Stats 300b: Theory of Statistics

Winter 2017

Lecture 13 – February 21

Lecturer: John Duchi

Scribe: Zhimei Ren

Warning: these notes may contain factual errors

Reading:

Outline

- VC classes
- General convergence in distribution:
 - in metric space
 - uniform laws in function spaces
 - compactness in function spaces

1 Recap

Definition 1.1. (Vapnik-Chervonenkis classes) C(= collection of sets) shatters $x_1, ..., x_n$ if for all labelings $y \in \{\pm 1\}^n$ of $\{x_i\} \exists C \in C, s.t.$

$$\begin{cases} y_i = 1 & x_i \in C \\ y_i = 0 & x_i \notin C \end{cases}$$

 $VC(\mathcal{C})$ =size of largest set $x_1, ..., x_n$ shattered by \mathcal{C} .

2 VC Classes

Theorem 1. (Uniform covering numbers in $L_r(P)$) For sets A, B, let $dist(A,B) = ||\mathbb{1}_A - \mathbb{1}_B||_{L_r(P)} = (\int |\mathbb{1}_A - \mathbb{1}_B|^r dP)^{\frac{1}{r}}$. $\exists \ constant \ K < \infty$,

$$\sup_{P} N(\mathcal{C}, Lr(P), \epsilon) \le KVC(\mathcal{C})(4e)^{VC(\mathcal{C})} (\frac{1}{\epsilon})^{rVC(\mathcal{C})}$$

i.e.

$$\log N(\mathcal{C}, Lr(P), \epsilon) \lesssim rVC(\mathcal{C})\log(\frac{1}{\epsilon})$$

Example 1: Let $\mathcal{F} = \{f(x) = \mathbb{1}_{X \leq t}, t \in \mathbb{R}^d\}$. vc(\mathcal{F})=O(d).

$$\sup_{P} \log N(\mathcal{F}, L_2(P), \epsilon) \le Kd \log(\frac{1}{\epsilon})$$

As a consequence, we have the classical Glivenko Cantelli theorem:

$$\mathbb{E}[\sup_{t \in \mathbb{R}^d} |\mathbb{P}_n(X \le t) - \mathbb{P}(X \le t)|] = \mathbb{E}[\sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P}f|]$$

$$\leq \frac{2}{\sqrt{n}} \mathbb{E}[|\sup_{f \in \mathcal{F}|} \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(X_i)](\epsilon_i \stackrel{i.i.d}{\sim} \{\pm 1\})$$

$$\stackrel{Dudley}{\leq} \frac{const}{\sqrt{n}} \int_0^1 \sqrt{\log N(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon$$

$$= \frac{const\sqrt{d}}{\sqrt{n}} \int_0^1 \sqrt{\log(1/\epsilon)} d\epsilon$$

$$\leq \frac{const\sqrt{d}}{\sqrt{n}}$$

÷

Definition 2.1. The subgraph of a function: $\mathcal{X} \to \mathbb{R}$:

$$subf := \{(x, t) : t < f(x)\} = (epif)^c$$

Note: $\operatorname{sub} f \subseteq \mathcal{X} \subseteq \mathbb{R}$.

Definition 2.2. \mathcal{F} is a VC-class (VC-subgraph-class) if subf : $f \in \mathcal{F}$ is VC. **Example 2:** Let $\mathcal{F} = \{f = <\theta, x >: \theta \in \mathbb{R}^d\}$, then $VC(\mathcal{F}) \leq d+2$

Theorem 2. If $VC(\mathcal{F}) < \infty$ and \mathcal{F} has envelope $F : \mathcal{X} \to \mathbb{R}_+$ (*i.e.* $F(x) \ge |f(X)|$, all $f \in \mathcal{F}$).

$$\sup_{P} N(\mathcal{F}, L_r(P), ||F||_{L_r(P)}\epsilon) \le constVC(\mathcal{F})(16e)^{VC(\mathcal{F})}(\frac{1}{\epsilon})^{rVC(\mathcal{F})}$$

Example 3: Classification problem. Given $(X_i, y_i) \stackrel{i.i.d}{\sim} P, X_i \in \mathbb{R}^d, y_i \in \{\pm 1\}$, choose vector $\theta \in \mathbb{R}^d$ to make $\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{sign(\theta^T x) \neq y_i}$ small. i.e. we learn/ fit classifier with rule

$$\hat{y}|x = sign(\theta^T x)$$

 $\mathcal{F} = \{ <\theta, x >, \theta \in \mathbb{R}^d \}$

Therefore

$$\mathbb{E}[\sup_{\theta \in \Theta} |\mathbb{P}_n(sign(\theta^T x) \neq y_i) - \mathbb{P}(sign(\theta^T x) \neq y_i)|] \le const \sqrt{\frac{d}{n}} (by \text{ entropy integral})$$

If you have theta with good empirical error, you should have low error under \mathbb{P} .

Properties of VC classes convenient for analysis:

- 1. if \mathcal{F} is a linear space of functions, $\dim(\mathcal{F} < \infty)$, then $\operatorname{VC}(\mathcal{F}) = O(\dim(\mathcal{F}))$.
- 2. If \mathcal{C} and \mathcal{D} are VC classes of sets,

$$\mathcal{C} \cup \mathcal{D} := \{ C \cup D, C \in \mathcal{C}, D \in \mathcal{D} \}$$
$$\mathcal{C} \cap \mathcal{D} := \{ C \cap D, C \in \mathcal{C}, D \in \mathcal{D} \}$$

are VC.

3. Comparison: if \mathcal{F} is VC classof functions, then if $\phi : \mathbb{R} \to \mathbb{R}$ is monotone $\phi \circ f : f \in \mathcal{F}$ is VC.

3 Convergence in distribution in metric spaces and uniform CLTs

Our goal here is that given collections of functions \mathcal{F} , when is there a limiting Gaussian for $[\sqrt{n}(\mathbb{P}_n f - \mathbb{P}f)]_{f \in \mathcal{F}}$ in a uniform sense? Our starting point is Weak convergence/convergence in distribution.

Recall $X_n \xrightarrow{d} X$ is equivalent to either of the following:

- 1. $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded and continuous f
- 2. $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all Lipschitz and bounded function f.

1 and 2 makes sense even if X_n are in some metric space.

Let \mathbb{D} be a metric space. Then X is a r.v. on \mathbb{D} if $X : \Omega \to \mathbb{D}$. Say X is \mathbb{D} -valued. Then given sequence of $X_n : \Omega_n \to \mathbb{D}$. We say $X_n \to X$ if $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded and continuous f (even Lipschitz). (Recall $\mathbb{E}f(X_n) = \int_{\Omega_n} f(X_n(\omega)) d\mu_n(\omega) = \int f(x) \mathbb{P}_n(x)$)

Example 4: (Continuous function in a compact set) Let (T, d) be a compact metric space. $L_{\infty}(T)$ =bounded functions: $T \to \mathbb{R}$. For $f, g \in L_{\infty}(T)$, $||f - g||_{\infty} = \sup_{t \in T} |f(t) - g(t)|$. Let $l: T \times \mathcal{X} \to \mathbb{R}$ be continuous in t. Define

$$Z_n(.) = \frac{1}{\sqrt{n}} \sum_{i=1}^n [l(.,x) - \mathbb{E}l(.,x)]$$

Then Z_n is a l_{∞} -valued random variable. (Because $t \to Z_n(t)$ is continuous, so $\sup_{t \in T} |Z_n(t)| < \infty$)

Remark Note if T_0 is countable and dense subset of T, Z_n is completely determined by $\{Z_n(t), t \in T_0\}$.

$$(Z_n(t_i), \dots, Z_n(t_k)) \xrightarrow{a} \mathcal{N}(0, \operatorname{cov}(l(t_i, x), l(t_j, x))_{i,j=1}^k)$$

for fixed $t_i, ..., t_k$.

Definition 3.1. A random variable $X : \Omega \to \mathbb{D}$ is tight if $\forall \epsilon > 0, \exists a \text{ compact set } K \subseteq \mathbb{D}$

$$\limsup_{n \to \infty} \mathbb{P}(X_n \notin K^{\delta}) \le \epsilon$$

all $\delta > 0$.

 $K^\delta := \{x: dist(x,K) < \delta\}$

Theorem 3. (Prohorov) Let $X_n : \Omega \to \mathbb{D}$ and $X : \Omega \to \mathbb{D}$

- 1. If $X_n \xrightarrow{d} X$, where X is tight, then $\{X_n\}$ is asymptotically tight.
- 2. If $\{X_n\}$ is asymptotically tight, then \exists a subsequence $\{n_k\}$, tight $X : \Omega \to \mathbb{D}$, s.t. $X_{n_k} \xrightarrow{d} X$.

Compactness in functional space:

Evidently, if $X_n \in L_{\infty}(T)$, we must understand compactness in $L_{\infty}(T)$. For us, limits will be in $\mathcal{C}(T, R)$. $\mathcal{C}(T, R)$ =continuous function. $f: T \to \mathbb{R}, ||f - g||_{\infty}$ is metric.

Standard compactness theorem: Arzela-Ascoli theorem

Definition 3.2. For a function $f : T \to \mathbb{R}$, modulus of continuity is

$$w_f(\delta) = \sup_{d(s,t) < \delta} \{ |f(t) - f(s)| \}$$

Definition 3.3. A collection \mathcal{F} is uniformly equicontinuous if

$$\lim_{s \downarrow 0} \sup_{f \in \mathcal{F}} w_f(\delta) = 0$$

Theorem 4. Let (T, d) be a compact metric space. Then:

1. $\mathcal{F} \subset \mathcal{C}(T, \mathbb{R})$ is sequentially compact.

2. \mathcal{F} is uniformly equicontinuous and $\exists t_0 \in T$, s.t. $\sup_{f \in \mathcal{F}} |f(t_0)| < \infty$ are equivalent.