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� Warning: these notes may contain factual errors

Outline:

• Uniform Laws via Entropy numebrs

• Classes with finite entropies
-Nonparametric classes
-VC classes

Recap: Given F with distance d, N(F , d, ε) = min{N ∈ N | ∃ ε-cover of F : {fi}Ni=1 in distance
d}
Chaining: If {Xt} is sub-Gaussian precess, log(E exp(λ(Xs −Xt))) ≤ λ2d(s,t)2

2 . Then, E(sup
t∈T

Xt) ≤

CJ (F , d) = C
∫∞
0

√
logN(F , d, ε)dε.

Entropy number → uniform laws. For empirical distirbution Pn, let Lp(Pn) be the Lp norm
w.r.t. Pn, i.e., ‖f‖Lp(Pn) = ( 1

n

∑
|f(Xi)|p)1/p.

Example 1: Often use L2(Pn) norm in symmetrized processes, i.e., if Zf := 1√
n

∑
εif(Xi) where

εi
i.i.d∼ unif(−1.+ 1).

For fixed X1, . . . , Xn,

log(E exp(λ(Zf − Zg))) = log(E exp(λ
1√
n

∑
(εi(f(Xi)− g(Xi))))

≤ λ2

2n

∑
(f(Xi)− g(Xi))

2 =
λ2

2
‖f − g‖2L2(Pn)

.

i.e., f → 1√
n

∑
εif(Xi) is an ‖·‖2L2(Pn)

sub-Gaussian process. so,

E[sup
f∈F
| 1√
n

∑
εif(Xi)| | X1 . . . , Xn] ≤ C

∫ ∞
0

√
logN(F , L2(Pn), ε)dε.

For M <∞ , let fM (x) = f(x) if |f(x)| ≤M or 0 otherwise. Let F be a collection of functions
on X with envelop F , i.e., |f(x)| ≤ F (x) for all x ∈ X and F ∈ L1(P ). Define FM := {fM}f∈F .

Theorem 1. (ULLNs with entropies): If
√

logN(F , L1(Pn), ε) = op(n) for all M < ∞, ε > 0,

then ‖Pn − P‖F
p→ 0, ie. F is G.C. class.

Proof Let P 0
n(f):= 1

n

∑
εif(Xi) where εi

i.i.d∼ unif(−1.+ 1). Then |P 0
nf | ≤ Pn|f | = ‖f‖L1(Pn)

.

E[‖Pn − P‖] ≤ 2E[sup
f∈F
||P 0

nf |] ≤ 2E[sup
f∈F
||P 0

n(f − fM )|] + E[ sup
f∈FM

|P 0
nf |]
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Note that, 2E[sup
f∈F
||P 0

n(f − fM )|] ≤ 2E[F1(F ≥M)].

Now control E[supf |P 0
nf |]. Let G be a minimal ε - cover of Fm in L1(Pn) norm. Then,

card(G) = N(FM , L1(Pn), ε).
Therefore, sup

f∈F
||P 0

nf | ≤ max
g∈G
|P 0
ng|+ ε (by triangular inequality).

Note that w.l.o.g. |g(x)| ≤M , all g ∈ G, so P 0
ng is M2

n sub- Gaussian. So

E[max
g∈G
|P 0
ng| | X] ≤ 2

√
2
M2

n
logN(F , L1(Pn), ε)

LHS is less than M , and the RHS is
√

M
n op(n) = op(1))

E[E[max
g
|P 0
ng|]] ≤ E[min(M,op(1))]→ 0 as n→∞.

⇒ E[‖Pn − P‖F ] ≤ 2E[F1(F ≥M)] + o(1) + ε

Since, E[F1(F ≥M)]→ 0 as n→∞, the proof is done.

Understand uniform entropies: Often random covering numbers such as N(F , Lr(Pn), ε) are a bit
annoying. so try to give conditions such that sup

P
N(F , Lr(Pn), ε) can be controlled.

Let’s look at some examples in non-parametric function classes.
Example 2: Let F be the collection of 1− Lipschitz functions on [0, 1] with f(0) = 0. Fix
ε > 0, consider ‖f‖∞ := supx∈[0,1] |f(x)|. By dividing the unit intervals by intervals with length
ε and moving along x axis by epsilon with 3 choice of directions, namely up(45 degree angle),

staright, down(45 degree angle) Packing #s ≥ 3
1
ε (1-Lipschitz function’s height change associated

widch change of ε is also at most ε). Thus, supP :suppP=[0,1] logN(F , Lr(P ), ε) ≤ C
ε where c <∞ is

absolute constant. So

E[sup |Pn − Pf |] ≤ 2E[sup
f
|P onf |] ≤

c√
n
E[

∫ 1

0

√
logN(F , L2(Pn), ε)dε] ≤ c√

n

∫ 1

0

1√
ε
dε ≤ c√

n

In 2+ dimensions, divided boxes with length ε has 1
ε2

boxes, (or (1ε )
d in d dimensions), so

logN(F , ‖·‖∞ , ε) ≥
c

ε2
⇒ J (F , ‖·‖∞) =

∫ 1

0

1

ε
= +∞.

Vapnik- Chervonenkis (VC classes) Collections of functions or sets with nice combinatorial
structure allowing uniform entropy/covering number bounds.

Definition 0.1. Let C be a collection of sets and X = {X1, . . . , Xn} be a collection of points . A
vector y ∈ {+1,−1}n is a labeling of X. Say C shatters X if for all labelings y of X, ∃ a set A ∈ C,
i.e., Xi ∈ A if yi = 1 and Xi 6∈ A if yi = −1.

Equivalently, {x1, . . . , xn} ∩ C = {A ∩ {x1, . . . , xn | A ∈ C}} = 2X .
Example 3: Let x1, x2, x3 ∈ R2, not collinear. C = {half space in R2}. Than C shatters {x1, x2, x3}

Definition 0.2. : The VC- dimension VC(C) is the size of the largest set {x1, . . . , xn} s.t. C
shatters {x1, . . . , xn}.

Definition 0.3. ∆n(C, {x1, . . . , xn}) := the number of labelings C realizes on {xi}. Then VC(C)
:= sup{n ∈ N | maxx1,...,xn ∆n(C, {xi}) = 2n}.
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Example 4: Half-spaces in Rd have VC(C) = d + 1, Think of R2. Then V C(C) ≥ 3. To do
rigorously requires arguing (by geometry) that we would have to have the situation where diagonal
labeling does not work.

Lemma 2. (Sauer- Shelah) for any class C,

max
x1,...,xn

∆n(C, {xi}) ≤
V C(C)∑
k=0

(
n

k

)
= O(nV C(C)).

Consequence: If sup
x1,...,xn

∆n(C, {xi}) < 2n, then ∆n(C, {xi}) is polynomial in n.

Let Lr(P ) norm on sets A ⊂ X be defined by ‖1A‖Lr(P ) =
(∫

1(x ∈ A)rdP (x)
)1/r

Theorem 3. : ∃ a universal constant K <∞ s.t. ∀ε > 0,

sup
P
N(C, Lr(P ), ε) ≤ K · V C(C) · (4e)V C(C)(

1

ε
)r·V C(C)

⇒ logN(C, Lr(P ), ε) ≤ c · r · V C(C) · log(1/ε)
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