Stats 300b: Theory of Statistics

Winter 2017

Lecture 11 - CG Clases, Symmetrization, Subgaussian Processes and Chaining - 2/14/2017

Lecturer: John Duchi

Scribe: Matt Tsao

Warning: these notes may contain factual errors

Reading:

Recap

For a function class \mathcal{F} , we defined a \mathcal{F} -norm

$$||P_n - P||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |P_n f - Pf|$$

We say that \mathcal{F} satisfies a **uniform law of large numbers** if $\lim_{n\to\infty} ||P_n - P||_{\mathcal{F}} = 0$. Last time we discussed ϵ -covers and ϵ -brackets that allowed us to prove such ULLN statements.

Outline

- Glivenko Cantelli Classes
- Symmetrization Inequalities
- Subgaussian Processes
- Chaining and Entropy Integrals

Throughout this lecture we will be building up machinery that will allow us to get a handle on the behavior of $||P_n - P||_{\mathcal{F}}$.

1 GC Classes and Symmetrization

Definition 1.1. \mathcal{F} is a *Glivenko Cantelli Class* with respect to P if $||P_n - P||_{\mathcal{F}} \xrightarrow{p} 0$.

Example 1: In Homework 1, we showed that for the class $\mathcal{F} = \{\mathbb{1}_{[x \leq t]} : t \in \mathbb{R}\}, ||P_n f - Pf||_{\mathcal{F}} = o_P(1)$, hence \mathcal{F} is a GC class. In particular,

$$\mathbb{P}[\sup_{t} |P_n(X \le t) - P(X \le t)| > \epsilon] \le 2\exp(-cn\epsilon^2)$$

 \clubsuit A next natural question then, is how show that a certain function class \mathcal{F} is a GC class. Certainly

by Markov's Inequality we can say

$$\mathbb{P}\left[\sup_{f} |P_n f - Pf| \ge t\right] \le \frac{1}{t} \mathbb{E}\left[\sup_{f} |P_n f - Pf|\right]$$
(1)

$$= \frac{1}{nt} \mathbb{E} \left[\sup_{f} \left| \sum_{i=1}^{n} f(X_i) - \mathbb{E} f(X_i) \right| \right]$$
(2)

We will now develop some tools to handle this expectation term.

Definition 1.2. A Rademacher random variable is one which takes values in $\{-1, 1\}$ with equal probability.

Theorem 1. (Symmetrization)

If $X_1, ..., X_n$ are random vectors in a vector space equipped with a norm $|| \cdot ||$ and $\epsilon_1, ..., \epsilon_n$ are *i.i.d.* Rademarcher random variables which are independent of the X_i 's, then for $p \ge 1$,

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i} - \mathbb{E}[X_{i}]\right\|^{p}\right] \leq 2^{p} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \epsilon X_{i}\right\|^{p}\right]$$
(3)

Proof Let X'_i be a random variable that has the same distribution as X_i and is independent from X_i . Then

$$\mathbb{E}\left[\left\|\left|\sum_{i=1}^{n} X_{i} - \mathbb{E}[X_{i}]\right\|^{p}\right] = \mathbb{E}\left[\left\|\left|\sum_{i=1}^{n} X_{i} - \mathbb{E}[X_{i}']\right\|^{p}\right]\right]$$

Jensen's Inequality $\rightarrow \leq \mathbb{E}\left[\left\|\left|\sum_{i=1}^{n} X_{i} - X_{i}'\right\|^{p}\right]\right]$

Since X_i, X'_i are independent and have the same distribution, $X_i - X'_i$ is symmetric about 0, so in particular it has the same distribution as $\epsilon_i(X_i - X'_i)$. Hence,

$$\mathbb{E}\left[\left\|\left|\sum_{i=1}^{n} X_{i} - X_{i}'\right\|\right|^{p}\right] = \mathbb{E}\left[\left\|\left|\sum_{i=1}^{n} \epsilon_{i} X_{i} - \sum_{i=1}^{n} \epsilon_{i} X_{i}'\right\|\right|^{p}\right]\right]$$
$$= 2^{p} \mathbb{E}\left[\left\|\left|\frac{1}{2}\sum_{i=1}^{n} \epsilon_{i} X_{i} - \frac{1}{2}\sum_{i=1}^{n} \epsilon_{i} X_{i}'\right\|\right|^{p}\right]$$
Convexity Property $\rightarrow \leq 2^{p} \left(\frac{1}{2}\left\|\left|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|\right|^{p} + \frac{1}{2}\left\|\left|\sum_{i=1}^{n} \epsilon_{i} X_{i}'\right\|\right|^{p}\right)$
$$= 2^{p} \left\|\left|\sum_{i=1}^{n} \epsilon_{i} X_{i}\right\|^{p}$$

Example 2: (Rademacher Complexity)

If \mathcal{F} is a function class, then by symmetrization,

$$\frac{1}{2}\mathbb{E}\left[\sup_{f\in\mathcal{F}}|P_nf - PF|\right] \le \mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n\epsilon_i f(X_i)\right|\right]$$
(4)

The term on the right is known as the **Rademacher Complexity** of \mathcal{F} .

2 Subgaussian Processes

Definition 2.1. Let $\{X_t\}_{t\in T}$ be a collection of real valued random variables. This is a **Stochastic Process** indexed by T.

Remark All processes we deal with in this class will be separable, i.e. there exists a countable set T' such that $\sup_{t \in T} |X_t| = \sup_{t \in T'} |X_t|$.

Definition 2.2. Let (T, d) be a metric space. We say $\{X_t\}_{t \in T}$ is a subgaussian process if

$$\log \mathbb{E}\left[\exp\left(\lambda(X_s - X_t)\right)\right] \le \frac{\lambda^2 d(s, t)^2}{2} \tag{5}$$

for all $\lambda > 0, s, t \in T$.

Remark One might expect a subgaussian constant σ^2 to appear in (5), i.e. the upper bound should be $\frac{\lambda^2 \sigma^2 d(s,t)^2}{2}$, however, the metric is chosen so that the subgaussian constant is absorbed into the metric d.

Example 3:

A gaussian process is an example of a subgaussian process. To see this, let $T = \mathbb{R}^d$, and $Z \sim \mathcal{N}(0, \sigma^2 I_d)$, define $X_t = \langle Z, t \rangle$. Note that $X_s - X_t = \langle Z, s - t \rangle$ has a normal distribution with mean zero and variance $||s - t||_2^2 \sigma^2$, therefore $\log \mathbb{E}[e^{\lambda(X_s - X_t)}] \leq \frac{1}{2}\lambda^2 \sigma^2 ||s - t||_2^2 \clubsuit$

Example 4: (Rademacher Process with a loss function) Let T be a vector space equipped with a norm $|| \cdot ||$, $X_i \in \mathcal{X}$ are random variables and $\ell : T \times \mathcal{X} \to \mathbb{R}$ is lipschitz in its first argument, meaning that

$$|\ell(s,x) - \ell(t,x)| \le ||t-s||$$
 for all $x \in \mathcal{X}, s, t \in T$

Then for $\{\epsilon_i\}_{i=1}^n$ i.i.d. Rademacher random variables, because $\epsilon_i(\ell(t, X_i) - \ell(s, X_i))$ is bounded between -||s - t|| and ||s - t||, it is subgaussian, hence

$$\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}\epsilon_{i}(\ell(t,X_{i})-\ell(s,X_{i}))\right)\right] \leq \mathbb{E}\left[\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}\epsilon_{i}(\ell(t,X_{i})-\ell(s,X_{i}))\right)\right]\Big|X\right]$$
$$\leq \mathbb{E}\left[\exp\left(\frac{\lambda^{2}}{8}\sum_{i=1}^{n}(\ell(t,X_{i})-\ell(s,X_{i}))^{2}\right)\Big|X\right]$$
$$\leq \exp\left(\frac{\lambda^{2}}{8}\sum_{i=1}^{n}||t-s||^{2}\right)$$
$$= \exp\left(\frac{\lambda^{2}n||s-t||^{2}}{8}\right)$$

So if $Z_t = \sum_{i=1}^n \epsilon_i \ell(t, x_i)$ then the stochastic process $\{X_t\}_{t \in T}$ is $\frac{n}{4} || \cdot ||^2$ -subgaussian.

3 Chaining and Entropy Integrals

Recall from (1) that we are interested in $\mathbb{E}[\sup_{f\in\mathcal{F}} |P_n f - Pf|]$. By symmetrization (3) we can upper bound our desired quantity by $\mathbb{E}[\sup_{f\in\mathcal{F}} |\frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i)|]$. Therefore, we wish to understand quantities of the form $\mathbb{E}[\sup_{t\in T} X_t]$.

Let $\{X_t\}_{t\in T}$ be a $d^2(\cdot, \cdot)$ subgaussian process. We will approximate X_t by finiter and finer discretizations in the following way: Let $D = diam(T) = \sup_{s,t\in T} d(s,t)$, and assume $D < \infty$. Let $T_0 \subset T_1 \subset T_2 \subset \ldots \subset T$ be a sequence of minimal covers of T where T_k is a minimal $2^{-k}D$ cover of T.

For $t \in T$, consider the "best" sequence t_0, t_1, \ldots converging to t so that $t_k \in T_k$. Let $\pi_i(t) := \arg\min_{t_i \in T_i} d(t_i, t) \leq 2^{-i}D$. For any $k \in \mathbb{N}$, for $t \in T_k$ define $\pi^{(i)}(t) = \pi_i(\pi^{(i+1)}(t))$. In other words, you are projecting k - i times. Now for any $t \in T_k$,

$$\begin{aligned} X_t &= X_{\pi_{k(t)}} \\ &= (X_{\pi_k(t)} - X_{\pi_{k-1}(t)}) + X_{\pi_{k-1}(t)} \\ &= (X_{\pi_k(t)} - X_{\pi_{k-1}(t)}) + (X_{\pi_{k-1}(t)} - X_{\pi^{(k-2)}(t)}) + X_{\pi^{(k-2)}(t)} \\ &\vdots \\ &= X_{t_0} + \sum_{i=1}^k X_{\pi^{(i)}(t)} - X_{\pi^{(i-1)}(t)} \end{aligned}$$

So if we take a maximum over all $t \in T_k$, and noting that $X_{t_0} = 0$, we see that:

$$\max_{t \in T_k} X_t = \max_{t \in T_k} \sum_{i=1}^k X_{\pi^{(i)}(t)} - X_{\pi^{(i-1)}(t)}$$
$$\leq \sum_{i=1}^k \max_{t \in T_k} X_{\pi^{(i)}(t)} - X_{\pi^{(i-1)}(t)}$$
$$= \sum_{i=1}^k \max_{\tau \in T_i} X_\tau - X_{\pi_{i-1}(\tau)}$$

Since T_i is a $2^{-i}D$ cover of T, $d(\tau, \pi_{i-1}(\tau)) \leq 2^{1-i}D$. Therefore by the subgaussianity assumption, $X_{\tau} - X_{\pi_{i-1}(\tau)}$ is $2^{2-2i}D$ subgaussian. Next we will use the following fact:

Fact 2. If $X_1, ..., X_n$ are independent σ^2 -subgaussian random variables, $\mathbb{E}[\max_k X_k] \leq \sqrt{2\sigma^2 \log n}$ Because there are $N(T, 2^{1-i}D)$ elements in T_{i-1} , applying the fact gives:

$$\mathbb{E}\left[\max_{t\in T_i} \left(X_{\tau} - X_{\pi_{i-1}(\tau)}\right)\right] \le \sqrt{8D^2 4^{-i} \log N(T, 2^{-i}D)}$$

Therefore by linearity of expectation, we have

$$\mathbb{E}\left[\max_{t\in T_k} X_t\right] \le 2\sqrt{2}D\sum_{i=1}^k 2^{-i}\sqrt{\log N(T, 2^{-i}D)}$$

By separability, $\lim_{k\to\infty} \max_{t\in T_k} X_t = \sup_{t\in T} X_t$. Since the sets $\{T_k\}_{k=1}^{\infty}$ are nested, $\max_{t\in T_k} X_t$ is an increasing sequence in k. Thus by the Monotone Convergence Theorem,

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \leq 2\sqrt{2}D\sum_{i=1}^{\infty} 2^{-i}\sqrt{\log N(T, 2^{-i}D)}$$
via the integral test $\rightarrow \leq 2\sqrt{2}D\int_0^1 \epsilon\sqrt{\log N(T, D\epsilon)} \ d\epsilon$ Change of variables $\rightarrow = 4\sqrt{2}\int_0^{diam(T)}\sqrt{\log N(T, \epsilon)} \ d\epsilon$

The integral on the right is known as the **Entropy Integral**.