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� Warning: these notes may contain factual errors

Reading: Van der Vaart Ch. 4

Outline: Moment methods

• inverse function theorem, definition

• applications in exponential family models

• asymptotic normality in exponential family models

• efficiency of estimators in particular asymptotic relative efficiency

1 Moment methods and the inverse function theorem

Say we have a function f : X → Rd, and P ||f ||2 = EP [||f(X)||2] =
∫
||f(x)||2dP (x) <∞.

Define Pnf = 1
n

∑n
i=1 f(Xi), the sample mean of f(X).

Then, by the central limit theorem,
√
n(Pnf − Pf)

d−→ N (0,Σ), where Σ = Cov(f(X)).

Let us suppose we have a family {Pθ}θ∈Θ indexed by parameter θ. We have expectation map-
ping e(θ) := EPθ [f(X)] = Pθf . Since f : X → Rd, we have e : θ → Rd.

Suppose e−1 exists; we might expect e−1(Pnf) ≈ e−1(Pθf) = θ. Furthermore, if it were differ-
entiable (i.e., (e−1)′(t) = ∂

∂t(e
−1)′(t) exists at t = Pnf), then we could immediately use the delta

method to get asymptotic normality, parameter estimates, etc.:

√
n(e−1(Pnf)− e−1(Pθf)) =

√
n(e−1(Pnf)− θ) d−→ N (0, [∇e−1(Pθf)]TΣ[∇e−1(Pθf)])

We understand whether or not the inverse of a function is differentiable from the inverse function
theorem.

Lemma 1 (Inverse function theorem). Let F : Rd → Rd be continuously differentiable in a neigh-
borhood of a point θ ∈ Rd, where F ′(θ) ∈ Rd×d is invertible. Then, in a neighborhood of t = F (θ),
we have (F−1)′(t) = ∂

∂tF
−1(t) = 1

F ′(F−1(t))
, and this derivative is continuous.

Proof Let t = F (θ). Then, θ = F−1(t). Let δ be a small change in t, and ∆ be the corresponding
small change in θ. Then:

∆ ≈ ∂θ

∂t
δ =

∂

∂t
F−1(t)δ = (F−1)′(t)δ (∗)
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And by Taylor series expansion:

F (θ + ∆) = F (θ) + F ′(θ)∆ +O(||∆||2)

Then, for small ∆, we have t+ δ = F (θ + ∆) = F (θ) + F ′(θ)∆, i.e.,
δ ≈ F ′(θ)∆, i.e., ∆ ≈ (F ′(θ))−1δ. From (*), we then have (F−1)′(t) = (F ′(θ))−1 = (F ′(F−1(t)))−1.

Theorem 2. Let e(θ) = Pθf be one-to-one on some open set Θ ⊂ Rd, and continuously differen-
tiable near θ0, where e′(θ0) ∈ Rd×d is non-singular.

If Pθ0 ||f ||2 <∞, then:

1. Pnf ∈ dom(e−1) eventually

2. θ̂n = e−1(Pnf) satisfies
√
n(θ̂n−θ0)

d−→ N (0, [(e′(θ0))−1]T Covθ0(f)(e′(θ0))−1), where Covθ0(f) =
Pθ0((f − Pθ0f)(f − Pθ0f)T ).

Proof By the inverse function theorem, there exists a neighborhood ν (or an open set) around
e(θ0) s.t. (e−1) exists on ν and is continuous.
As Pnf

a.s.−−→ Pθ0f , Pnf ∈ ν eventually, so e−1(Pnf) exists.
Now, apply the delta method:

√
n(Pnf − Pθ0f)

d−→ N (0,Cov(f)) =⇒

√
n(e−1(Pnf)− θ0)

d−→ (e−1)′(e(θ0))Z = (e′(θ0))−1Z, where Z ∼ N (0, Id×d)

To get the mathematical form of the statement above, we note that:

√
n(Pnf − Pθ0f)

d−→ N (0,Cov
θ0

f) =⇒

√
n(e−1(Pnf)− θ0)

d−→ N (0, (e−1)′(e(θ0)) Cov
θ0

(f)[(e−1)′(e(θ0))]ᵀ)

i.e.,
√
n(e−1(Pnf)− θ0)

d−→ N (0, e′(θ0)−1 Cov
θ0

(f)(e′(θ0)−1)ᵀ)

where Lemma 1 was used. This gives a number of powerful moment-matching estimators.

Example 1. Estimate the mean of a Bernoulli distribution on {±1}.

Pθ(x) = eθx

1+eθx
= 1

1+e−θx
. Then,

e(θ) = Eθ(x) = 1
1+e−θ

− 1
1+eθ

= eθ−1
eθ+1

.

t = e(θ)⇔ θ = log(1+t
1−t)

Let pθ = P (x = 1) = eθ

1+eθ
. Then,

e′(θ) = (eθ+1)eθ−(eθ−1)eθ

(eθ+1)2
= 2eθ

(1+eθ)2
= 2pθ(1− pθ).
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Thus, e′(θ)−1 = 1
2pθ(1−pθ) .

Also, Eθ(x
2) = 1. Thus, Covθ(x) = 1− e(θ)2 = 1− (eθ−1)2

(eθ+1)2
= 4eθ

(eθ+1)2
= 4pθ(1− pθ).

So, if θ̂n = log 1+x̄n
1−x̄n = argmaxθ

∑n
i=1 log pθ(xi), then

√
n(θ̂n − θ)

d−→ N (0, 1
pθ(1−pθ)).

Thus, we have the asymptotic distribution. As expected, it is more difficult to find estimators when
e(θ) gets close to 1 or −1.

2 Exponential family models

Definition 2.1 (Exponential family). A family {Pθ}θ∈Θ is a regular exponential family with respect
to a base measure µ if there exists a function T : x→ Rd (sufficient statistic) and density pθ(x) =
eθ

ᵀT (x)−A(θ), where A(θ) = log
∫
eθ

ᵀT (x)dµ(x) and is called the log-partition or cumulant generating
function.

Standard results:

(1) A(θ) is convex in θ, and ∞-differentiable on its domain, {θ : A(θ) <∞}.

(2) ∂k

∂θ
α1
1 ·...·∂θ

αd
d

eA(θ) =
∫
T1(x)α1 · ... · Td(x)αdeθ

ᵀT (x)dµ(x), αi ∈ N and
∑d

i=1 αi = k

(equivalently, ∂k

∂θ
α1
1 ·...·∂θ

αd
d

A(θ) = Epθ(T1(x)α1 · ... · Td(x)αd))

(3) For the gradient, we have ∂
∂θA(θ) = ∇A(θ) = 1∫

eθ
ᵀT dµ

∫
Teθ

ᵀTdµ = EθT .

(4) For the Hessian, we have:

∇2A(θ) = ∇∇ᵀA(θ) =

∫
T (x)T (x)ᵀdpθ(x)− (

∫
Tdpθ)(

∫
Tdpθ)

ᵀ = Cov
θ

(T (x))

Note that in our earlier notation, e(θ) = Eθ[T (x)] = ∇A(θ), so e′(θ) = ∇2A(θ) = Covθ(T ) ≥ 0.

Aside: Suppose we use maximum likelihood to estimate θ. Let log likelihood Ln(θ) :=
∑n

i=1 log pθ(xi) =∑n
i=1 θ

ᵀT (xi) − nA(θ). As θ 7−→ A(θ) is smooth and convex, our solutions are characterized by
∇Ln(θ) = 0, i.e.,

∇Ln(θ) = n(PnT − PθT ) = n(PnT − e(θ)) =⇒ θ̂ML = e−1(PnT ) (moment estimator)

3 Asymptotic normality and efficiency

Theorem 3. Suppose {pθ} is full rank, i.e., ∇2A(θ) > 0, i.e., Covθ(T ) > 0, or the covariance is

full rank. Then, the solution to PnT = 1
n

∑n
i=1 T (xi) = Eθ(T ) exists eventually (when xi

iid∼ pθ0),

and
√
n(θ̂n−θ0)

d−→ N (0, (e′(θ0))−1 Cov(T )(e′(θ0))−1) = N (0, (∇2A(θ0))−1) = N (0, I−1
θ0

), where Iθ0
is the Fisher information.

Proof The above is proven by noticing that Iθ = −∇2A(θ) = −Cov(T ), and applying general
moment-method asymptotics.

Notice that we do not require consistency θ̂n
p−→ θ0 for these theorems.
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Example 2. Linear regression.

Yi|Xi ∼ N (Xi
ᵀθ0, δ

2)

pθ(Yi|Xi) ∝ e−
1

2δ2
(Xi

ᵀθ−Yi)2

X =

X
ᵀ
1

...
Xᵀ
n

 ∈ Rn×d, Ln(θ) =
∑n

i=1 log pθ(Yi|Xi) = − 1
2δ2
||Xθ − Y ||22

∇Ln(θ) = (−XᵀXθ +XᵀY )/δ2 = 0 =⇒ θ̂ = (XᵀX)−1XᵀY .
The Fisher information is obtained as Iθ = −∇2Ln(θ) = (XᵀX)/δ2.

Thus,
√
n(θ̂n − θ0)

d−→ N (0, δ2(XᵀX)−1).
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