Stats 300b: Theory of Statistics

Winter 2017

Lecture 16 – March 2, 2017

Lecturer: John Duchi Scribe: Jaime Roquero Gimenez

 $\textbf{Warning:}\ these\ notes\ may\ contain\ factual\ errors$

Reading:

Outline:

- 1. Finish uniform laws, rates and moduli of continuity.
- 2. Asymptotic testing: Power, Local alternatives, Efficiency and comparing tests

1 Recap: M-estimation problem

We consider the objective function and its empirical form

$$M_n: \Theta \to \mathbb{R}$$

 $M: \theta \mapsto \mathbb{E}[M_n(\theta)]$

and we consider the case where $M(\theta_0) \ge M(\theta) + d(\theta, \theta_0)^2$ near $\theta_0 = \operatorname{argmax}_{\theta \in \Theta} M(\theta)$.

Idea: compare $M(\theta_0) - M(\theta)$ (Gaps in population) vs. $M_n(\theta_0) - M_n(\theta)$ (Gaps in empirical version).

Example 1: Suppose we had

$$\sup_{d(\theta_0,\theta) \le \delta} |M_n(\theta) - M(\theta) - (M_n(\theta_0) - M(\theta_0))| \le \frac{\sigma\delta}{\sqrt{n}}$$

Let $\hat{\theta}_n = \operatorname{argmax}_{\theta} M_n(\theta)$, assume consistency of the estimator: ie. $\hat{\theta}_n \to \theta_0$ in probability. Then

$$M_n(\hat{\theta}_n) \ge M_n(\theta_0) = M_n(\theta_0) - M(\theta_0) + M(\hat{\theta}_n) + M(\theta_0) - M(\hat{\theta}_n)$$

$$\ge M_n(\theta_0) - M(\theta_0) + M(\hat{\theta}_n) + d(\theta_0, \hat{\theta}_n)^2$$

$$0 \ge M_n(\theta_0) - M(\theta_0) - (M_n(\hat{\theta}_n) - M(\hat{\theta}_n))$$
$$0 \ge -\frac{\sigma d(\theta_0, \hat{\theta}_n)}{\sqrt{n}} + d(\theta_0, \hat{\theta}_n)^2$$

ie.
$$d(\theta_0, \hat{\theta}_n) \le \frac{\sigma}{\sqrt{n}}$$

Example 2: Let $m_{\theta}(x)$ be Lipschitz in θ , and $M_n(\theta) = P_n m_{\theta}(x)$. Let $P_n^0 = \frac{1}{n} \sum_{i=1}^n \epsilon_i \delta_{X_i}$ the symmetrized empirical measure. Then

$$\mathbb{E}\left[\sup_{d(\theta,\theta_0)\leq\delta}\left|M_n(\theta)-M(\theta)-(M_n(\theta_0)-M(\theta_0))\right|\right]$$

$$(\star)\leq 2\,\mathbb{E}\left[\sup_{d(\theta,\theta_0)\leq\delta}P_n^0(m_\theta-m_{\theta_0})(X)\right]$$

$$(\star\star)\leq \frac{Cst}{\sqrt{n}}\int_0^\delta\sqrt{\log N(\delta-ball,d,\epsilon)}\,d\epsilon$$

$$\leq \frac{Cst}{\sqrt{n}}\int_0^\delta\sqrt{d\log(1+\frac{2\delta}{\epsilon})}\,d\epsilon$$

$$\leq Cst\,\frac{\delta\sqrt{d}}{\sqrt{n}}$$

Where in (\star) we apply symmetrization and in $(\star\star)$ we bound by the entropy integral given that

$$\mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{n} \epsilon_i \left(m_{\theta}(X_i) - m_{\theta_0}(X_i)\right)\right)\right] \le \exp\left(\frac{\lambda^2}{2} n d(\theta, \theta_0)^2\right)$$

as $m_{\theta}(x)$ is Lipschitz in θ , so $\sqrt{n}P_n^0(m_{\theta}-m_{\theta_0})$ is d^2 sub-gaussian.

2 Moduli of continuity and convergence rates

Theorem 1. Suppose $M(\theta_0) \ge M(\theta) + d(\theta, \theta_0)^2$ near θ_0 . Let ϕ be such that $\phi(c\delta) \le c^{\alpha}\phi(\delta)$ for some $\alpha \in (0, 2)$. Assume

$$\mathbb{E}\left[\sup_{d(\theta,\theta_0) \le \delta} \left| M_n(\theta) - M(\theta) - (M_n(\theta_0) - M(\theta_0)) \right| \right] \le \frac{\phi(\delta)}{\sqrt{n}}$$

Let $r_n \to +\infty$ such that $r_n^2 \phi(\frac{1}{r_n}) \le \sqrt{n}$. If $\hat{\theta}_n \to \theta_0$ in probability, then $r_n d(\hat{\theta}_n, \theta_0) = O_P(1)$

Idea: Estimation errors can scale at most as $\frac{\phi(\delta)}{\sqrt{n}} \sim \frac{d(\theta,\theta_0)^{\alpha}}{\sqrt{n}}$ with $\alpha < 2$. But the growth of the objective function is quadratic: $d(\theta,\theta_0)^2$.

We solve $\delta^2 = \frac{\delta^{\alpha}}{\sqrt{n}}$: it implies $\delta = \left(\frac{1}{n}\right)^{\frac{1}{2(2-\alpha)}}$

Proof Let $\eta \leq \delta$. Then $\mathbb{P}(d(\hat{\theta}_n, \theta_0) \geq \eta) = o(1)$ (consistency of the estimator). Define the shell: $S_{nj} = \{\theta : 2^{j-1} \leq r_n d(\theta, \theta_0) \leq 2^j\}$. Consider the event

$$d(\hat{\theta}_n, \theta_0) \ge \frac{2^t}{r_n}$$

for some $t \geq 0$.

Then $\exists j \geq t$ such that $\hat{\theta}_n \in S_{jn}$. Therefore

$$\mathbb{P}(r_n d(\hat{\theta}_n, \theta_0) \ge 2^t) \le \mathbb{P}(r_n d(\hat{\theta}_n, \theta_0) \ge 2^t, d(\hat{\theta}_n, \theta_0) \le \eta) + \mathbb{P}(d(\hat{\theta}_n, \theta_0) > \eta)$$

$$= \left(\sum_{j \le t, 2^{j-1} \le r_n \eta} \mathbb{P}(\hat{\theta}_n \in S_{jn})\right) + \mathbb{P}(d(\hat{\theta}_n, \theta_0) > \eta)$$

$$\le \left(\sum_{j \le t, 2^{j-1} \le r_n \eta} \mathbb{P}(\exists \theta \in S_{jn}, M_n(\theta) \ge M_n(\theta_0))\right) + o(1)$$

But if $M_n(\theta) \geq M_n(\theta_0)$ for some $\theta \in S_{jn}$ then

$$M_n(\theta) - M(\theta) \ge M_n(\theta_0) - M(\theta_0) + M(\theta_0) - M(\theta)$$

$$\ge M_n(\theta_0) - M(\theta_0) + d(\theta, \theta_0)^2$$

So

$$\sup_{\theta \in S_{jn}} \left| (M_n(\theta) - M(\theta)) - (M_n(\theta_0) - M(\theta_0)) \right| \ge \frac{2^{2j}}{r_n^2}$$

And

$$\mathbb{P}(\exists \theta \in S_{jn}, M_n(\theta) \ge M_n(\theta_0))$$

$$\leq \mathbb{P}\left(\sup_{\theta \in S_{jn}} \left| (M_n(\theta) - M(\theta)) - (M_n(\theta_0) - M(\theta_0)) \right| \ge \frac{4^j}{r_n^2} \right)$$

$$\leq \frac{r_n^2}{4^j} \mathbb{E}\left[\sup_{\theta \in S_{jn}} \left| (M_n(\theta) - M(\theta)) - (M_n(\theta_0) - M(\theta_0)) \right| \right]$$

$$\leq \frac{r_n^2}{4^j \sqrt{n}} \phi\left(\frac{2^j}{r_n}\right) \le \frac{r_n^2 2^{\alpha j}}{4^j \sqrt{n}} \phi\left(\frac{1}{r_n}\right) \le 2^{j(\alpha - 2)}$$

So we bound the inequality above with this result and get:

$$\mathbb{P}(d(\hat{\theta}_n, \theta_0) \ge \frac{2^t}{r_n}) \le \sum_{i > t} 2^{-j(2-\alpha)} + o(1)$$

So by taking t large enough we get that $r_n d(\hat{\theta}_n, \theta_0) = O_P(1)$

Observation 2. If $\phi(\delta) = \delta^{\alpha}$, solving $r_n^2 \phi(\frac{1}{r_n}) = \sqrt{n}$ gives $r_n = n^{\frac{1}{2(2-\alpha)}}$ for the convergence rate.

More generally, if $M(\theta_0) \geq M(\theta) + d(\theta, \theta_0)^{\beta}$ then we could choose r_n such that $r_n^{\beta} \phi(\frac{1}{r_n}) \leq \sqrt{n}$ so that $r_n = n^{\frac{1}{2(\beta-\alpha)}}$. In order to get $r_n \to +\infty$, we want cases where growth in $d(.,.)^{\beta}$ dominates moduli of continuity $\phi(\delta) \sim \delta^{\alpha}$ at size \sqrt{n} .