
Stats 300b: Theory of Statistics Winter 2019

Lecture 1 – January 8

Lecturer: John Duchi Scribe: Han Wu

� Warning: these notes may contain factual errors

Reading: VDV Chapter 2.1, 2.2

Outline of lecture 1:

• Administrative basic stuff

• Overview of the course

• Basic notions of convergence: Probability, Distributions and CLTs

Course Website: stanford.edu/class/stats300b

Grading:

5% Scribe notes
60% Problem sets (weekly, every Thursday)
35% Final

Overview: What is this course about?

1. Convergence of random variables, random vectors, estimators and functions.

2. Understanding various notions of optimality and quality of estimators and tests.

What you need to be happy/ get through this class:

1. Stat 300a (good to have but not strictly necessary).

2. Probability at stat 310a level. e.g. Convergence of distribution, Helly Selection Theorem
etc.

3. Analysis at Math 171 level. e.g. Compactness, metric spaces etc.

Part I of the course:

Finite dimensional problems and statistic models.

Example 1: One example problem is that we have Xi
iid∼ Pθ, Xi ∈ Rd, where d is fixed. We want

to understand the estimators of parameter θ ∈ Rd and tests in this regime. ♣
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Part II of the course:

Optimality and comparisons of estimators

In this part, we will try to understand when an estimator θ̂ of θ is good or optimal. Can we
compare estimators or tests?

Part III of the course:

Infinite dimensional quantities and uniform convergence. Concentration inequalities, and uni-
form laws i.e.

1

n

n∑
i=1

f(xi)→ E[f(x)]

uniformly in f ∈ F

Basic theory of convergence of random variables:

In this part we will go through basic definitions, Continuous Mapping Theorem and Slutsky
Lemmas.

For now, assume Xi ∈ Rd, d <∞. We first give the definition of various convergence of random
variables.

Definition 0.1. (Convergence in probability) We call Xn
p→ X (Xn converges to X in probability)

if
lim
n→∞

P(||Xn −X|| ≥ ε) = 0, ∀ε > 0

In a general metric space, with metric ρ, the above definition becomes

lim
n→∞

P(ρ(Xn, X) ≥ ε) = 0, ∀ε > 0

Definition 0.2. (Weak convergence or convergence in distribution)
We say

Xn
d→ X

if for ∀x ∈ Rd,
P(Xn ≤ x)→ P(X ≤ x)

at all X ∈ Rd such that x→ P(X ≤ x) is continuous.

Note: In the above definition P(X ≤ x) = P(X ∈ (−∞, x1]× · · · × (−∞, xd])

We also have a general definition(for example in Polish space) for convergence in distribution.
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Definition 0.3.
Xn

d→ X

if and only if for all bounded continuous function f ,

E[f(Xn)]→ E[f(X)]

Below is the definition of Lp convergence.

Definition 0.4. (Convergence in the pth mean)
We say that

Xn
Lp

→ X

if
lim
n→∞

E[||Xn −X||p] = 0

Finally, we give the definition of almost surely convergence for random variables.

Definition 0.5. (Xn converges almost surely to X)
We say that

Xn
a.s.→ X

if
P( lim
n→∞

Xn 6= X) = 0

i.e.
P(lim sup

n→∞
||Xn −X|| ≥ ε) = 0, ∀ε > 0

Standard implications:

For the various types of convergence above, we have the following relationships.

Xn
a.s.→ X ⇒ Xn

p→ X ⇒ Xn
d→ X

Xn
Lp

→ X ⇒ Xn
p→ X

No relations between covergence in Lp and convergence almost surely in either direction. No
reversed implication between weak convergence and covergence in Lp.

Note: All proofs above and below can be found in Van der Vaart Chapter 2.

Example 2: Let Xi
iid∼ P , cov(Xi) = Σ = E[(Xi − µ)(Xi − µ)T ], µ = E[Xi]. Then

1

n

n∑
i=1

Xi
a.s.→ µ

1√
n

n∑
i=1

(Xi − µ)
d→ N(0,Σ)

(The second line is the CLT) ♣
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Basic Convergence Theorems:

Theorem 1. (Continuous Mapping Theorem) Let g be continuous on a set B such that P(X ∈
B) = 1 then

Xn
p→ X ⇒ g(Xn)

p→ g(X)

Xn
a.s.→ X ⇒ g(Xn)

a.s.→ g(X)

Xn
d→ X ⇒ g(Xn)

d→ g(X)

For the heuristics of the third line: If g is continuous, then f ◦ g is continuous and bounded for
any continuous bounded f . Thus,

E[f(g(Xn))]→ E[f(g(x))]

Another important theorem we will need is Slutsky’s Theorem.

Theorem 2. (Slutsky’s Theorem)
(1) If c is constant, then

Xn
d→ c⇔ Xn

p→ c

(2) If Xn
d→ X, d(Xn, Yn)

p→ 0, then

Yn
d→ X

(3) If Xn
d→ X, Yn

p→ c (c constant), then(
Xn

Yn

)
d→
(
X
c

)
The Slutsky’s theorem allows us to ignore low order terms in convergence. Also, the following

example shows that stronger impliations over part (3) may not be true.

Example 3: If Xn
d→ N(0, I), then −Xn

d→ N(0, I).
However, (

Xn

−Xn

)
d→
(

Z
−Z

)
where Z ∼ N(0, I) instead of N(0, I). ♣

Sketch of Proof
(1) The ”⇐ ” direction is trivial and given in the previous sections. For ”⇒ ” direction of the

theorem, take
f(x) = ||x− c|| ∧ 1 = min{||x− c||, 1}

then
E[f(xn)]→ E[f(c)] = 0

i.e.
E[||xn − c|| ∧ 1]→ 0

which implies convergence in probability
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(2) Let f be 1-Lipschitz with range [0,1], then we have for any ε > 0

|E[f(Yn)]− E[f(Xn)]| ≤ εE1{d(Xn, Yn) ≤ ε}+ 2E1{d(Xn, Yn) > ε}

which implies E[f(Yn)] and E[f(Xn)] have the same limit. The result follows from Portmanteau.

(3) We have (
Xn

Yn

)
−
(
X
c

)
=

(
0

Yn − c

)
p→ 0

By part (2), (
Xn

c

)
d→
(
X
c

)
⇒
(
Xn

Yn

)
d→
(
X
c

)
The left part of above implication follows from Portmanteau.

Consequences of Slutsky’s Theorem:

If Xn
d→ X, and Yn

d→ c, then

Xn + Yn
d→ X + c

YnXn
d→ cX

If c 6= 0,
Xn

Yn

d→ X

c

Proof Apply Continuous Mapping Theorem and Slutsky’s Theorem and the statements can be
proved.

Note: For the third line of convergence, if c ∈ Rd×d is a matrix, then (2) still holds. Moreover,
if det(c) 6= 0, (3) holds but

Y −1n Xn
d→ c−1X

because c→ c−1 is continuous when det(c) 6= 0.

Example 4: (T-like statistics) Let Xi
iid∼ P , Cov(Xi) = Σ � 0. Define

µn =
1

n

n∑
i=1

Xi

Sn =
1

n

n∑
i=1

(Xi − µn)(Xi − µn)T

Tn =
1√
n
S
− 1

2
n

n∑
i=1

(Xi − µn)
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Then Tn
d→ N(0, I).

The reason is that
µn

p→ E[X]

Sn
p→ Σ

and
1√
n

n∑
i=1

(Xi − µ)
d→ N(0,Σ)

Apply Slutsky’s Theorem,

Tn −
1√
n

Γ−
1
2

n∑
i=1

(Xi − µ)
p→ 0

♣

Big-O Notation:

In this part we introduce the big-o and little-o notation in probability.

Let Xn be random vectors, and Rn be R-valued random variables. We say that Xn = op(Rn) if
∃ random vectors Yn such that

Xn = YnRn

Yn
p→ 0

This is called ”little o-pea”.

We say that Xn = Op(Rn) if ∃ random vectors Yn where Yn = Op(1). Yn = Op(1) means that
{Yn} is uniformly tight. i.e.

lim
M→∞

sup
n∈N

P(||Yn|| ≥M) = 0

or ∀ε > 0, ∃ M such that
P(||Yn|| ≥M) ≤ ε, ∀ n

Comsequences:

With the definition above, we can get the following properties and lemma.

op(1) + op(1) = op(1)

Op(1) +Op(1) = Op(1)

Lemma 3. Let function R : Rd → Rk, with R(0) = 0, and Xn
p→ 0. Then

(1) If R(h) = o(||h||p) as h→ 0, then

R(Xn) = op(||Xn||p)

(2) If R(h) = O(||h||p) as h→ 0, then

R(Xn) = Op(||Xn||p)
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Proof Define

g(h) =


R(h)

||h||p
, if h 6= 0

0, if h = 0

(1) Then g(h) → 0 as h → 0. Thus, g is continuous at 0 and Xn
p→ 0. Apply Continuous

Mapping Theorem(CMT), we get

g(Xn)
p→ 0

(2) ∃ M , δ > 0 such that ||g(h)|| ≤M , ∀||h|| ≤ δ. Then

P(||g(Xn)|| > M) ≤ P(||Xn|| > δ)→ 0

so
g(Xn) = Op(1)
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