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@ Warning: these notes may contain factual errors

Reading: VDV Chapter 2 and Chapter 3
1. Recap Convergence

2. Delta Method - first order, higher order

1 Convergence recap

Definition 1.1. A sequence of random variables {X,} converges in probability to a random variable X,
denoted X, 2 X, if P(d(X,, X) > &) — 0 for all & > 0.

Definition 1.2. A sequence of random variables {X,} converges in distribution to a random variable X,

d
denoted X,, — X, if P(X,, < x) = P(X < x) for all continuity points x of the function x — P(X < x). This is
equivalent to the assertion that Ef(X,,) — Ef(X) for all bounded continuous functions f.

Theorem 1. (Slutsky’s Theorem).
1 IfdX,, V) 50, X, 5 X, then ¥, 5 X.
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2. If X, = X, Y, — ¢, then (X,,,Y,) = (X, ¢).

Remark  If the limiting distribution of Y}, is not a constant, then the second part of the theorem does not
necessarily hold. Because when Y is random and (X, ¢) is replaced by (X, Y), we must now specify the joint
law of (X, Y).

Theorem 2. (Portmanteau Theorem). Let X,,, X be random vectors. The following are equivalent.
1. X, converges in distribution to X

E(f (X)) — E(f(X)) for all bounded and continuous f

E(f (X)) — E(f(X)) for all one-Lipschitz fwith f € [0, 1]

liminf, E(f(X,)) = E(f(X)) for non-negative and continuous f.

liminf, . P(X,, € O) > P(X € O) for all open sets O

limsup,,_,, P(X,, € C) < P(X € C) for all closed sets C
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lim, . P(X, € B) = P(X € B) for all sets B such that P(X € 0B) = 0
Remark  We call a collection of functions J a determining class if E(f(X,)) — E(f(X)) for all f € F if
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and only if X;, — X . For example, from the theory of characteristic functions, we have a determining class
T
F={x-el* : teRY)



2 Delta Method

Suppose we have a sequence of statistics T, that estimate a parameter § and we know that r,,(T,,—6) converges
in distribution to T, and r,, — oo. Intuitively, we think of r, as the rate of convergence. Suppose a function
¢ is smooth in the neighborhood of 6. Is it possible to say anything about ¢(7,,) — ¢(6)?

Theorem 3. (Delta Method). Let r, — oo and ¢ : R? — R be differentiable at 6 and assume that

(T, —6) i T for some random vector T. Then

1. r(¢(T,) — ¢(0)) converges in distribution to ¢’ (0)T

2. r(@(Ty) — ¢(8)) — 1y’ ()T, — ) converges in probability to 0
Here ¢'(0) € R4 is the Jacobian Matrix [¢'(0)); = &g;e(je)
Proof By the definition of the derivative, we have that

¢(t) = ¢(0) + ¢'(0)(1 — 0) + o(ll - 6ll),

i.e.
o) = () + ¢"(O)(t — 0) + R(||t - 6l]) (1
R(h)

where lim,0 =~ = 0. Since r,(T,, — 0) converges in distribution, we know that r,(T,, — 0) = O,(1),
which implies that r,||T,, — 6]| = O,(1). We also have that ||T,, — 6| = 0,(1), which implies R(||T,, — 0]|) =
0,(IT, = 6ll). Thus

"aR(|Ty = Ol) = ra0p([Tn = 6ll) = 0p(rull Ty = 0ll) = 0,(0p(1)) = 0p(1).
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Using this along with (1), we have the second part of the theorem. Noting that r,¢"(0)(T, — 6) — ¢’ (DT,
and applying Slutsky’s theorem, we get the first part as well. O

Example 1: Let X; iid P,E(X)=0+#0,Cov(X) =T and ¢(h) = %llhllz. Then

k
1
Vi (= 3 X; - 6) 4 N@©.T)
n
i=1
By the Delta Method, we have

2

N (%H% x| - 5||ev||2) < N, 6T0),

Note if [|6]]*= 0, we actually have

2
(gl ] ) 5o

So when 6 = 0, we would like to somehow adjust r,(¢(T},) — #(6)) so that we get convergence to a non-trivial
distribution. This is a precursor to the next section. &



Example 2: (Sample Variance). Let X, ..., X, be i.i.d with finite fourth moment. Let X,, = n! 2 Xi,
S% =n! i (X — X,)?, and X,% =n! ?:1 Xl.z. We want weak convergence of \/E(S% — ). First note that
S2=X? - (X,)* = ¢(X,, X2), where ¢(x,y) = y — x>. With a; = EX’, one can check that

X 2
Vi ﬁ_aq iNO, @ - aj a/3—a/162z2 '
x2) \x -y -
Then by the Delta Method, we obtain

d
Vi(S2 - 0% 5 N0, g — a3).

3 Second Order Delta Method

Note that the Delta Method is just a Taylor expansion! So if ¢’(8) = 0, just look at higher order approxima-
tions. Usually in such settings, ¢ : R¢ — R, and so ¢/(6) = V¢(6) = 0 € RY.

Theorem 4. (Second Order Delta Method). Let ¢ : R? — R be twice differentiable at 0, and r,(T,, —6) i T.
Then if V¢(6) = 0, we have

P2A(T,) - 6(0) %TTV%(@)T.
Proof By definition,
¢(1) = ¢(6) + V() (1 - 6) + %(r - 0)"'V2¢(0)(t — 0) + R(l|t - 6ll),
where R(h) = o(||hl|?). Since V¢(0) = 0, we actually have
$(1) = p(0) + %(r - O)"V?p(O)(t - 0) + R((|t - 6. )

Note r%R(IITn -0 = rﬁop(llTn - 0||2) = 0p(lr(Ty, — 0)||2). Since r, (T, — 8) converges in distribution, so
does ||, (T, — 0)II*, and s0 ||r,,(T,, — O)II* = O,(1). Thus

raRIT, = 6l) = 0,(0,(1)) = 0,(1). 3)
Now by the continuous mapping theorem, we have that
1 d 1
5T = ) V2HO (T, = ) = ST VP(O)T. )
So combining (2), (3), (4) and using Slutsky’s lemma, we get the desired convergence in distribution. O
Example 3: Estimating the parameter of a Bernoulli random variable.

Suppose 6 € (0, 1), X; ~ Bernoulli(f). To estimate 6, we may use the sample mean 8, = n~! 2y X;i. Clearly,

Ed, = 6, Var(d,) = @. Instead of using mean squared error to measure the performance of 8,, let us use
the Kullback-Leibler (KL) divergence (or the log loss). This is

dP
Dgr(P Q) = fdPlog(E).
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Let P, = Bernoulli(?), € [0, 1]. So

1-6

t
Dgr(P; || Pg) = tlog gt (I -1log

Let ¢(t) = Dgr(P; || Pg). Then

t
‘() = log — — 1 :
¢(1) =log — —log —

Note ¢’(0) = 0. So we need the second derivative:

1

" (t —1+L——
=7 1-t t(1-1)

and so ¢’ (0) = ﬁ. So by the second order Delta Method,

d 1
nDgr(Py |l Po) — EX(ZD-
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