
Stats 300b: Theory of Statistics Winter 2017

Lecture 13 – February 21

Lecturer: John Duchi Scribe: Zhimei Ren

� Warning: these notes may contain factual errors

Reading:

Outline

• VC classes

• General convergence in distribution:

– in metric space

– uniform laws in function spaces

– compactness in function spaces

1 Recap

Definition 1.1. (Vapnik-Chervonenkis classes) C(= collection of sets) shatters x1, ..., xn if for
all labelings y ∈ {±1}n of {xi} ∃C ∈ C, s.t.{

yi = 1 xi ∈ C
yi = 0 xi /∈ C

VC(C)=size of largest set x1, ..., xn shattered by C.

2 VC Classes

Theorem 1. (Uniform covering numbers in Lr(P ))For sets A,B, let dist(A,B)=||1A−1B||Lr(P ) =

(
∫
|1A − 1B|rdP )

1
r . ∃ constant K <∞,

sup
P
N(C, Lr(P ), ε) ≤ KV C(C)(4e)V C(C)(

1

ε
)rV C(C)

i.e.

logN(C, Lr(P ), ε) . rV C(C) log(
1

ε
)

Example 1: Let F = {f(x) = 1X≤t, t ∈ Rd}. vc(F)=O(d).

sup
P

logN(F , L2(P ), ε) ≤ Kd log(
1

ε
)

As a consequence, we have the classical Glivenko Cantelli theorem:
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E[ sup
t∈Rd

|Pn(X ≤ t)− P(X ≤ t)|] = E[sup
f∈F
|Pnf − Pf |]

≤ 2√
n
E[| sup

f∈F|

1√
n

n∑
i=1

εif(Xi)](εi
i.i.d∼ {±1})

Dudley
≤ const√

n

∫ 1

0

√
logN(F , L2(Pn), ε)dε

=
const

√
d√

n

∫ 1

0

√
log(1/ε)dε

≤
˜const
√
d√

n

♣

Definition 2.1. The subgraph of a function: X → R:

subf := {(x, t) : t < f(x)} = (epif)c

Note: subf ⊆ X ⊆ R.

Definition 2.2. F is a VC-class (VC-subgraph-class) if subf : f ∈ F is VC.

Example 2: Let F = {f =< θ, x >: θ ∈ Rd}, then VC(F) ≤ d+ 2 ♣

Theorem 2. If VC(F) <∞ and F has envelope F : X → R+(i.e.F (x) ≥ |f(X)|, all f ∈ F).

sup
P
N(F , Lr(P ), ||F ||Lr(P )ε) ≤ constV C(F)(16e)V C(F)(

1

ε
)rV C(F)

Example 3: Classification problem. Given (Xi, yi)
i.i.d∼ P ,Xi ∈ Rd, yi ∈ {±1}, choose vector

θ ∈ Rd to make
1

n

∑n
i=1 1sign(θT x) 6=yi small. i.e. we learn/ fit classifier with rule

ŷ|x = sign(θTx)

F = {< θ, x >, θ ∈ Rd}

Therefore

E[sup
θ∈Θ
|Pn(sign(θTx) 6= yi)− P(sign(θTx) 6= yi)|] ≤ const

√
d

n
(by entropy integral)

If you have theta with good empirical error, you should have low error under P. ♣

Properties of VC classes convenient for analysis:

1. if F is a linear space of functions, dim(F <∞), then VC(F)=O(dim(F)).

2. If C and D are VC classes of sets,

C ∪ D := {C ∪D,C ∈ C, D ∈ D}

C ∩ D := {C ∩D,C ∈ C, D ∈ D}
are VC.

3. Comparison: if F is VC classof functions, then if φ : R→ R is monotone φ ◦ f : f ∈ F is VC.
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3 Convergence in distribution in metric spaces and uniform CLTs

Our goal here is that given collections of functions F , when is there a limiting Gaussian for
[
√
n(Pnf − Pf)]f∈F in a uniform sense? Our starting point is Weak convergence/convergence

in distribution.

Recall Xn
d→ X is equivalent to either of the following:

1. E[f(Xn)]→ E[f(X)] for all bounded and continuous f

2. E[f(Xn)]→ E[f(X)] for all Lipschitz and bounded function f .

1 and 2 makes sense even if Xn are in some metric space.

Let D be a metric space. Then X is a r.v. on D if X : Ω→ D. Say X is D-valued. Then given
sequence of Xn : Ωn → D. We say Xn → X if E[f(Xn)]→ E[f(X)] for all bounded and continuous
f (even Lipschitz). (Recall Ef(Xn) =

∫
Ωn
f(Xn(ω))dµn(ω)) =

∫
f(x)Pn(x))

Example 4: (Continuous function in a compact set) Let (T, d) be a compact metric space.
L∞(T )=bounded functions: T → R. For f, g ∈ L∞(T ), ||f − g||∞ = supt∈T |f(t) − g(t)|. Let
l : T ×X → R be continuous in t. Define

Zn(.) =
1√
n

n∑
i=1

[l(., x)− El(., x)]

Then Zn is a l∞-valued random variable. (Because t→ Zn(t) is contiunous, so supt∈T |Zn(t)| <∞)

Remark Note if T0 is countable and dense subset of T , Zn is completely determined by
{Zn(t), t ∈ T0}.

(Zn(ti), ..., Zn(tk))
d→ N (0, cov(l(ti, x), l(tj , x))ki,j=1)

for fixed ti, ..., tk. ♣

Definition 3.1. A random variable X : Ω→ D is tight if ∀ε > 0, ∃ a compact set K ⊆ D

lim sup
n→∞

P(Xn /∈ Kδ) ≤ ε

all δ > 0.
Kδ := {x : dist(x,K) < δ}

Theorem 3. (Prohorov) Let Xn : Ω→ D and X : Ω→ D

1. If Xn
d→ X, where X is tight, then {Xn} is asymptotically tight.

2. If {Xn} is asymptotically tight, then ∃ a subsequence {nk}, tight X : Ω→ D, s.t. Xnk

d→ X.

Compactness in functional space:

Evidently, if Xn ∈ L∞(T ), we must understand compactness in L∞(T ). For us, limits will be
in C(T,R). C(T,R) =continuous function. f : T → R, ||f − g||∞ is metric.

Standard compactness theorem: Arzela-Ascoli theorem
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Definition 3.2. For a function f : T → R, modulus of continuity is

wf (δ) = sup
d(s,t)<δ

{|f(t)− f(s)|}

Definition 3.3. A collection F is uniformly equicontinuous if

lim
s↓0

sup
f∈F

wf (δ) = 0

Theorem 4. Let (T, d) be a compact metric space. Then:

1. F ⊂ C(T,R) is sequentially compact.

2. F is uniformly equicontinuous and ∃t0 ∈ T, s.t. supf∈F |f(t0)| <∞

are equivalent.
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