
Stats 300b: Theory of Statistics Winter 2017

Lecture 19 – March 14

Lecturer: John Duchi Scribe: Steven Yadlowsky

� Warning: these notes may contain factual errors

Reading: Notes on course website (Contiguity and asymptotics)

1 Outline

• Recap

• Quadratic mean differentiability

– Testing

– Definitions and examples

• Local asymptotic normality

• Limiting Gaussian shifts

2 Recap

MeasuresQn are contiguous with respect to Pn (writtenQn/Pn) ifQn(An)→ 0 whenever Pn(An)→
0.

Lemma 1. Le Cam’s 3rd Lemma If

(
Xn, log

Qn
Pn

)
d→
Pn

N

[ µ
−1

2σ
2

]
,

[
Σ τ
τT σ2

] ,

then Pn / . Qn and Xn
d→
Qn

N (µ+ τ,Σ).

Idea Asymptotically, we can change measure between Pn and Qn, because Qn / . Pn and

log dQn
dPn
→ N

(
−1

2σ
2, σ2

)
.

Goal Understand limiting behavior of experiments / random variables by this change of mea-
sure. Our motiviation will be via testing: When is testing point nulls versus point alternatives
“appropriated” (which we will momentarily make precise) hard?
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Recall

‖P −Q‖TV = sup
A
|P (A)−Q(A)|,

d2
hel(P,Q) =

1

2

∫ (√
p−√q

)2
dµ,

d2
hel(P,Q) ≤ ‖P −Q‖TV ≤ dhelP,Q

√
2− d2

hel(P,Q).

Now, consider the simple hypothesis testing problem of P0 versus P1, and the associated best
error,

inf
ψ
P0(ψ 6= 0) + P1(ψ 6= 1) = 1− ‖P0 − P1‖TV ≥ 1−

√
2dhel(P0, P1).

Given sequences of tests P0,n versus P1,n, we are interested in considering when the asymptotic
error does not vanish,

lim inf
n→∞

inf
ψn
P0,n(ψn 6= 0) + P1,n(ψn 6= 1) > 0,

which occurs whenever 1−
√

2dhel(P1,n, P0,n) > 0, or, put another way, when dhel(P1,n, P0,n) < 1√
2
.

Note that this bound may very well be loose– we can probably get tighter constant bounds on
the Hellinger distance, but that is not our intention here. Instead, we are focusing on highlighting
how Hellinger distance “plays nicely” with iid sampling (ie., product distributions). Specifically,
consider the following:

d2
hel(P

n, Qn) =
1

2

∫ (√
dPn −

√
dPn

)2

= 1−
∫ √

p(x1) . . . p(xn)
√
q(x1) . . . q(xn) dµ

= 1−
(∫ √

p(x)
√
q(x) dµ

)n
= 1−

(
1− d2

hel(P,Q)
)n
.

In particular, given dhel(P,Q) we know dhel(P
n, Q) of the product distributions. So, if we consider

local alternatives Pn0 versus Pn
h/
√
n
, then

lim
n→∞

dhel(P
n
0 , P

n
h/
√
n) < 1 if

d2
hel(P0, Ph/

√
n) = O(

1

n
) as n→∞,

because (1 − O( 1
n))n “→” exp(−something). With this in mind, our game plan is to understand

when d2
hel(P0, Ph/

√
n) = f(h)

n + o( 1
n).

3 Quadratic mean differentiability

Suppose {Pθ}θ∈Θ is a smooth family of distributions (ie., ∇pθ exists and is smooth). Then, using
that √

a+ δ =
√
a+

1

2
√
a
δ +O(δ2),
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as δ → 0, we have that

√
pθ+h =

√
pθ +∇pTθ h+O(‖h‖2)

=
√
pθ +

1

2
√
pθ
∇pTθ h+O(‖h‖2)

=
√
pθ +

1

2

∇pTθ h
pθ

√
pθ +O(‖h‖2)

=
√
pθ +

1

2
˙̀T
θ h
√
pθ +O(‖h‖2),

where ˙̀
θ = ∇ log pθ is the score function.

With this in mind, we define the following nice family of distributions for which the above
expansion holds, almost definitionally. This will basically capture families of distributions that
have nice behavior with the Hellinger distance.

Definition 3.1. A family {Pθ}θ∈Θ is quadratic mean differentiable (QMD) at θ ∈ int Θ if there is
a score function ˙̀

θ : X → Rd, so that∫ (
√
pθ+h −

√
pθ −

1

2
˙̀T
θ h
√
pθ

)2

dµ = o
(
‖h‖2

)
,

as h→ 0.

Proposition 2. (proved in the notes) Pθ ˙̀
θ = 0 and Pθ ˙̀

θ
˙̀T
θ is well-defined in a family which is

QMD.

Example 1: Exponential families. Let pθ(x) = exp(θTT (x) − A(θ)), A(θ) = log
∫

exp(T (x)T θ).
Then, {Pθ} is QMD with score ˙̀

θ(x) = ∇ log pθ(x) = T (x)−∇A(θ) = T (x)− E(T (x)).
Proof (Sketch).

Without loss of generality, we can take T (x) = x (we could do a change of measure with µ to
make this precise).

√
pθ+h −

√
pθ −

1

2
hT
(
x−∇X(θ)

)√
pθ

= exp

(
1

2
(xT θ −A(θ))

)(
exp

(
1

2
hTx− 1

2

(
A(θ + h)−A(θ)

))
− 1− 1

2
hT (x−∇A(θ))

)

=
√
pθ

(
1

2
hTx− 1

2
hT (x−∇A(θ))− 1

2

(
A(θ + h)−A(θ)

)
+O

(
(hTx−A(θ + h)−A(θ))2

))
=
√
pθ

(
1

2
(A(θ) +A(θ + h)) +

1

2
hT∇A(θ) +O

(
(hTx)2 + ‖h‖2

))
=
√
pθ

(
−1

2
hT∇A(θ) +

1

2
hT∇A(θ) +O

(
(hTx)2 + ‖h‖2

))
=
√
pθ

(
O
(

(hTx)2 + ‖h‖2
))

Using that Lebesgue’s dominated convergence theorem holds in an exponential family,

1

‖h‖2

∫ (
√
pθ+h −

√
pθ −

1

2
hT ˙̀

θ
√
pθ

)
=

∫
pθO

(
‖h‖4 + (hTx)4

‖h‖2

)
dµ

→ 0 as h→ 0.
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♣

Remark Fisher information Iθ = Pθ ˙̀
θ

˙̀T
θ is exactly as before, Iθ = Cov(T (X)−∇A(θ)).

The following heuristic (which is actually true, although unstated as such) is that if {Pθ} is
QMD, then

d2
hel(Pθ+h, Pθ) =︸︷︷︸

can be made rigorous

1

2

∫ (
1

2
hT ˙̀

theta
√
pθ

)2

dµ+ o(‖h‖2)

=
1

8

∫
hT ˙̀

θ
˙̀T
θ hpθ dµ+ o(‖h‖2)

=
1

8
hT Iθh+ o(‖h‖2).

For QMD families, we have

d2
hel(Pθ+h/

√
n, Pθ) =

1

8
hT Iθh+ o(

1

n
, and

lim
n→∞

d2
hel(P

n
θ+h/

√
n, P

n
θ ) = 1− exp(−1

8
hT Iθh) ∈ (0, 1),

so that
lim inf
n→∞

inf
ψn
Pθ(ψn 6= 0) + Pθ+h/

√
n(ψn 6= 1) > 0.

4 Local asymptotic normality

Definition 4.1. A family {Pθ}θ∈Θ is locally asymptotically normal (LAN) at θ ∈ int Θ if there
exists a sequence Dn ∈ Rd and precision matrix K � 0, such that for all h ∈ Rd,

log
dPθ+h/

√
n,n

dPθ,n
= hT∆n −

1

2
hTKh+ oPθ,n(‖h‖),

where ∆n
d→

Pθ,n
N(0,K), and oP (‖h‖) means converging in probability to 0 uniformly, if ‖h‖ is

bounded.

Remark

1. Basically, pθ has a shifted quadratic expansion.

2. hT∆n − 1
2h

TKh
d→

Pθ,n
N(−1

2h
TKh, hTKt), so this will imply contiguity.

Example 2: Gaussian shifts. Let Ph,n be the distribution of Yi = h+ ξi, where ξi ∼ N(0,Σ), and
i = 1, . . . n. Then, calculations (omitted here) show that

log
dPh/

√
n,n

dP0,n
=
√
nhTΣ−1Ȳn −

1

2
hTΣ−1h,
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so
∆n =

√
nΣ−1Ȳn

d→
P0,n

N(0,Σ−1),

and K = Σ−1 is the precision (or information) matrix. ♣

Example 3: QMD families. (see VdV ch 7 for details).
If {Pθ} is QMD, then

log
dPh/

√
n,n

dP0,n
=

 1√
n

∑
i=1

6n ˙̀(xi)

T

h− 1

2
hT Iθh+ oP (1).

So, QMD implies LAN with precision Iθ.
Proof (Sketch).

Let Pn = Pθ+h/
√
n, and P = Pθ.

log

n∏
i=1

pn
p

(xi) = 2

n∑
i=1

log

√
pn
p

(xi)

(∗) = 2
n∑
i=1

log

(
1 +

1

2

(
2

√
pn
p

(xi)− 2

)
︸ ︷︷ ︸

Wn,i

)

= 2

n∑
i=1

1

2
Wn,i −

1

8
W 2
n,i +W 2

n,ir(Wn,i),

where r(x) = O(|x|).

(∗) =

n∑
i=1

Wn,i︸ ︷︷ ︸
(1)

− 1

4

n∑
i=1

W 2
n,i︸ ︷︷ ︸

(2)

+oP (1).

From here, we can use QMD to control (1) and (2), and if g(x) = hT ˙̀
θ(x), then

Var

 n∑
i=1

Wn,i −
1√
n

n∑
i=1

g(Xi)

 ≤ nE [(Wn,1 −
1√
n
g(X1))2

]
= no(

1

n
) = o(1),

where the step to o( 1
n) follows from the fact that the family is QMD.

Similar calculations show that in the end,

(∗) =
1√
n

n∑
i=1

g(Xi)−
1

2
hT Iθh+ oP (1).

♣
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