Lecturer: John Duchi
Scribe: Matt Tsao
(2) Warning: these notes may contain factual errors

Reading:

Recap

For a function class \mathcal{F}, we defined a \mathcal{F}-norm

$$
\left\|P_{n}-P\right\|_{\mathcal{F}}:=\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|
$$

We say that \mathcal{F} satisfies a uniform law of large numbers if $\lim _{n \rightarrow \infty}\left\|P_{n}-P\right\|_{\mathcal{F}}=0$. Last time we discussed ϵ-covers and ϵ-brackets that allowed us to prove such ULLN statements.

Outline

- Glivenko Cantelli Classes
- Symmetrization Inequalities
- Subgaussian Processes
- Chaining and Entropy Integrals

Throughout this lecture we will be building up machinery that will allow us to get a handle on the behavior of $\left\|P_{n}-P\right\|_{\mathcal{F}}$.

1 GC Classes and Symmetrization

Definition 1.1. \mathcal{F} is a Glivenko Cantelli Class with respect to P if $\left\|P_{n}-P\right\|_{\mathcal{F}} \xrightarrow{p} 0$.
Example 1: In Homework 1, we showed that for the class $\mathcal{F}=\left\{\mathbb{1}_{[x \leq t]}: t \in \mathbb{R}\right\},\left\|P_{n} f-P f\right\|_{\mathcal{F}}=$ $o_{P}(1)$, hence \mathcal{F} is a GC class. In particular,

$$
\mathbb{P}\left[\sup _{t}\left|P_{n}(X \leq t)-P(X \leq t)\right|>\epsilon\right] \leq 2 \exp \left(-c n \epsilon^{2}\right)
$$

\& A next natural question then, is how show that a certain function class \mathcal{F} is a GC class. Certainly by Markov's Inequality we can say

$$
\begin{align*}
\mathbb{P}\left[\sup _{f}\left|P_{n} f-P f\right| \geq t\right] & \leq \frac{1}{t} \mathbb{E}\left[\sup _{f}\left|P_{n} f-P f\right|\right] \tag{1}\\
& =\frac{1}{n t} \mathbb{E}\left[\sup _{f}\left|\sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f\left(X_{i}\right)\right|\right] \tag{2}
\end{align*}
$$

We will now develop some tools to handle this expectation term.

Definition 1.2. A Rademacher random variable is one which takes values in $\{-1,1\}$ with equal probability.

Theorem 1. (Symmetrization)
If X_{1}, \ldots, X_{n} are random vectors in a vector space equipped with a norm $\|\cdot\|$ and $\epsilon_{1}, \ldots, \epsilon_{n}$ are i.i.d. Rademarcher random variables which are independent of the X_{i} 's, then for $p \geq 1$,

$$
\begin{equation*}
\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[X_{i}\right]\right\|^{p}\right] \leq 2^{p} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon X_{i}\right\|^{p}\right] \tag{3}
\end{equation*}
$$

Proof Let X_{i}^{\prime} be a random variable that has the same distribution as X_{i} and is independent from X_{i}. Then

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[X_{i}\right]\right\|^{p}\right]=\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[X_{i}^{\prime}\right]\right\|^{p}\right] \\
& \text { Jensen's Inequality } \rightarrow \leq \mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}-X_{i}^{\prime}\right\|^{p}\right]
\end{aligned}
$$

Since X_{i}, X_{i}^{\prime} are independent and have the same distribution, $X_{i}-X_{i}^{\prime}$ is symmetric about 0 , so in particular it has the same distribution as $\epsilon_{i}\left(X_{i}-X_{i}^{\prime}\right)$. Hence,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}-X_{i}^{\prime}\right\|^{p}\right] & =\mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}-\sum_{i=1}^{n} \epsilon_{i} X_{i}^{\prime}\right\|^{p}\right] \\
& =2^{p} \mathbb{E}\left[\left\|\frac{1}{2} \sum_{i=1}^{n} \epsilon_{i} X_{i}-\frac{1}{2} \sum_{i=1}^{n} \epsilon_{i} X_{i}^{\prime}\right\|^{p}\right] \\
\text { Convexity Property } \rightarrow & \leq 2^{p}\left(\frac{1}{2}\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|^{p}+\frac{1}{2}\left\|\mid \sum_{i=1}^{n} \epsilon_{i} X_{i}^{\prime}\right\|^{p}\right) \\
& =2^{p}\left\|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|^{p}
\end{aligned}
$$

Example 2: (Rademacher Complexity)
If \mathcal{F} is a function class, then by symmetrization,

$$
\begin{equation*}
\frac{1}{2} \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|P_{n} f-P F\right|\right] \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right|\right] \tag{4}
\end{equation*}
$$

The term on the right is known as the Rademacher Complexity of \mathcal{F}.

2 Subgaussian Processes

Definition 2.1. Let $\left\{X_{t}\right\}_{t \in T}$ be a collection of real valued random variables. This is a Stochastic Process indexed by T.

Remark All processes we deal with in this class will be separable, i.e. there exists a countable set T^{\prime} such that $\sup _{t \in T}\left|X_{t}\right|=\sup _{t \in T^{\prime}}\left|X_{t}\right|$.

Definition 2.2. Let (T, d) be a metric space. We say $\left\{X_{t}\right\}_{t \in T}$ is a subgaussian process if

$$
\begin{equation*}
\log \mathbb{E}\left[\exp \left(\lambda\left(X_{s}-X_{t}\right)\right)\right] \leq \frac{\lambda^{2} d(s, t)^{2}}{2} \tag{5}
\end{equation*}
$$

for all $\lambda>0, s, t \in T$.
Remark One might expect a subgaussian constant σ^{2} to appear in (5), i.e. the upper bound should be $\frac{\lambda^{2} \sigma^{2} d(s, t)^{2}}{2}$, however, the metric is chosen so that the subgaussian constant is absorbed into the metric d.

Example 3:

A gaussian process is an example of a subgaussian process. To see this, let $T=\mathbb{R}^{d}$, and $Z \sim$ $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$, define $X_{t}=\langle Z, t\rangle$. Note that $X_{s}-X_{t}=\langle Z, s-t\rangle$ has a normal distribution with mean zero and variance $\|s-t\|_{2}^{2} \sigma^{2}$, therefore $\log \mathbb{E}\left[e^{\lambda\left(X_{s}-X_{t}\right)}\right] \leq \frac{1}{2} \lambda^{2} \sigma^{2}\|s-t\|_{2}^{2}$

Example 4: (Rademacher Process with a loss function) Let T be a vector space equipped with a norm $\|\cdot\|, X_{i} \in \mathcal{X}$ are random variables and $\ell: T \times \mathcal{X} \rightarrow \mathbb{R}$ is lipschitz in its first argument, meaning that

$$
|\ell(s, x)-\ell(t, x)| \leq\|t-s\| \text { for all } x \in \mathcal{X}, s, t \in T
$$

Then for $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ i.i.d. Rademacher random variables, because $\epsilon_{i}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)$ is bounded between $-\| s-t| |$ and $\|s-t\|$, it is subgaussian, hence

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \epsilon_{i}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)\right)\right] & \leq \mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \epsilon_{i}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)\right)\right] \mid X\right] \\
& \leq \mathbb{E}\left[\left.\exp \left(\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(\ell\left(t, X_{i}\right)-\ell\left(s, X_{i}\right)\right)^{2}\right) \right\rvert\, X\right] \\
& \leq \exp \left(\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\|t-s\|^{2}\right) \\
& =\exp \left(\frac{\lambda^{2} n\|s-t\|^{2}}{8}\right)
\end{aligned}
$$

So if $Z_{t}=\sum_{i=1}^{n} \epsilon_{i} \ell\left(t, x_{i}\right)$ then the stochastic process $\left\{X_{t}\right\}_{t \in T}$ is $\frac{n}{4}\|\cdot\|^{2}$-subgaussian.

3 Chaining and Entropy Integrals

Recall from (1) that we are interested in $\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|\right]$. By symmetrization (3) we can upper bound our desired quantity by $\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right|\right]$. Therefore, we wish to understand quantities of the form $\mathbb{E}\left[\sup _{t \in T} X_{t}\right]$.

Let $\left\{X_{t}\right\}_{t \in T}$ be a $d^{2}(\cdot, \cdot)$ subgaussian process. We will approximate X_{t} by finier and finer discretizations in the following way: Let $D=\operatorname{diam}(T)=\sup _{s, t \in T} d(s, t)$, and assume $D<\infty$. Let $T_{0} \subset T_{1} \subset T_{2} \subset \ldots \subset T$ be a sequence of minimal covers of T where T_{k} is a minimal $2^{-k} D$ cover of T.

For $t \in T$, consider the "best" sequence t_{0}, t_{1}, \ldots converging to t so that $t_{k} \in T_{k}$. Let $\pi_{i}(t):=$ $\arg \min _{t_{i} \in T_{i}} d\left(t_{i}, t\right) \leq 2^{-i} D$. For any $k \in \mathbb{N}$, for $t \in T_{k}$ define $\pi^{(i)}(t)=\pi_{i}\left(\pi^{(i+1)}(t)\right)$. In other words, you are projecting $k-i$ times. Now for any $t \in T_{k}$,

$$
\begin{aligned}
X_{t} & =X_{\pi_{k(t)}} \\
& =\left(X_{\pi_{k}(t)}-X_{\pi_{k-1}(t)}\right)+X_{\pi_{k-1}(t)} \\
& =\left(X_{\pi_{k}(t)}-X_{\pi_{k-1}(t)}\right)+\left(X_{\pi_{k-1}(t)}-X_{\pi^{(k-2)}(t)}\right)+X_{\pi^{(k-2)}(t)} \\
& \vdots \\
& =X_{t_{0}}+\sum_{i=1}^{k} X_{\pi^{(i)}(t)}-X_{\pi^{(i-1)}(t)}
\end{aligned}
$$

So if we take a maximum over all $t \in T_{k}$, and noting that $X_{t_{0}}=0$, we see that:

$$
\begin{aligned}
\max _{t \in T_{k}} X_{t} & =\max _{t \in T_{k}} \sum_{i=1}^{k} X_{\pi^{(i)}(t)}-X_{\pi^{(i-1)}(t)} \\
& \leq \sum_{i=1}^{k} \max _{t \in T_{k}} X_{\pi^{(i)}(t)}-X_{\pi^{(i-1)}(t)} \\
& =\sum_{i=1}^{k} \max _{\tau \in T_{i}} X_{\tau}-X_{\pi_{i-1}(\tau)}
\end{aligned}
$$

Since T_{i} is a $2^{-i} D$ cover of $T, d\left(\tau, \pi_{i-1}(\tau)\right) \leq 2^{1-i} D$. Therefore by the subgaussianity assumption, $X_{\tau}-X_{\pi_{i-1}(\tau)}$ is $2^{2-2 i} D$ subgaussian. Next we will use the following fact:
Fact 2. If X_{1}, \ldots, X_{n} are independent σ^{2}-subgaussian random variables, $\mathbb{E}\left[\max _{k} X_{k}\right] \leq \sqrt{2 \sigma^{2} \log n}$ Because there are $N\left(T, 2^{1-i} D\right)$ elements in T_{i-1}, applying the fact gives:

$$
\mathbb{E}\left[\max _{t \in T_{i}}\left(X_{\tau}-X_{\pi_{i-1}(\tau)}\right)\right] \leq \sqrt{8 D^{2} 4^{-i} \log N\left(T, 2^{-i} D\right)}
$$

Therefore by linearity of expectation, we have

$$
\mathbb{E}\left[\max _{t \in T_{k}} X_{t}\right] \leq 2 \sqrt{2} D \sum_{i=1}^{k} 2^{-i} \sqrt{\log N\left(T, 2^{-i} D\right)}
$$

By separability, $\lim _{k \rightarrow \infty} \max _{t \in T_{k}} X_{t}=\sup _{t \in T} X_{t}$. Since the sets $\left\{T_{k}\right\}_{k=1}^{\infty}$ are nested, $\max _{t \in T_{k}} X_{t}$ is an increasing sequence in k. Thus by the Monotone Convergence Theorem,

$$
\begin{aligned}
\qquad \mathbb{E}\left[\sup _{t \in T} X_{t}\right] & \leq 2 \sqrt{2} D \sum_{i=1}^{\infty} 2^{-i} \sqrt{\log N\left(T, 2^{-i} D\right)} \\
\text { via the integral test } \rightarrow & \leq 2 \sqrt{2} D \int_{0}^{1} \epsilon \sqrt{\log N(T, D \epsilon)} d \epsilon \\
\text { Change of variables } \rightarrow & =4 \sqrt{2} \int_{0}^{\operatorname{diam}(T)} \sqrt{\log N(T, \epsilon)} d \epsilon
\end{aligned}
$$

The integral on the right is known as the Entropy Integral.

