
Stats 300b: Theory of Statistics Winter 2017

Lecture 11 - CG Clases, Symmetrization, Subgaussian
Processes and Chaining - 2/14/2017

Lecturer: John Duchi Scribe: Matt Tsao

� Warning: these notes may contain factual errors

Reading:

Recap

For a function class F , we defined a F-norm

||Pn − P ||F := sup
f∈F
|Pnf − Pf |

We say that F satisfies a uniform law of large numbers if limn→∞ ||Pn − P ||F = 0. Last time
we discussed ε-covers and ε-brackets that allowed us to prove such ULLN statements.

Outline

• Glivenko Cantelli Classes

• Symmetrization Inequalities

• Subgaussian Processes

• Chaining and Entropy Integrals

Throughout this lecture we will be building up machinery that will allow us to get a handle on the
behavior of ||Pn − P ||F .

1 GC Classes and Symmetrization

Definition 1.1. F is a Glivenko Cantelli Class with respect to P if ||Pn − P ||F
p−→ 0.

Example 1: In Homework 1, we showed that for the class F = {1[x≤t] : t ∈ R}, ||Pnf − Pf ||F =
oP (1), hence F is a GC class. In particular,

P[sup
t
|Pn(X ≤ t)− P (X ≤ t)| > ε] ≤ 2 exp(−cnε2)

♣ A next natural question then, is how show that a certain function class F is a GC class. Certainly

by Markov’s Inequality we can say

P

[
sup
f
|Pnf − Pf | ≥ t

]
≤ 1

t
E

[
sup
f
|Pnf − Pf |

]
(1)

=
1

nt
E

[
sup
f

∣∣∣∣∣
n∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣∣
]

(2)

We will now develop some tools to handle this expectation term.
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Definition 1.2. A Rademacher random variable is one which takes values in {−1, 1} with equal
probability.

Theorem 1. (Symmetrization)
If X1, ..., Xn are random vectors in a vector space equipped with a norm || · || and ε1, ..., εn are i.i.d.
Rademarcher random variables which are independent of the Xi’s, then for p ≥ 1,

E

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣
∣∣∣∣∣
p]
≤ 2pE

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εXi

∣∣∣∣∣
∣∣∣∣∣
p]

(3)

Proof Let X ′i be a random variable that has the same distribution as Xi and is independent
from Xi. Then

E

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣
∣∣∣∣∣
p]

= E

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi − E[X ′i]

∣∣∣∣∣
∣∣∣∣∣
p]

Jensen’s Inequality→ ≤ E

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi −X ′i

∣∣∣∣∣
∣∣∣∣∣
p]

Since Xi, X
′
i are independent and have the same distribution, Xi −X ′i is symmetric about 0, so in

particular it has the same distribution as εi(Xi −X ′i). Hence,

E

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi −X ′i

∣∣∣∣∣
∣∣∣∣∣
p]

= E

[∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi −
n∑
i=1

εiX
′
i

∣∣∣∣∣
∣∣∣∣∣
p]

= 2pE

[∣∣∣∣∣
∣∣∣∣∣12

n∑
i=1

εiXi −
1

2

n∑
i=1

εiX
′
i

∣∣∣∣∣
∣∣∣∣∣
p]

Convexity Property→ ≤ 2p

(
1

2

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
∣∣∣∣∣
p

+
1

2

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiX
′
i

∣∣∣∣∣
∣∣∣∣∣
p)

= 2p

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
∣∣∣∣∣
p

Example 2: (Rademacher Complexity)
If F is a function class, then by symmetrization,

1

2
E

[
sup
f∈F
|Pnf − PF |

]
≤ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

(4)

The term on the right is known as the Rademacher Complexity of F . ♣

2 Subgaussian Processes

Definition 2.1. Let {Xt}t∈T be a collection of real valued random variables. This is a Stochastic
Process indexed by T .
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Remark All processes we deal with in this class will be separable, i.e. there exists a countable
set T ′ such that supt∈T |Xt| = supt∈T ′ |Xt|.

Definition 2.2. Let (T, d) be a metric space. We say {Xt}t∈T is a subgaussian process if

logE [exp (λ(Xs −Xt))] ≤
λ2d(s, t)2

2
(5)

for all λ > 0, s, t ∈ T .

Remark One might expect a subgaussian constant σ2 to appear in (5), i.e. the upper bound

should be λ2σ2d(s,t)2

2 , however, the metric is chosen so that the subgaussian constant is absorbed
into the metric d.

Example 3:
A gaussian process is an example of a subgaussian process. To see this, let T = Rd, and Z ∼
N (0, σ2Id), define Xt = 〈Z, t〉. Note that Xs−Xt = 〈Z, s− t〉 has a normal distribution with mean
zero and variance ||s− t||22σ2, therefore logE[eλ(Xs−Xt)] ≤ 1

2λ
2σ2||s− t||22 ♣

Example 4: (Rademacher Process with a loss function) Let T be a vector space equipped with
a norm || · ||, Xi ∈ X are random variables and ` : T × X → R is lipschitz in its first argument,
meaning that

|`(s, x)− `(t, x)| ≤ ||t− s|| for all x ∈ X , s, t ∈ T

Then for {εi}ni=1 i.i.d. Rademacher random variables, because εi(`(t,Xi) − `(s,Xi)) is bounded
between −||s− t|| and ||s− t||, it is subgaussian, hence

E

[
exp

(
λ

n∑
i=1

εi(`(t,Xi)− `(s,Xi))

)]
≤ E

[
E

[
exp

(
λ

n∑
i=1

εi(`(t,Xi)− `(s,Xi))

)]∣∣∣∣∣X
]

≤ E

[
exp

(
λ2

8

n∑
i=1

(`(t,Xi)− `(s,Xi))
2

)∣∣∣∣∣X
]

≤ exp

(
λ2

8

n∑
i=1

||t− s||2
)

= exp

(
λ2n||s− t||2

8

)
So if Zt =

∑n
i=1 εi`(t, xi) then the stochastic process {Xt}t∈T is n

4 || · ||
2-subgaussian. ♣

3 Chaining and Entropy Integrals

Recall from (1) that we are interested in E[supf∈F |Pnf −Pf |]. By symmetrization (3) we can up-

per bound our desired quantity by E
[
supf∈F

∣∣ 1
n

∑n
i=1 εif(Xi)

∣∣]. Therefore, we wish to understand
quantities of the form E[supt∈T Xt].
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Let {Xt}t∈T be a d2(·, ·) subgaussian process. We will approximate Xt by finier and finer dis-
cretizations in the following way: Let D = diam(T ) = sups,t∈T d(s, t), and assume D < ∞. Let

T0 ⊂ T1 ⊂ T2 ⊂ ... ⊂ T be a sequence of minimal covers of T where Tk is a minimal 2−kD cover of T .

For t ∈ T , consider the “best” sequence t0, t1, ... converging to t so that tk ∈ Tk. Let πi(t) :=
arg minti∈Ti d(ti, t) ≤ 2−iD. For any k ∈ N, for t ∈ Tk define π(i)(t) = πi(π

(i+1)(t)). In other words,
you are projecting k − i times. Now for any t ∈ Tk,

Xt = Xπk(t)

= (Xπk(t) −Xπk−1(t)) +Xπk−1(t)

= (Xπk(t) −Xπk−1(t)) + (Xπk−1(t) −Xπ(k−2)(t)) +Xπ(k−2)(t)

...

= Xt0 +

k∑
i=1

Xπ(i)(t) −Xπ(i−1)(t)

So if we take a maximum over all t ∈ Tk, and noting that Xt0 = 0, we see that:

max
t∈Tk

Xt = max
t∈Tk

k∑
i=1

Xπ(i)(t) −Xπ(i−1)(t)

≤
k∑
i=1

max
t∈Tk

Xπ(i)(t) −Xπ(i−1)(t)

=
k∑
i=1

max
τ∈Ti

Xτ −Xπi−1(τ)

Since Ti is a 2−iD cover of T , d(τ, πi−1(τ)) ≤ 21−iD. Therefore by the subgaussianity assumption,
Xτ −Xπi−1(τ) is 22−2iD subgaussian. Next we will use the following fact:

Fact 2. If X1, ..., Xn are independent σ2-subgaussian random variables, E[maxkXk] ≤
√

2σ2 log n

Because there are N(T, 21−iD) elements in Ti−1, applying the fact gives:

E
[
max
t∈Ti

(
Xτ −Xπi−1(τ)

)]
≤
√

8D24−i logN(T, 2−iD)

Therefore by linearity of expectation, we have

E
[
max
t∈Tk

Xt

]
≤ 2
√

2D
k∑
i=1

2−i
√

logN(T, 2−iD)

By separability, limk→∞maxt∈Tk Xt = supt∈T Xt. Since the sets {Tk}∞k=1 are nested, maxt∈Tk Xt is
an increasing sequence in k. Thus by the Monotone Convergence Theorem,

E
[
sup
t∈T

Xt

]
≤ 2
√

2D
∞∑
i=1

2−i
√

logN(T, 2−iD)

via the integral test→ ≤ 2
√

2D

∫ 1

0
ε
√

logN(T,Dε) dε

Change of variables→ = 4
√

2

∫ diam(T )

0

√
logN(T, ε) dε
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The integral on the right is known as the Entropy Integral.
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