
Stats 300b: Theory of Statistics Winter 2017

Lecture 17 – March 7

Lecturer: John Duchi Scribe: Nikolaos Ignatiadis, Michael Sklar

� Warning: these notes may contain factual errors

Reading: VDV (van der Vaart, Asymptotic Statistics) Chapter 14: Relative efficiency of tests

Outline: In this lecture we broadly cover Asymptotic testing. In particular, we cover the following:

• Asymptotic power and level of tests

• Sequence of local alternatives

• Comparison of tests

Basic setup

Consider the basic problem of testing the null hypothesis H0 : θ ∈ Θ0 against the alternative
H1 : θ ∈ Θ1.

Given a test statistic Tn and critical region Kn, we reject the null hypothesis H0 if Tn ∈ Kn.
The power function of Tn (and the corresponding test) based on rejection region Kn then is:

πn(θ) = Pθ[Tn ∈ Kn]

Definition 1. The sequence of tests based on statistics Tn and rejection regions Kn is asymptoti-
cally level (size) α if:

lim sup
n→∞

sup
θ∈Θ0

Pθ[Tn ∈ Kn] ≤ α

Näıve comparison of tests

We are interested now in answering the following question: How should we compare two tests of
similar levels?

To make this precise, let π
(1)
n , π

(2)
n , be power functions for tests (T

(1)
n ,K

(1)
n ), (T

(2)
n ,K

(2)
n ) and we

want to compare the power of the tests.

Attempt 1: An uncontroversial way to say that test 1 is better than test 2 is if the following two
conditions are satisfied:

1. π
(1)
n (θ) ≤ π(2)

n (θ) ∀ θ ∈ Θ0

2. π
(1)
n (θ) ≥ π(2)

n (θ) ∀ θ ∈ Θ1

In fact, if also π
(1)
n (θ) > π

(2)
n (θ) for some θ ∈ Θ1, then test 1 would uniformly dominate test 2

(and test 2 would be inadmissible).
However, this is an extremely strong requirement and will not happen, except in extremely

simple cases (such as simple hypotheses for which the Neyman-Pearson Lemma applies).
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Attempt 2: Instead, let’s try to take limits as n→∞. Unfortunately this does not work either:

Example 1 (Sign test for location): Let Xi ∼ P[·−θ] i.i.d., where P is symmetric and has density
at θ = 0. Let H0 : θ = 0 and H1 : θ > 0. Consider the sign test based on the statistic:

Sn =
1

n

n∑
i=1

sign(Xi)

Under H0, sign(Xi) are just i.i.d. Rademacher, i.e. random signs (Uniform on {-1,+1}). Now
let:

µ(θ) = Eθ[sign(Xi)] = E0[sign(Xi + θ)]

By the above comment, we clearly have that µ(0) = 0. On the other hand, for θ > 0, we have
that µ(θ) > 0, since P0[Xi + θ > 0] = P[Xi > −θ] > P[Xi > 0] = 1

2 .
Furthermore since Var0(sign(Xi)) = 1, we have by the Central Limit Theorem that:

Under H0 :
√
nSn

D−−→
H0

N (0, 1)

Now the natural (asymptotic) level α test rejects if
√
nSn ≥ zα, where zα is the 1− α quantile

of the Standard Normal distribution, i.e. P[N (0, 1) ≥ zα] = α.
We next turn to study the power function πn(θ) for θ > 0: What happens asymptotically?

πn(θ) = Pθ[
√
nSn ≥ zα] = Pθ[

√
n(Sn − µ(θ)) ≥ zα −

√
nµ(θ)]

Now observe that, again by the CLT:

√
n(Sn − µ(θ))

D−→
θ
N (0, σ2(θ))

where σ2(θ) = Varθ(sign(Xi)) and furthermore since θ > 0 (⇒ µ(θ) > 0) we have that

zα −
√
nµ(θ)→ −∞ as n→∞

Thus:

πn(θ)
n→∞−−−→
θ>0

P[σ(θ)Z ≥ −∞] = 1

where Z ∼ N (0, 1). ♣

Take-home message: Any sensible level α test will be consistent against all alternatives and
have limn→∞ πn(θ) = 1 for all θ ∈ Θ1. Hence we cannot really compare reasonable tests using this
type of asymptotic analysis.

More fine-grained asymptotic comparison of tests

So the key question is: What should we do to understand limits and power of tests? Here there
are two main key ideas that provide an answer:
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Idea 1 (Hoeffings, ’60s): Use large deviations and information theory by studying (for θ ∈ Θ1):

lim
n→∞

1

n
log(1− πn(θ))

The intuition here is that often πn(θ) → 1 exponentially fast in n → ∞. For example, in the
Gaussian case we approximately have that:

πn(θ) � 1− exp

(
−nθ

2

2

)
Idea 2 (Le Cam, ’70s): The idea here is to look at sequences of problems getting ”closer”
together or harder to distinguish as n→∞.

We consider the following thought experiment: Let H0 : θ = 0 and H1 : θ = θn = h√
n

, where h

is some fixed vector. This will give the ”right” behaviour for ”normal” models:

Example 2: Let Xi ∼ N (0, 1) i.i.d. under the null hypothesis and Xi ∼ N
(

h√
n
, 1
)

i.i.d. under

the alternative for i = 1, . . . , n. Also consider the statistic:

Tn =
1√
n

n∑
i=1

Xi

We have:

Under H0 : Tn ∼ N (0, 1)

Under H1 : Tn ∼ N (h, 1)

To see this for the alternative, just observe that Tn = h+ 1√
n

∑n
i=1Wi with Wi ∼ N (0, 1) i.i.d.

This trivially also implies that asymptotically:

Tn
D−−→
H0

N (0, 1)

Tn
D−−→
h√
n

N (h, 1)

♣

The idea now is that any limiting test must distinguish between N (0, 1) and N (h, 1). Here we
started with a Gaussian example, but this limiting normality will end up holding under extraordi-
nary generality in many problems. This will allow us to reduce problems asymptotically to testing
or estimation in Gaussian location models.

In particular, now suppose that there exists a mean function µ(θ) and a variance function σ2(θ)
such that:

√
n

(
Tn − µ(θn)

σ(θn)

)
D−→
θn
N (0, 1)

Here we let θn = h√
n

. Also we will assume for simplicity that µ is differentiable in θ with

µ′(θ) > 0 for all θ ≥ 0.
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The natural test of H0 : θ = 0 versus H1 : θ > 0 is to reject if
√
n
(
Tn−µ(0)
σ(0)

)
is large, i.e. if:

√
n

(
Tn − µ(0)

σ(0)

)
≥ zα

By construction this is definitely asymptotically level α, since:

lim sup
n→∞

πn(0) = 1− Φ(zα) = α

What about the limiting power under θn?

πn(θn) = Pθn [
√
n(Tn − µ(θn)) ≥ σ(0)zα −

√
n(µ(θn)− µ(0))]

What is the limit of
√
n(µ(θn)− µ(0))? By differentiability of µ it is just:

√
n(µ(θn)− µ(0)) = h

µ
(

h√
n

)
− µ(0)

h√
n

n→∞−−−→ hµ′(0)

Recalling that
√
nTn−µ(θn)

σ(θn)

D−→
θn
N (0, 1), if we additionally assume that σ(θn)→ σ(0) as θn → 0,

we get the following theorem:

Theorem 1. If µ′(0) exists, σ
(

h√
n

)
→ σ(0) as n→∞, then the level α test rejecting large values

of
√
n(Tn − µ(0)) satisfies:

πn

(
h√
n

)
n→∞−−−→ 1− Φ

(
zα − h

µ′(0)

σ(0)

)
Here Φ is the standard normal distribution function.

The intuition is the following: If µ′(0)� 0, then the test has good power, since

Φ

(
zα − h

µ′(0)

σ(0)

)
≈ 0

.

Definition 2. If
√
n

(
Tn − µ(θn)

σ(θn)

)
D−→
θn
N (0, 1)

where θn = h√
n

, then the slope of the tests Tn is defined as µ′(0)
σ(0) .

We will use this slope to compare tests to one another.

Relative Efficiency of Tests

Consider a sequence of simple tests: For ν ∈ N, let H0 : θ = 0 and H1 : θ = θν , where θν → 0 as
ν → ∞. Fix a level α and power β ∈ (α, 1). Define the distinguishing number nν := inf{n ∈ N :
πn(0) ≤ α, πn(θν) ≥ β}. In other words, nν is the smallest number of observations necessary to

distinguish H0 from H1 at level α and power β. Let tests T
(1)
n , T

(2)
n have distinguishing numbers

n
(1)
ν , n

(2)
ν , respectively.
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Definition 3. The Asymptotic Relative Efficiency (ARE), or Pitman Efficiency, of T (1) relative to
T (2) is

lim
ν→∞

n
(2)
ν

n
(1)
ν

So, an ARE of 2 means that T (2) asymptotically requires twice the sample size of T (1) to get
the same power and level. This definition implicitly assumes that the ARE is independent of α and
β. That assumption will be true for the next theorem, and is often true in general.

Definition 4. The total variation distance between two probability distributions P and Q is

‖P −Q‖TV = sup
A
|P (A)−Q(A)|

Theorem 2. (van der Vaart 14.19) Let models {Pn,θ}θ≥0 satisfy

lim
θ→0
‖Pn,θ −Qn,θ‖TV = 0

Let tests T (1), T (2) satisfy that as θn ↓ 0,

√
n

(
T

(i)
n − µi(θn)

σi(θn)

)
D−→
θn
N (0, 1)

where i ∈ {1, 2}, σi is continuous at 0, and µ′i(0) > 0. Then the ARE of tests rejecting H0 : θ = 0

against H1 : θ > 0 when T
(i)
n is large is (

µ′1(0)/σ1(0)

µ′2(0)/σ2(0)

)2

for any α, β such that 0 < α < β < 1.

Example 3 (Sign test): H0 : θ = 0;H1 : θ > 0. Consider a location model where the CDF of x
under θ is F (· − θ), and Median(F) = 0.

We reparametrize the previous notation from Example 1, defining

Sn =
1

n

n∑
i=1

1{Xi≥0}

As we found earlier,

Under H0 :
√
n

(
Sn −

1

2

)
D−−→
H0

N
(

0,
1

4

)
With rejection of H0 when √

n
(
Sn − 1/2

)
≥ zα/2

.
Then,

Eθn [Sn] = 1− F (−θn)

σ2(θn) = F (−θn)(1− F (−θn))
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πn(θn) = 1− Φ

(
zα/2−

√
n(F (0)− F (−θn))

σ(θn)

)
+ o(1)

If F ′(0) = f(0) > 0 and θn � 1√
n

, then

√
n(F (0)− F (−θn)) =

√
nθnf(0) + o(

√
nθn)

So,

πn

(
h√
n

)
→ 1− Φ(zα − 2hf(0))

Thus, the sign test performs well when the density at θ = 0 is � 0. ♣

Example 4 (T-test): In the same location-family setting, we reject when X̄/s is large, where

X̄ =
1

n

n∑
i=1

Xi

s =

√√√√ n∑
i=1

(Xi − X̄)2/(n− 1)

By Slutsky’s Theorem,

√
n

(
X̄

s
− h/

√
n

σ

)
D−−−→

h/
√
n
N (0, 1)

If the location family has variance σ2, then we satisfy Theorem 2’s conditions with σ2(θn) = 1
and µ(θ) = θ/σ. Thus, µ′(θ) = 1/σ.

Hence by the theorem, the corresponding slope will be

µ′(0)

σ(0)
=

1/σ

1
=

1√
V ar0(X)

Comparing against the sign test for location models with symmetric densities, H0 : θ = 0,
H1 : θ > 0, the slope of the sign is 2f(0).

For a standard Gaussian: the t-test slope is 1 and the sign test slope is
√

2/π, so the t-test is
asymptotically π/2 times more efficient.

For a Laplace density:

f(x) =
e−|x|

2

The slopes are 1/
√

2 for the t-test and 1 for the sign test. Thus, the ARE of a t-test against
the sign test is 1/2.

The sign test often outperforms the t-test when the tails are slightly fatter than Gaussian. ♣
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