim} P_0 = \mathcal{N}(0,1)$. The "natural" p-value is $\mathbb{P}_0(|\bar{Z}| \ge |\hat{\theta}|)$, where $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n X_i$, and $\bar{Z} = \frac{1}{n} \sum_{i=1}^n Z_i$ for $Z_i \stackrel{iid}{\sim} P_0 \clubsuit$

Goal: Understand confidence regions and asymptotic levels of tests.

Definition 1.1. Let C_n be a sequence of regions, and let $H_0 : \{\theta \in \Theta_0\}$, where the model family is $\{P_\theta\}_{\theta \in \Theta}$. We say that C_n is uniformly level α asymptotically if

$$\lim_{n \to \infty} \sup_{\theta \in \Theta_0} P_{\theta}(\theta \notin C_n) \le \alpha.$$

2 Generalized Likelihood Ratio Tests

Goal: Test $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta$, assuming $\Theta_0 \subsetneq \Theta$.

We make use of the following test statistic:

$$T(x) := \log \frac{\sup_{\theta \in \Theta} p_{\theta}(x)}{\sup_{\theta \in \Theta_0} p_{\theta}(x)} = \log \frac{p_{\hat{\theta}_{MLE}(x)}}{\sup_{\theta \in \Theta_0} p_{\theta}(x)}.$$

and we reject the null if T(x) is big (which indicates that Θ is much more likely than Θ_0).

Proposition 1 (Wilks', simplified). Let $\Theta_0 = \{\theta_0\}, \Theta \subseteq \mathbb{R}^d$ be open. Let $L_n(X; \theta) = \sum_{i=1}^n \ell_\theta(X_i) = \sum_{i=1}^n \log p_\theta(X_i)$. Define $\Delta_n := L_n(X; \hat{\theta}_n) - L_n(X; \theta_0) = T(X)$, where $\hat{\theta}_n := \operatorname{argmax}_{\theta \in \Theta} L_n(X; \theta)$. Then under typical smoothness conditions (such as consistency and asymptotic normality) of the MLE,

$$2\Delta_n \stackrel{d}{\xrightarrow[]{}{\to}} \chi^2_d.$$

Note $\chi_d^2 \stackrel{dist}{=} \|w\|_2^2$ where $w \sim \mathcal{N}(0, I_{d \times d})$.

Hence we obtain confidence regions for level α tests: Reject if $T(X) = \Delta_n \ge u_{d,\alpha}$, where $P(\chi_d^2 \ge 2u_{d,\alpha}) \le \alpha$

Proof Under H_0 , $\hat{\theta}_n \xrightarrow{p} \theta_0$. For large enough n,

$$0 = \nabla L_n(X; \hat{\theta}_n) = \nabla L_n(X; \theta_0) + \nabla^2 L_n(X; \theta_0)(\hat{\theta}_n - \theta_0) + \sum_{i=1}^n \operatorname{Err}_{(i)}(\hat{\theta}_n - \theta_0),$$

where $\operatorname{Err}_{(i)} = O_p(||\hat{\theta}_n - \theta_0||)$. This was a Taylor approximation of the gradient of L_n . In addition, we take a second-order Taylor approximation of L_n :

$$L_n(X;\hat{\theta}_n) = L_n(X;\theta_0) + \nabla L_n(X;\theta_0)(\hat{\theta}_n - \theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^T \nabla^2 L_n(X;\theta_0)(\hat{\theta}_n - \theta_0) + o_p(||\hat{\theta}_n - \theta_0||).$$

After substituting the first equation into the second,

$$\Delta_n = L_n(X; \hat{\theta}_n) - L_n(X; \theta_0)$$

= $-\frac{1}{2} (\hat{\theta}_n - \theta_0)^T \nabla^2 L_n(X; \theta_0) (\hat{\theta}_n - \theta_0) + \sum_{i=1}^n (\hat{\theta}_n - \theta_0) \operatorname{Err}_{(i)} (\hat{\theta}_n - \theta_0) + o_p(1).$

Now let $w_n = \sqrt{n}(\hat{\theta}_n - \theta_0)$, so $w_n \stackrel{d}{\xrightarrow{}}_{H_0} \mathcal{N}(0, I_{\theta_0}^{-1})$. With this new notation,

$$\Delta_n = -\frac{1}{2} w_n^T \underbrace{\left(\frac{1}{n} \nabla^2 L_n(X; \theta_0)\right)}_{\stackrel{P}{\to} -I_{\theta_0}} w_n + w_n^T \underbrace{\left(\frac{1}{n} \sum_{i=1}^n \operatorname{Err}_{(i)}\right)}_{\stackrel{P}{\to} 0} w_n + o_p(1)$$
$$= \frac{1}{2} w_n^T I_{\theta_0} w_n + o_p(1) \stackrel{d}{\to} \frac{1}{2} \chi_d^2.$$

Thus $2\Delta_n \xrightarrow{d} \chi_d^2$.

Remark

- Could use likelihood ratio test for testing $H_0: \theta = \theta_0$, but may require substantial computation; e.g., to get the MLE under H_0 .
- Can we use simpler tests to get the same asymptotic χ^2 behavior?
- Note that everything is quadratic. Let's just start with quadratics instead Wald tests do this.

3 Wald Tests

Definition 3.1. A Wald confidence ellipse is

$$C_{n,r} = \{ \theta \in \mathbb{R}^d : (\theta - \hat{\theta}_n)^T I_{\hat{\theta}_n} (\theta - \hat{\theta}_n) \le r/n \}$$

where $\hat{\theta}_n$ is the estimator of θ .

Remark We have shown that for a point null $H_0 : \{P_{\theta_0}\}$ we have $n(\hat{\theta}_n - \theta_0)I_{\theta_0}(\hat{\theta}_n - \theta_0) \xrightarrow{d}_{H_0} \chi_d^2 \stackrel{\text{dist}}{=} \|w\|_2^2, w \sim \mathcal{N}(0, I_{d \times d}).$

Definition 3.2. A Wald test of point null $\theta = \theta_0$ (against $\theta \neq \theta_0$) is constructed as follows: Let

$$C_{n,\alpha} = \{ \theta \in \mathbb{R}^d : (\theta - \theta_0)^T I_{\hat{\theta}_n}(\theta - \theta_0) \le u_{d,\alpha}^2 / n \}$$

where $u_{d,\alpha}^2$ is uniquely determined by $\mathbb{P}(\chi_d^2 \ge U_{d,\alpha}^2) = \alpha)$.

$$T_n(X) := \begin{cases} Reject & \text{if } \hat{\theta}_n \notin C_{n,\alpha} \\ Don't \ Reject & otherwise \end{cases}$$
$$= Reject \ iff \ (\theta_0 - \hat{\theta}_n)^T I_{\hat{\theta}_n}(\theta_0 - \hat{\theta}_n) > u_{d,\alpha}^2/n$$

Proposition 2. For testing $H_0: \theta = \theta_0$, a Wald test is asymptotically level α .

Proof Immediate from earlier results.

Remark

- For the Fisher Information, we can replace $I_{\hat{\theta}_n}$ with I_{θ_0} and the asymptotic level is the same.
- One weakness is that likelihood ratio and Wald tests can only handle point nulls. What if we have a composite null, e.g. if we have nuisance parameters?

Example 2: $X_i \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$. $H_0 = \{\mu = 0, \sigma^2 \ge 0\}$. None of the results we have gathered so far apply in this case.

Let us now consider smooth problems with $I(\theta) \in \mathbb{R}^{d \times d}$. Define $\Sigma(\theta) := I(\theta)^{-1}$. Assume the MLE $\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d}_{P_{\theta}} \mathcal{N}(0, \Sigma(\theta))$. We will consider the case where we only care about estimating functions of θ , usually just certain coordinates. Define

$$[v]_{1:k} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix}$$

That is, just the first k coordinates of $v \in \mathbb{R}^d$, $k \leq d$.

Similarly, define $\Sigma^{(k)} \in \mathbb{R}^{k \times k}$ as the leading principal minor (of order k). Specifically,

$$\Sigma = \begin{bmatrix} \Sigma^{(k)} & \cdots \\ \vdots & \ddots \end{bmatrix}$$

Then automatically due to the properties of the multivariate normal,

$$\sqrt{n}([\hat{\theta}_n]_{1:k} - [\theta_0]_{1:k}) \xrightarrow[p_{\theta_0}]{d} \mathcal{N}(0, \Sigma^{(k)}(\theta_0))$$

Note that $\Sigma^{(k)}(\theta)$ acts as the inverse Fisher Information for the first k coordinates.

Lemma 3 (Schur Complement). Suppose

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad A = A^T, \quad A \succ 0.$$

If $M = A^{-1}$, then $M_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$.

When $\hat{\theta}_n$ is the MLE of θ , then

$$n([\hat{\theta}_n]_{1:k} - [\theta_0]_{1:k})^T \left[\Sigma^{(k)}(\hat{\theta}_n) \right]^{-1} ([\hat{\theta}_n]_{1:k} - [\theta_0]_{1:k}) \xrightarrow{d} \chi_k^2,$$

where

$$\left[\Sigma^{(k)}(\hat{\theta}_n)\right]^{-1} = I_{11}(\hat{\theta}_n) - I_{12}(\hat{\theta}_n)I_{22}(\hat{\theta}_n)^{-1}I_{21}(\hat{\theta}_n).$$

Now we can design a Wald-type test of these composite nulls with nuisance parameters.

Definition 3.3 (Wald Test, Composite). Let $H_0 : \{\theta \in \mathbb{R}^d : [\theta]_{1:k} = [\theta_0]_{1:k}, \theta_{k+1}, \dots, \theta_d \text{ unspecified}\}.$ Define the acceptance region as

$$C_{n,\alpha} = \left\{ \theta \in \mathbb{R}^d : ([\theta]_{1:k} - [\theta_0]_{1:k})^T \left[\Sigma^{(k)}(\hat{\theta}_n) \right]^{-1} ([\theta]_{1:k} - [\theta_0]_{1:k}) \le U_{k,\alpha}^2 / n \right\}$$

where $U_{k,\alpha}^d$ is [uniquely] determined by $\mathbb{P}(\chi_k^2 \ge U_{k,\alpha}^2) = \alpha$. The Wald test for composite nulls is given by

$$T_n := \begin{cases} Reject & \text{if } \hat{\theta_n} \notin C_{n,\alpha} \\ Don't \ Reject & otherwise \end{cases}.$$

Proposition 4. If $\hat{\theta}_n$ is efficient for θ in model $\{P_{\theta}\}_{\theta \in \Theta}$, then T_n is pointwise asymptotic level α . That is,

$$\sup_{\theta \in \Theta_0} \limsup_{n \to \infty} P_{\theta}(T_n \ rejects) = \alpha.$$

Remark

• Cannot substitute θ_0 for $\hat{\theta}_n$ in $I_{\hat{\theta}_n}$ because we must estimate the nuisance parameters.