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Reading:

1 Sub-gaussianity

1.1 Definitions and Properties

Definition 1.1. X is a mean-zero σ2−subgaussian RV if

E
[

expλX
]
≤ exp

(λ2σ2
2

)
∀λ ∈ R

Example: Gaussian random variables: If X ∼ N
(
0, σ2

)
, then

E
[

expλX
]

= exp
(λ2σ2

2

)
∀λ ∈ R.

Bounded random variables also fall into the category of sub-gaussian random variables:

Example: If X ∈ [a, b], then X is (b−a)2
4 - subgaussian i.e,

E
[

expλ
(
X−E

[
X
]) ]

= exp
(λ2(b− a)2

8

)
∀λ ∈ R

Proposition 1. Let Xi’s be independent σ2i - subgaussian random variables. Then
∑n

i=1Xi is a∑
σ2i -subgaussian random variable.

Proof E
[

expλ
∑n
i=1Xi

]
= Πn

i=1E
[

expλXi
]

= exp
(
λ2

∑n
i=1 σ

2
i

2

)
.

Now that we’ve defined sub-gaussian random variables and a few simple properties, lets use them
to obtain concentration inequalities similar to the Chernoff bounds.

1.2 Concentration inequalities

Lemma 2. If X is a σ2- subgaussian, then we have

max
(
P
(
X − E[X] ≥ t

)
,P
(
X − E[X] ≤ −t

))
≤ exp−

{−t2
2σ2

}
Proof Let E[X] = 0 w.l.o.g. We prove the above result using the techniques used to prove
Chernoff bounds i.e, applying Markov inequality on the exponentiation of the random variable:

P
(
X ≥ t

)
= P

(
eλX ≥ eλt

)
≤

E
[
eλX

]
eλt

= e
λ2σ2

2
−λt ∀λ ∈ R+.
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The LHS of the above equation is minimized for λ = t
σ2 , and therefore, we have

P
(
X ≥ t

)
≤ exp−

{−t2
2σ2

}

Corollary 3. (Hoeffding inequality) Let Xi be independent σ2i -subgaussian RVs. Then we have

P
( 1

n

n∑
i=1

Xi ≥ t
)
≤ exp−

{ −nt2

2
∑n

i=1 σ
2
i

}
t ≥ 0

and

P
( 1

n

n∑
i=1

Xi ≤ t
)
≤ exp−

{ −nt2

2
∑n

i=1 σ
2
i

}
t < 0

This inequality is heaviliy used in proving concentration results for bounded random variables
(see Example 1.1).

2 Covering Number and Metric Entropy

Let
(
Θ, d

)
be a metric space with distance measure d : Θ×Θ→ R.

Definition 2.1. For any ε > 0,
{
θi
}N
i=1

is the ε-cover of Θ if

min
i
d(θ, θi) < ε ∀θ ∈ Θ.

This naturally leads to the definition of covering number:

Definition 2.2. For ε > 0, the covering number of Θ for metric d is

N(Θ, d, ε) = inf
{
N : ∃ an ε− cover

{
θi
}N
i=1

of Θ
}

and logN(Θ, d, ε) is also referred as the metric entropy.

Covering a space is a task of covering the whole space with minimum number of balls. Extending
this idea, we define packing as

Definition 2.3. For any ε > 0 ,
{
θi
}M
i=1

is the ε-packing of Θ if

min
i,j

d(θi, θj) > ε.

Similar to covering number, we define packing number as

Definition 2.4. For ε > 0, the packing number of Θ with metric d is

M(Θ, d, ε) = sup
{
N : ∃ an ε− packing

{
θi
}N
i=1

of Θ
}

and logM(Θ, d, ε) is also referred as the packing entropy.
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As one would suspect, covering and packing are related, and we indeed have the relation:

M(2ε) ≤ N(ε) ≤M(ε). (1)

Example: Consider the balls in Rd with norm ||.||, let B =
{
V ∈ Rd : ||V || ≤ 1

}
, and Θ = rB

1. Since ε- packing is equivalent of having “disjoint” balls of radius ε/2 we have

MVol(ε/2) ≤ Vol(r + ε/2)

=⇒M ≤
(

1 +
2r

ε

)d
2. Similarly ε - covering covers the whole space with balls of radius ε and hence we have

NVol(ε) ≥ Vol(r)

=⇒ N ≥
(r
ε

)d
coupling the above inequality with equation 1, we obtain(r

ε

)d
≤ N(ε) ≤

(
1 +

2r

ε

)d
3 Bracketing number

When the underlying space Θ is a space of functions F =
{
f : X → R

}
, we can define bracketing

numbers along the lines of covering , packing numbers. Formally,

Definition 3.1. Let F ⊆
{
f : X → R

}
be a collection of fns with measure µ. A set

{
[li, ui]

}N
i=1

of
functions µi, li : X → R is a ε - bracketing set of F if

∀f ∈ F ∃i s.t li ≤ f(x) ≤ µi

and
∫ (
µi(x)− li(x)

)p
dµ(x) ≤ εp.

In the spirit of defining “numbers” for each notion of covering we define

Definition 3.2. Bracketing number of F is

N[]

(
F , Lp(µ), ε

)
:= inf

{
N : ∃ a set

{
[li, ui]

}N
i=1

which is ε− bracketing of F
}

Claim 4. Let F =
{
mθ : θ ∈ Θ

}
where mθ are L-Lipschitz in θ, theb N[]

(
F , Lp, εL

)
≤ N(Θ, ||.||, ε/2).

Proof Let
{
θi
}N
i=1

be an ε/2 -covering of Θ, then lets define

ui(x) : = mθi(x) +
ε

2
L

li(x) : = mθi(x)− ε

2
L.

We know that for any θ ∈ Θ, ∃θi s,t ||θ − θi|| ≤ ε
2 , and from Lipschitz properties of mθ, we have∣∣mθ(x)−mθi(x)
∣∣ ≤ L||θ − θi||

≤ ε

2
L.
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Theorem 5. (Uniform Convergence) Let F satisfy N[]

(
F , Lp, ε

)
<∞, then under i.i.d. sampling

sup
f∈F

∣∣Pnf − Pf ∣∣ p→ 0.

Proof For any given ε > 0 let
{

[li, ui
}N
i=1

be ε-bracketing numbers then ∀f ∈ F , ∃i s.t li ≤ f ≤ ui,
and therefore we have

Pnf − Pf ≤ Pnui − Pli
= Pnui − Pui + Pui − Pli
≤ op(1) + ε.

Since N[] is finite and ε was arbitrary, we have

sup
f∈F

∣∣Pnf − Pf ∣∣ ≤ ∣∣N[]

∣∣op(1) + ε

≤ 2ε→ 0.
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