Stats 300b: Theory of Statistics Winter 2017

Lecture 17 — March 7

Lecturer: John Duchi Scribe: Nikolaos Ignatiadis, Michael Sklar

@ Warning: these notes may contain factual errors

Reading: VDV (van der Vaart, Asymptotic Statistics) Chapter 14: Relative efficiency of tests

Outline: In this lecture we broadly cover Asymptotic testing. In particular, we cover the following;:

e Asymptotic power and level of tests
e Sequence of local alternatives

e Comparison of tests

Basic setup

Consider the basic problem of testing the null hypothesis Hy : 8 € Oy against the alternative
H;:0¢€ 0.

Given a test statistic T}, and critical region K, we reject the null hypothesis Hy if T}, € K,,.
The power function of 7;, (and the corresponding test) based on rejection region K, then is:

Wn(a) = Pg[Tn S Kn]

Definition 1. The sequence of tests based on statistics 7, and rejection regions K, is asymptoti-
cally level (size) « if:

limsup sup Py[T), € K,] < «

n—oo 6eBg

Naive comparison of tests

We are interested now in answering the following question: How should we compare two tests of
similar levels?

To make this precise, let 7T7(11),7T7(12), be power functions for tests (Tfll), Kfll)), (T7§2), Ky(f)) and we
want to compare the power of the tests.

Attempt 1: An uncontroversial way to say that test 1 is better than test 2 is if the following two
conditions are satisfied:

1. 700 <20 v e,
2. 700) > =2 @0) v 0co

In fact, if also 717(11)(9) > (#) for some 6 € Oy, then test 1 would uniformly dominate test 2
(and test 2 would be inadmissible).

However, this is an extremely strong requirement and will not happen, except in extremely
simple cases (such as simple hypotheses for which the Neyman-Pearson Lemma applies).



Attempt 2: Instead, let’s try to take limits as n — oo. Unfortunately this does not work either:

Example 1 (Sign test for location): Let X; ~ P[-—0] i.i.d., where [P is symmetric and has density
at 6 =0. Let Hy: 0 =0 and Hy : 0 > 0. Consider the sign test based on the statistic:

1 n
Sp=—=Y sign(X;
- ;:1 sign(X;)

Under Hy, sign(X;) are just i.i.d. Rademacher, i.e. random signs (Uniform on {-1,+1}). Now
let:

() = Eglsign(X;)] = Eo[sign(X; + 0)]

By the above comment, we clearly have that p(0) = 0. On the other hand, for § > 0, we have
that p(6) > 0, since Po[X; + 0 > 0] = P[X; > —6] > P[X; > 0] = 3.
Furthermore since Varg(sign(X;)) = 1, we have by the Central Limit Theorem that:

Under Hy: /nS,, H3> N(0,1)
0

Now the natural (asymptotic) level « test rejects if \/nS, > z,, where z, is the 1 — o quantile
of the Standard Normal distribution, i.e. PIN(0,1) > z,] = a.
We next turn to study the power function 7, () for > 0: What happens asymptotically?

7n(6) = PolV/iiSn > 2a] = Pols/n(Sn — (0)) > 20 — V/rpl0)]
Now observe that, again by the CLT:
Vi(Sa = p(0)) 2> N(0,0°(0)
where 02(6) = Vary(sign(X;)) and furthermore since § > 0 (= () > 0) we have that

2o — V/nu(0) = —oco as n — oo

Thus:

T (0) =3 Plo(6)Z > —o0] =

where Z ~ N(0,1). &

Take-home message: Any sensible level o test will be consistent against all alternatives and
have lim;,_,o m,(0) = 1 for all § € ©1. Hence we cannot really compare reasonable tests using this
type of asymptotic analysis.

More fine-grained asymptotic comparison of tests

So the key question is: What should we do to understand limits and power of tests? Here there
are two main key ideas that provide an answer:



Idea 1 (Hoeffings, ’60s): Use large deviations and information theory by studying (for 6 € ©1):

lim 1 log(1 — m,(0))

n—oo N

The intuition here is that often m,(6) — 1 exponentially fast in n — oo. For example, in the
Gaussian case we approximately have that:

2
mn(0) < 1 —exp <_n29>

Idea 2 (Le Cam, ’70s): The idea here is to look at sequences of problems getting ”closer”
together or harder to distinguish as n — oc.

We consider the following thought experiment: Let Hy : 0 = 0 and H; : 0 = 0, f’ where h
is some fixed vector. This will give the "right” behaviour for normal” models:
Example 2: Let X; ~ A(0,1) i.i.d. under the null hypothesis and X; ~ N (\F’ ) i.i.d. under
the alternative for ¢ = 1,...,n. Also consider the statistic:

3\

‘We have:

Under Hy: T, ~N(0,1)
Under Hy : T, ~N(h,1)

To see this for the alternative, just observe that T,, = h + ﬁ Som Wi with Wi ~ N(0,1) ii.d.
This trivially also implies that asymptotically:

D
H—>N( 1)
L/\/( 1)
ﬁ

&

The idea now is that any limiting test must distinguish between N(0,1) and N (h,1). Here we
started with a Gaussian example, but this limiting normality will end up holding under extraordi-
nary generality in many problems. This will allow us to reduce problems asymptotically to testing
or estimation in Gaussian location models.

In particular, now suppose that there exists a mean function x(6) and a variance function o(f)
such that:

() e

L Also we will assume for simplicity that u is differentiable in @ with

Here we let 6,, =
w'(0) > 0 for all 6 > 0.



The natural test of Hy : § = 0 versus Hy : 6 > 0 is to reject if \/n (%g)(())) is large, i.e. if:

()2

By construction this is definitely asymptotically level «, since:

limsupm,(0) =1 — ®(z4) = @

n—oo

What about the limiting power under 6,7

T (0n) = P, [V(Tn — p(0r)) > 0(0)2a — v (1a(6n) — 12(0))]
What is the limit of /n(u(6,) — 1(0))? By differentiability of p it is just:

Vn(p(On
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Recalling that \/ﬁT"_(’;S") % N(0,1), if we additionally assume that o(6,,) — o(0) as 6, — 0,

[

we get the following theorem:

Theorem 1. If (/(0) exists, o (%) — 0(0) as n — oo, then the level « test rejecting large values

of v/n(T,, — p(0)) satisfies:

() = ()

Here @ is the standard normal distribution function.

The intuition is the following: If x/(0) > 0, then the test has good power, since

(it -

Definition 2. If

() e

where 6,, = %, then the slope of the tests T}, is defined as %.

We will use this slope to compare tests to one another.

Relative Efficiency of Tests

Consider a sequence of simple tests: For v € N, let Hy: 6 = 0 and H; : 8 = 6, where 6, — 0 as
v — 0o. Fix a level o and power 3 € (a,1). Define the distinguishing number n, := inf{n € N :
T (0) < a,my(0,) > S}. In other words, n, is the smallest number of observations necessary to

distinguish Hy from H; at level o and power 5. Let tests T7(L1),T7(,,2) have distinguishing numbers
(1 (2

ny’,ny’, respectively.



Definition 3. The Asymptotic Relative Efficiency (ARE), or Pitman Efficiency, of T() relative to
T® is
v 350 ()

So, an ARE of 2 means that T3 asymptotically requires twice the sample size of T to get
the same power and level. This definition implicitly assumes that the ARE is independent of o and
8. That assumption will be true for the next theorem, and is often true in general.

Definition 4. The total variation distance between two probability distributions P and @Q is
1P = Qllrv = SUp [P(A) — Q(A)]
Theorem 2. (van der Vaart 14.19) Let models { P, g}o>0 satisfy
lim | Pno — Qnollrv =0
Let tests T, T@) satisfy that as 0, | 0,

T — 1i(6,)

D
ﬁ<m%>)WM“)

where i € {1,2}, 0; is continuous at 0, and u;(0) > 0. Then the ARE of tests rejecting Hy : 6 = 0
against Hy : 0 > 0 when T7(Lz) 1s large s

for any a, B such that 0 < a < 8 < 1.

Example 3 (Sign test): Hy:60 =0;H; : 0 > 0. Consider a location model where the CDF of =
under 6 is F(- — ), and Median(F) = 0.
We reparametrize the previous notation from Example 1, defining

1 n
Sn = Z; Lix:>0)
As we found earlier,

Under Hy: +/n (Sn - 1) PN (0, )

2 /) Hy
With rejection of Hy when

\/E(Sn - 1/2) > Za/2

Then,



If F'(0) = f(0) > 0 and 6,, < ﬁ, then

\/E(F(O) - F(_Hn)) = \/ﬁgnf(o) + 0(\/7;071)
So,

T <\;‘ﬁ) 51— ®(zq — 21(0))

Thus, the sign test performs well when the density at # = 0is > 0. &

Example 4 (T-test): In the same location-family setting, we reject when X /s is large, where

n

X:%ZXZ»

=1

s= | S0 - X)2/(n - 1)

=1

By Slutsky’s Theorem,

(514

If the location family has variance o2, then we satisfy Theorem 2’s conditions with o2(6,) = 1
and p(0) = 6/o. Thus, p/'(0) =1/0.
Hence by the theorem, the corresponding slope will be
p0) _1/o _ !

a(0) 1 v Vary(X)

Comparing against the sign test for location models with symmetric densities, Hy : 6 = 0,
Hi : 6 > 0, the slope of the sign is 2f(0).

For a standard Gaussian: the t-test slope is 1 and the sign test slope is \/2/7, so the t-test is
asymptotically 7 /2 times more efficient.

For a Laplace density:

The slopes are 1/+/2 for the t-test and 1 for the sign test. Thus, the ARE of a t-test against
the sign test is 1/2.
The sign test often outperforms the t-test when the tails are slightly fatter than Gaussian. &



