Stats 300b: Theory of Statistics

Winter 2019

Lecture 4 – January 17

Lecturer: John Duchi

Scribe: Esha Maiti, Doug Callahan

Warning: these notes may contain factual errors

Reading: Van der Vaart Ch. 4

Outline: Moment methods

- inverse function theorem, definition
- applications in exponential family models
- asymptotic normality in exponential family models
- efficiency of estimators in particular asymptotic relative efficiency

1 Moment methods and the inverse function theorem

Say we have a function $f: X \to \mathbb{R}^d$, and $P||f||^2 = E_P[||f(X)||^2] = \int ||f(x)||^2 dP(x) < \infty$.

Define $P_n f = \frac{1}{n} \sum_{i=1}^n f(X_i)$, the sample mean of f(X).

Then, by the central limit theorem, $\sqrt{n}(P_n f - P f) \xrightarrow{d} \mathcal{N}(0, \Sigma)$, where $\Sigma = \text{Cov}(f(X))$.

Let us suppose we have a family $\{P_{\theta}\}_{\theta \in \Theta}$ indexed by parameter θ . We have expectation mapping $e(\theta) := E_{P_{\theta}}[f(X)] = P_{\theta}f$. Since $f: X \to \mathbb{R}^d$, we have $e: \theta \to \mathbb{R}^d$.

Suppose e^{-1} exists; we might expect $e^{-1}(P_n f) \approx e^{-1}(P_{\theta} f) = \theta$. Furthermore, if it were differentiable (i.e., $(e^{-1})'(t) = \frac{\partial}{\partial t}(e^{-1})'(t)$ exists at $t = P_n f$), then we could immediately use the delta method to get asymptotic normality, parameter estimates, etc.:

$$\sqrt{n}(e^{-1}(P_n f) - e^{-1}(P_\theta f)) = \sqrt{n}(e^{-1}(P_n f) - \theta) \xrightarrow{d} \mathcal{N}(0, [\nabla e^{-1}(P_\theta f)]^T \Sigma [\nabla e^{-1}(P_\theta f)])$$

We understand whether or not the inverse of a function is differentiable from the inverse function theorem.

Lemma 1 (Inverse function theorem). Let $F : \mathbb{R}^d \to \mathbb{R}^d$ be continuously differentiable in a neighborhood of a point $\theta \in \mathbb{R}^d$, where $F'(\theta) \in \mathbb{R}^{d \times d}$ is invertible. Then, in a neighborhood of $t = F(\theta)$, we have $(F^{-1})'(t) = \frac{\partial}{\partial t}F^{-1}(t) = \frac{1}{F'(F^{-1}(t))}$, and this derivative is continuous.

Proof Let $t = F(\theta)$. Then, $\theta = F^{-1}(t)$. Let δ be a small change in t, and Δ be the corresponding small change in θ . Then:

$$\Delta \approx \frac{\partial \theta}{\partial t} \delta = \frac{\partial}{\partial t} F^{-1}(t) \delta = (F^{-1})'(t) \delta \qquad (*)$$

And by Taylor series expansion:

$$F(\theta + \Delta) = F(\theta) + F'(\theta)\Delta + O(||\Delta||^2)$$

Then, for small Δ , we have $t + \delta = F(\theta + \Delta) = F(\theta) + F'(\theta)\Delta$, i.e., $\delta \approx F'(\theta)\Delta$, i.e., $\Delta \approx (F'(\theta))^{-1}\delta$. From (*), we then have $(F^{-1})'(t) = (F'(\theta))^{-1} = (F'(F^{-1}(t)))^{-1}$.

Theorem 2. Let $e(\theta) = P_{\theta}f$ be one-to-one on some open set $\Theta \subset \mathbb{R}^d$, and continuously differentiable near θ_0 , where $e'(\theta_0) \in \mathbb{R}^{d \times d}$ is non-singular.

If $P_{\theta_0}||f||^2 < \infty$, then: 1. $P_n f \in dom(e^{-1})$ eventually

2.
$$\hat{\theta}_n = e^{-1}(P_n f) \text{ satisfies } \sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, [(e'(\theta_0))^{-1}]^T \operatorname{Cov}_{\theta_0}(f)(e'(\theta_0))^{-1}), \text{ where } \operatorname{Cov}_{\theta_0}(f) = P_{\theta_0}((f - P_{\theta_0} f)(f - P_{\theta_0} f)^T).$$

Proof By the inverse function theorem, there exists a neighborhood ν (or an open set) around $e(\theta_0)$ s.t. (e^{-1}) exists on ν and is continuous. As $P_n f \xrightarrow{a.s.} P_{\theta_0} f$, $P_n f \in \nu$ eventually, so $e^{-1}(P_n f)$ exists.

Now, apply the delta method:

$$\sqrt{n}(P_n f - P_{\theta_0} f) \xrightarrow{d} \mathcal{N}(0, \operatorname{Cov}(f)) \Longrightarrow$$
$$\sqrt{n}(e^{-1}(P_n f) - \theta_0) \xrightarrow{d} (e^{-1})'(e(\theta_0))Z = (e'(\theta_0))^{-1}Z, \text{ where } Z \sim \mathcal{N}(0, I_{d \times d})$$

To get the mathematical form of the statement above, we note that:

$$\sqrt{n}(P_n f - P_{\theta_0} f) \xrightarrow{d} \mathcal{N}(0, \operatorname{Cov}_{\theta_0} f) \Longrightarrow$$
$$\sqrt{n}(e^{-1}(P_n f) - \theta_0) \xrightarrow{d} \mathcal{N}(0, (e^{-1})'(e(\theta_0)) \operatorname{Cov}_{\theta_0}(f)[(e^{-1})'(e(\theta_0))]^{\intercal})$$

i.e.,

$$\sqrt{n}(e^{-1}(P_n f) - \theta_0) \xrightarrow{d} \mathcal{N}(0, e'(\theta_0)^{-1} \operatorname{Cov}_{\theta_0}(f)(e'(\theta_0)^{-1})^{\mathsf{T}})$$

where Lemma 1 was used. This gives a number of powerful moment-matching estimators.

Example 1. Estimate the mean of a Bernoulli distribution on $\{\pm 1\}$.

$$\begin{aligned} P_{\theta}(x) &= \frac{e^{\theta x}}{1+e^{\theta x}} = \frac{1}{1+e^{-\theta x}}. \text{ Then,} \\ e(\theta) &= E_{\theta}(x) = \frac{1}{1+e^{-\theta}} - \frac{1}{1+e^{\theta}} = \frac{e^{\theta} - 1}{e^{\theta} + 1}. \\ t &= e(\theta) \Leftrightarrow \theta = \log(\frac{1+t}{1-t}) \\ \text{Let } p_{\theta} &= P(x=1) = \frac{e^{\theta}}{1+e^{\theta}}. \text{ Then,} \\ e'(\theta) &= \frac{(e^{\theta} + 1)e^{\theta} - (e^{\theta} - 1)e^{\theta}}{(e^{\theta} + 1)^2} = \frac{2e^{\theta}}{(1+e^{\theta})^2} = 2p_{\theta}(1-p_{\theta}). \end{aligned}$$

Thus, $e'(\theta)^{-1} = \frac{1}{2p_{\theta}(1-p_{\theta})}$. Also, $E_{\theta}(x^2) = 1$. Thus, $\operatorname{Cov}_{\theta}(x) = 1 - e(\theta)^2 = 1 - \frac{(e^{\theta}-1)^2}{(e^{\theta}+1)^2} = \frac{4e^{\theta}}{(e^{\theta}+1)^2} = 4p_{\theta}(1-p_{\theta})$. So, if $\hat{\theta}_n = \log \frac{1+\bar{x}_n}{1-\bar{x}_n} = \operatorname{argmax}_{\theta} \sum_{i=1}^n \log p_{\theta}(x_i)$, then $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \frac{1}{p_{\theta}(1-p_{\theta})})$. Thus, we have the asymptotic distribution. As expected, it is more difficult to find estimators when $e(\theta)$ gets close to 1 or -1.

2 Exponential family models

Definition 2.1 (Exponential family). A family $\{P_{\theta}\}_{\theta \in \Theta}$ is a regular exponential family with respect to a base measure μ if there exists a function $T: x \to \mathbb{R}^d$ (sufficient statistic) and density $p_{\theta}(x) = e^{\theta^{\intercal}T(x)-A(\theta)}$, where $A(\theta) = \log \int e^{\theta^{\intercal}T(x)} d\mu(x)$ and is called the log-partition or cumulant generating function.

Standard results:

(1) $A(\theta)$ is convex in θ , and ∞ -differentiable on its domain, $\{\theta : A(\theta) < \infty\}$.

(2)
$$\frac{\partial^k}{\partial \theta_1^{\alpha_1} \cdots \partial \theta_d^{\alpha_d}} e^{A(\theta)} = \int T_1(x)^{\alpha_1} \cdots T_d(x)^{\alpha_d} e^{\theta^{\intercal} T(x)} d\mu(x), \ \alpha_i \in \mathbb{N} \text{ and } \sum_{i=1}^d \alpha_i = k$$

(equivalently, $\frac{\partial^k}{\partial \theta_1^{\alpha_1} \cdots \partial \theta_d^{\alpha_d}} A(\theta) = E_{p_\theta}(T_1(x)^{\alpha_1} \cdots T_d(x)^{\alpha_d}))$

- (3) For the gradient, we have $\frac{\partial}{\partial \theta} A(\theta) = \nabla A(\theta) = \frac{1}{\int e^{\theta^{\intercal}T} d\mu} \int T e^{\theta^{\intercal}T} d\mu = E_{\theta} T.$
- (4) For the Hessian, we have:

$$\nabla^2 A(\theta) = \nabla \nabla^{\mathsf{T}} A(\theta) = \int T(x) T(x)^{\mathsf{T}} dp_{\theta}(x) - (\int T dp_{\theta}) (\int T dp_{\theta})^{\mathsf{T}} = \operatorname{Cov}_{\theta}(T(x))$$

Note that in our earlier notation, $e(\theta) = E_{\theta}[T(x)] = \nabla A(\theta)$, so $e'(\theta) = \nabla^2 A(\theta) = \operatorname{Cov}_{\theta}(T) \ge 0$.

Aside: Suppose we use maximum likelihood to estimate θ . Let log likelihood $L_n(\theta) := \sum_{i=1}^n \log p_\theta(x_i) = \sum_{i=1}^n \theta^{\mathsf{T}} T(x_i) - nA(\theta)$. As $\theta \longmapsto A(\theta)$ is smooth and convex, our solutions are characterized by $\nabla L_n(\theta) = 0$, i.e.,

$$\nabla L_n(\theta) = n(P_n T - P_\theta T) = n(P_n T - e(\theta)) \Longrightarrow \hat{\theta}_{\mathrm{ML}} = e^{-1}(P_n T) \quad (\text{moment estimator})$$

3 Asymptotic normality and efficiency

Theorem 3. Suppose $\{p_{\theta}\}$ is full rank, i.e., $\nabla^2 A(\theta) > 0$, i.e., $\operatorname{Cov}_{\theta}(T) > 0$, or the covariance is full rank. Then, the solution to $P_n T = \frac{1}{n} \sum_{i=1}^n T(x_i) = E_{\theta}(T)$ exists eventually (when $x_i \stackrel{iid}{\sim} p_{\theta_0}$), and $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathcal{N}(0, (e'(\theta_0))^{-1} \operatorname{Cov}(T)(e'(\theta_0))^{-1}) = \mathcal{N}(0, (\nabla^2 A(\theta_0))^{-1}) = \mathcal{N}(0, I_{\theta_0}^{-1})$, where I_{θ_0} is the Fisher information.

Proof The above is proven by noticing that $I_{\theta} = -\nabla^2 A(\theta) = -\operatorname{Cov}(T)$, and applying general moment-method asymptotics.

Notice that we do not require consistency $\hat{\theta}_n \xrightarrow{p} \theta_0$ for these theorems.

Example 2. Linear regression.

$$\begin{split} &Y_i|X_i \sim \mathcal{N}(X_i^{\mathsf{T}}\theta_0, \delta^2) \\ &p_{\theta}(Y_i|X_i) \propto e^{-\frac{1}{2\delta^2}(X_i^{\mathsf{T}}\theta - Y_i)^2} \\ &X = \begin{bmatrix} X_1^{\mathsf{T}} \\ \vdots \\ &X_n^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{n \times d}, \ &L_n(\theta) = \sum_{i=1}^n \log p_{\theta}(Y_i|X_i) = -\frac{1}{2\delta^2} ||X\theta - Y||_2^2 \\ &\nabla L_n(\theta) = (-X^{\mathsf{T}}X\theta + X^{\mathsf{T}}Y)/\delta^2 = 0 \Longrightarrow \hat{\theta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y. \\ &\text{The Fisher information is obtained as } I_{\theta} = -\nabla^2 L_n(\theta) = (X^{\mathsf{T}}X)/\delta^2. \\ &\text{Thus, } \sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, \delta^2(X^{\mathsf{T}}X)^{-1}). \end{split}$$