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Lecture 5 – January 22

Lecturer: John Duchi Scribe: Yujia Jin

� Warning: these notes may contain factual errors

Reading: Elements of Large Sample Theory Ch. 3.1, 3.2, 4.1 and Testing Statistical Hypotheses
Ch. 12.4.

Outline:

• Efficiency Estimators.

• Tests (beginning ideas in asymptotic regime)

- confidence intervals

- likelihood ratio, tests

1 Recap

Asymptotic Normality

If family {Pθ}θ∈Θ is nice enough and θ̂n is MLE,
√
n(θ̂n − θ∗)

d−→ N(0, I−1
θ∗ ), Iθ = Eθ[∇lθ∇lTθ ].

Exponential Family

Pθ(x) = exp(θTT (x)−A(θ))

A(θ) = log

∫
exp(〈θ, T (x)〉)dµ(x)

√
n(θ̂n − θ)→d N(0,∇2A(θ)−1)

Here θ̂n can either be MLE or moment-matching estimator (equivalent).

2 Efficiency of Estimators

Definition 2.1. An estimator θ̂n is efficient for parameter θ if
√
n(θ̂n − θ)→d N(0, I−1

θ ).

Example 1:

• Gaussian:

mean is efficient

• Poisson:

x ∈ N = {0, 1, 2, · · · },

pλ(x) =
λxe−x

x!
= exp(xlogλ− λ− log(x!)).

Thus, θ = logλ, i.e.λ = eθ.
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We can write pθ(x) = exp(θx − eθ − log(x!)). We have the properties: A(θ) = eθ, A′(θ) =
A′′(θ) = eθ. And θ̂n satisfies PnX = A′(θ) = eθ = Eθ[x] or θ = logPn(X). By δ-method, we

know
√
n(θ̂n − θ) =

√
n(logPnX − logλ)

d−→ N(0, 1
λ) = N(0, e−θ) = N(0, A′′(θ)−1).

♣

3 Comparing Estimators

Definition 3.1. Let θ̂n and Tn be sequences of estimators of θ ∈ R. Assume
√
n(θ̂n − θ)

d−→
N(0, σ2(θ)) and for some m(n)→∞,

√
n(Tm(n) − θ)

d−→ N(0, σ2(θ)).

Then the asymptotic relative efficiency (ARE) of θ̂n to Tn is

ARE := lim inf
n→∞

m(n)

n
.

Remark If ARE of θ̂n vs. Tn is c ≥ 0, then to get an estimate of θ of some ”quality” as θ̂n (i.e.

error scaling like

√
σ2(θ)
n ), Tn requires sample size C-times larger than θ̂n.

3.1 Confidence Interval Intuition

If ARE of θ̂n vs. Tn is c ≥ 0 (more strictly here we assume lim
n→∞

m(n)
n = c), let z1−α/2 be level α

confidence interval for N(0, 1), i.e. Z ∼ N(0, 1), P (|Z| ≥ z1−α/2) = α. Now we consider sets:

cθ = (θ̂n − z1−α/2

√
σ2(θ)

n
, θ̂n + z1−α/2

√
σ2(θ)

n
)

cT = (Tm − z1−α/2

√
σ2(θ)

m
· m

m−1(m)
, Tm + z1−α/2

√
σ2(θ)

m
· m

m−1(m)
)

≈ (Tm − z1−α/2

√
σ2(θ)

m
c, Tm + z1−α/2

√
σ2(θ)

m
c)

where m−1(m) = n s.t. m(n) = m and we assume in addition that it exists.
For both, we have lim

n→∞
P (θ ∈ C) = 1− α by definition of Asymptotic Normality.

Proposition 1. Let
√
n(θ̂n − θ)

d−→ N(0, σ2(θ)),
√
n(Tn − θ)

d−→ N(0, τ2(θ)).

Then the ARE of θ̂n w.r.t Tn is τ2(θ)
σ2(θ)

.

Proof Let m(n) = d τ2
σ2ne, then

√
n(Tm(n) − θ) =

√
n

m(n)

√
m(n)(Tm(n) − θ)

d−→ N(0, σ2(θ))

by noticing that
√

n
m(n) →

σ
τ and

√
m(n)(Tm(n) − θ)

d−→ N(0, τ2(θ)).

So if τ2 ≥ σ2, we prefer θ̂n to Tn.
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3.2 Comparison of Estimators

Definition 3.2. Suppose we have Tn, θ̂n s.t.
√
n(θ̂n− θ)

d−→ N(0, σ2(θ)),
√
n(Tn− θ)

d−→ N(0, τ2(θ))
and τ2(θ) ≤ σ2(θ) everywhere, with τ2(θ) < σ2(θ) strictly for some θ0. If σ2(θ) = I−1(θ), then Tn
is super-efficient.

Example 2: Hodge’s counterexample/super-efficient estimator.

Let Xi
i.i.d−−→ N(θ, 1), θ̂n := 1

n

∑n
i=1Xi. Define

Tn :=

{
Xn ifXn ≥ n−

1
4

0 otherwise

What is the limiting distribution?
When θ = 0,

Pθ(
√
nTn = 0) = Pθ(|Xn| < n−

1
4 ) = Pθ(|

√
nXn| < n

1
4 )→ 1

since
√
nXn ∼ N(0, 1). Thus we have

√
n(Tn − d)

d−→ 0.

When θ 6= 0,
√
n(Tn − θ) =

√
n(Xn − θ)1(|Xn| ≥ n−

1
4 ) +

√
n(0− θ)1(|Xn| ≤ n−

1
4 )

=
√
n(Xn − θ) +Op(1)

d−→ N(0, 1).

as 1((|Xn| ≥ n−
1
4 ))→ 1 and 1(|Xn| ≤ n−

1
4 )→ 0 enentually. ♣

Remark Is it good? (See Homework.) This relates to why fisher couldn’t prove efficiency is
efficiency and what optimality is meant for estimation.

4 Testing

Definition 4.1. A scientific method: propose a hypothesis → develop experiment → when fail,
reject; otherwise, cannot reject.

Remark The philosophy here is we are not able to verify but only to falsify.

We’ve seen many situations where we have some type of asymptotic normality:
√
n(θ̂n− θ0)

d−→
N(0, I−1

θ0
). Suppose we’d like to say with reasonably high confidence, θ0 ∈ Cn. (Cn here is some

given set; not scientific method).
Example 3:

If
√
n(θ̂n−θ0)

d−→ N(0, I−1
θ0

) and Iθ is continuous in θ, let’s try Cn,r := {θ : (θ−θ̂n)TIθ̂n)(θ−θ̂n) ≤
r
n}. Then we have:

n(θ0 − θ̂n)TIθ̂n(θ0 − θ̂n) =
√
n(θ0 − θ̂n)TIθ̂n)

√
n(θ0 − θ̂n)

=
√
n(θ0 − θ̂n)T(Iθ0 + op(1))

√
n(θ0 − θ̂n)

d−→ zT Iθ0z,where z ∼ N(0, I−1
θ0

)

d
= ‖w‖22,where w ∼ N(0, Iθ0)

d
= χ2

d.(chi-square with d-degree of freedom)
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Then Pθ0(θ0 ∈ Cn,r)→ P (‖w‖22 ≤ r) by definition. ♣

Dual Problem: (Science!)
Can we reject some type of null hypothesis? If we conjecture Pθ0 is true, where are we confident

it is false?
Want: Pθ0(see data as extreme as what we’ve observed) ≤ α, then reject θ0.

Definition 4.2. (p-value) Let H0 = {Pθ s.t. θ ∈ Θ0}. The p-value associated with sample
X1, X2, · · · , Xn is supθ∈Θ0

Pθ(Data as extreme as X1, · · · , Xn observed).

4


