Stats 300b: Theory of Statistics Winter 2019

Lecture 2 — January 11

Lecturer: John Duchi Scribe: Xinkun Nie

@ Warning: these notes may contain factual errors

Reading: VDV Chapter 2
1. Portmanteau and Prohorov’s Theorems

2. Delta method and examples

1 Convergence recap

Definition 1.1. A sequence of random variables {X,} converges in probability to a random variable X,
denoted X, 5 X, if P(d(X,, X) > &) — 0 for all & > 0.

Definition 1.2. A sequence of random variables {X,} converges in distribution to a random variable X,

d
denoted X,, — X, if P(X,, < x) = P(X < x) for all continuity points x of the function x — P(X < x). This is
equivalent to the assertion that Ef(X,,) — Ef(X) for all bounded continuous functions f.

Theorem 1. (Slutsky’s Theorem).
P d d
1. IfdX,,Y,) =0, X, > X, thenY,, > X.

d d d
2. IfX, » X, Y, - ¢ then (X,,,Y,) = (X, 0).

Remark If the limiting distribution of Y}, is not a constant, then the second part of the theorem does not
necessarily hold. Because when Y is random and (X, ¢) is replaced by (X, Y), we must now specify the joint
law of (X, Y).

Definition 1.3. A collection {X,}aen is uniformly tight if or Ve > 0, A M < oo such that

sup P(||IXell= M) < €
aeA

Remark

1. A single random vector is tight

d
2. If X, — X then {X,,} is uniformly tight. To show this, let x be a continuity point of P(||X||> x), then
P(|X,|= x) — P(]|X||> x). Choose x large enough such that P(||X||> x) is small.

Theorem 2. (Prohorov’s theorem)
A collection of random vectors {X,}eea is uniformly tight if and only if it is sequentially compact for
weak convergence. i.e. for all sequences {X,}nen C {Xolaea, there exists a subsequence ny and a random

d
vector X such that X,, — X.



Remark In R this is Helley’s selection theorem (i.e. CDFs F, have convergent subsequences.)

Example 1: (“Easy” way to get uniformly tightness: Markov’s inequality)
Let {X,}aea satisfy E(||X,||P) < k < oo, for all @ € A and some p > 0. Then {X,}qea is uniformly tight.

Proof By markov inequality,
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P([Xql1> M) <

Theorem 3. (Portmanteau Theorem). Let X,,, X be random vectors. The following are equivalent.
1. X, converges in distribution to X
2. E(f(X,)) — E(f(X)) for all bounded and continuous f
3. B(f(Xy)) — E(f(X)) for all one-Lipschitz f with f € [0, 1]
4. liminf,— . E(f(X,)) = E(f(X)) for non-negative and continuous f.
5. liminf,— . P(X, € O) > P(X € O) for all open sets O
6. limsup,_, ., P(X, € C) < P(X € C) for all closed sets C
7. lim, . P(X,, € B) = P(X € B) for all sets B such that P(X € 0B) = 0

Remark  We call a collection of functions F a determining class if E(f(X,)) — E(f(X)) for all f € F if
d

and only if X,, —» X . For example, from the theory of characteristic functions, we have a determining class

F={x el : teRI.

Example 2: Fourier transforms or characteristic functions. Let i = V—1 and f,(x) = exp(it x) for t € R%.
Then

E(f,(X,)) — BE(f(X)) Vi e RY = X, S X.

2 Delta Method

Suppose we have a sequence of statistics T, that estimate a parameter 6 and we know that r,,(T,,—6) converges
in distribution to T, and r, — oo. Intuitively, we think of r, as the rate of convergence. Suppose a function
¢ is smooth in the neighborhood of 6. Is it possible to say anything about ¢(7,,) — ¢(6)?

Theorem 4. (Delta Method). Let r, — oo and ¢ : RY — RF pe differentiable at 0 and assume that

d
ro(T, — 0) = T for some random vector T. Then

1. ry(¢(Ty) — §(0)) converges in distribution to ¢'(0)T



2. ry(o(T) — ¢(0)) — ryd’ (O)(T,, — 0) converges in probability to 0
Here ¢'(0) € R is the Jacobian Matrix [¢'(6)] ij = &g;(;fe)

Proof By the definition of the derivative, we have that

¢(1) = ¢(6) + ¢’ (O)(t — 0) + oIt - 6],
i.e.
¢(t) = (0) + ¢"(O)(t — 6) + R(||t - 6l (1
R(h)

where lim,—o =~ = 0. Since r,(T,, — 0) converges in distribution, we know that r,(T,, — 6) = O,(1),
which implies that 7,||T,, — || = O,(1). We also have that ||T,, — || = 0,(1), which implies R(||T,, — 6||) =
0,(IT,, = 6ll). Thus

mR(|T, - 0l) = rnop(”Tn -6 = Op(rnllTn -0 = Op(Op(l)) = Op(1)~

d
Using this along with (1), we have the second part of the theorem. Noting that r,,¢’(6)(T, — 6) — ¢'(O)T,
and applying Slutsky’s theorem, we get the first part as well. O

Example 3: Let X; iid P,E(X)=0+#0,Cov(X) =T and ¢(h) = %llhllz. Then

k
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By the Delta Method, we have
11 21, o\ d T
Vi (5] 2 x| - 3107) 4 Noero),

Note if ||6]|>= 0, we actually have

2
(gl x| - 30a0) %o

So when 6 = 0, we would like to somehow adjust r,(¢(T,) — #(6)) so that we get convergence to a non-trivial
distribution. This is a precursor to the next section. &

Example 4: (Sample Variance). Let X, ..., X, be i.i.d with finite fourth moment. Let X,, = n Y X

i=1 i

S2=n"' 31 (X;-X,)% and X7 = n~! T | X?. We want weak convergence of Vn(S?2— o). First note that
S2=X? - (X,)? = ¢(X,, X2), where ¢(x,y) = y — x>. With a; = EX’, one can check that

e 2
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Then by the Delta Method, we obtain

d
Vi(S2 - 0% 5 N0, g — a3).



3 Second Order Delta Method

Note that the Delta Method is just a Taylor expansion! So if ¢’(6) = 0, just look at higher order approxima-
tions. Usually in such settings, ¢ : R¢ — R, and so ¢'(0) = V¢(6) = 0 € R,

Theorem 5. (Second Order Delta Method). Let ¢ : R — R be twice differentiable at 6, and r,(T,, —6) i T.
Then if Vé(6) = 0, we have

AT - 90) S STV,
Proof By definition,
o(t) = $(0) + V(O)' (1 = 0) + %(r =0 V29(0)(r - 0) + R(llt - oI,
where R(h) = o(||h]|?). Since V¢(6) = 0, we actually have
o(1) = 9(0) + %(t = )" V2p(6)(t = 6) + Rt - 6. @

Note r,le(IIT,, -0 = r,zlop(llT,, -9 = op(lru(T, — O?). Since rp (T, — ) converges in distribution, so
does [|7,,(T,, — O)II*, and so [|r,(T,, — O)|I* = O,(1). Thus
reR(IT, = 0ll) = 0,(0,(1)) = 0,(1). 3)

Now by the continuous mapping theorem, we have that
1 a1
S n(Ta = O) VPO Ty = ) = ST V2HOT. @)

So combining (2), (3), (4) and using Slutsky’s lemma, we get the desired convergence in distribution. O

Example 5: Estimating the parameter of a Bernoulli random variable.
Suppose 6 € (0, 1), X; ~ Bernoulli(6). To estimate 8, we may use the sample mean 0, =n" " | Xi. Clearly,

Ef, = 6, Var(d,) = @. Instead of using mean squared error to measure the performance of 0, let us use
the Kullback-Leibler (KL) divergence (or the log loss). This is

dP
Dk (P = | dPlog| —|.
k(P Q) f Og(dQ)
Let P, = Bernoulli(?), ¢ € [0, 1]. So

1-6

t
Dgr(P; || Pg) = tlog i (I -1)log

Let ¢(t) = Dgr(P; || Pg). Then

t
‘() = log — —1 :
¢ (1) =log — —log —

Note ¢’(0) = 0. So we need the second derivative:
. 1 1 1
N=—-—4+ — = _—,
90 t 11—t «1-9

and so ¢”(0) = m. So by the second order Delta Method,

d 1,
nDgr(Py Il Pg) — 5)((1)'
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