Lecture 10 - Feb 9

Lecturer: John Duchi
Scribe: Qijia Jiang, Vivek Bagaria
(2) Warning: these notes may contain factual errors

Reading:

1 Sub-gaussianity

1.1 Definitions and Properties

Definition 1.1. X is a mean-zero σ^{2}-subgaussian $R V$ if

$$
\mathbb{E}\left[\exp ^{\lambda X}\right] \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right) \quad \forall \lambda \in \mathbb{R}
$$

Example: Gaussian random variables: If $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then

$$
\mathbb{E}\left[\exp ^{\lambda X}\right]=\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right) \quad \forall \lambda \in \mathbb{R}
$$

Bounded random variables also fall into the category of sub-gaussian random variables:
Example: If $X \in[a, b]$, then X is $\frac{(b-a)^{2}}{4}$ - subgaussian i.e,

$$
\mathbb{E}\left[\exp ^{\lambda(x-\mathbb{E}[X])}\right]=\exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right) \quad \forall \lambda \in \mathbb{R}
$$

Proposition 1. Let X_{i} 's be independent σ_{i}^{2} - subgaussian random variables. Then $\sum_{i=1}^{n} X_{i}$ is a $\sum \sigma_{i}^{2}$-subgaussian random variable.
Proof $\mathbb{E}\left[\exp ^{\lambda \sum_{i=1}^{n} X_{i}}\right]=\Pi_{i=1}^{n} \mathbb{E}\left[\exp ^{\lambda X_{i}}\right]=\exp \left(\frac{\lambda^{2} \sum_{i=1}^{n} \sigma_{i}^{2}}{2}\right)$.
Now that we've defined sub-gaussian random variables and a few simple properties, lets use them to obtain concentration inequalities similar to the Chernoff bounds.

1.2 Concentration inequalities

Lemma 2. If X is a σ^{2}-subgaussian, then we have

$$
\max (\mathbb{P}(X-\mathbb{E}[X] \geq t), \mathbb{P}(X-\mathbb{E}[X] \leq-t)) \leq \exp -\left\{\frac{-t^{2}}{2 \sigma^{2}}\right\}
$$

Proof Let $\mathbb{E}[X]=0$ w.l.o.g. We prove the above result using the techniques used to prove Chernoff bounds i.e, applying Markov inequality on the exponentiation of the random variable:

$$
\begin{aligned}
\mathbb{P}(X \geq t) & =\mathbb{P}\left(e^{\lambda X} \geq e^{\lambda t}\right) \\
& \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda t}} \\
& =e^{\frac{\lambda^{2} \sigma^{2}}{2}-\lambda t} \quad \forall \lambda \in \mathbb{R}^{+} .
\end{aligned}
$$

The LHS of the above equation is minimized for $\lambda=\frac{t}{\sigma^{2}}$, and therefore, we have

$$
\mathbb{P}(X \geq t) \leq \exp -\left\{\frac{-t^{2}}{2 \sigma^{2}}\right\}
$$

Corollary 3. (Hoeffding inequality) Let X_{i} be independent σ_{i}^{2}-subgaussian RVs. Then we have

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp -\left\{\frac{-n t^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right\} \quad t \geq 0
$$

and

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \leq t\right) \leq \exp -\left\{\frac{-n t^{2}}{2 \sum_{i=1}^{n} \sigma_{i}^{2}}\right\} \quad t<0
$$

This inequality is heaviliy used in proving concentration results for bounded random variables (see Example 1.1).

2 Covering Number and Metric Entropy

Let (Θ, d) be a metric space with distance measure $d: \Theta \times \Theta \rightarrow \mathbb{R}$.
Definition 2.1. For any $\epsilon>0,\left\{\theta_{i}\right\}_{i=1}^{N}$ is the ϵ-cover of Θ if

$$
\min _{i} d\left(\theta, \theta_{i}\right)<\epsilon \quad \forall \theta \in \Theta .
$$

This naturally leads to the definition of covering number:
Definition 2.2. For $\epsilon>0$, the covering number of Θ for metric d is

$$
N(\Theta, d, \epsilon)=\inf \left\{N: \exists \text { an } \epsilon-\operatorname{cover}\left\{\theta_{i}\right\}_{i=1}^{N} \text { of } \Theta\right\}
$$

and $\log N(\Theta, d, \epsilon)$ is also referred as the metric entropy.
Covering a space is a task of covering the whole space with minimum number of balls. Extending this idea, we define packing as
Definition 2.3. For any $\epsilon>0,\left\{\theta_{i}\right\}_{i=1}^{M}$ is the ϵ-packing of Θ if

$$
\min _{i, j} d\left(\theta_{i}, \theta_{j}\right)>\epsilon .
$$

Similar to covering number, we define packing number as
Definition 2.4. For $\epsilon>0$, the packing number of Θ with metric d is

$$
M(\Theta, d, \epsilon)=\sup \left\{N: \exists \text { an } \epsilon-\text { packing }\left\{\theta_{i}\right\}_{i=1}^{N} \text { of } \Theta\right\}
$$

and $\log M(\Theta, d, \epsilon)$ is also referred as the packing entropy.

As one would suspect, covering and packing are related, and we indeed have the relation:

$$
\begin{equation*}
M(2 \epsilon) \leq N(\epsilon) \leq M(\epsilon) \tag{1}
\end{equation*}
$$

Example: Consider the balls in \mathbb{R}^{d} with norm $\|\cdot\|$, let $\mathbb{B}=\left\{V \in \mathbb{R}^{d}:\|V\| \leq 1\right\}$, and $\Theta=r \mathbb{B}$

1. Since ϵ - packing is equivalent of having "disjoint" balls of radius $\epsilon / 2$ we have

$$
\begin{aligned}
M \operatorname{Vol}(\epsilon / 2) & \leq \operatorname{Vol}(r+\epsilon / 2) \\
\Longrightarrow M & \leq\left(1+\frac{2 r}{\epsilon}\right)^{d}
\end{aligned}
$$

2. Similarly ϵ - covering covers the whole space with balls of radius ϵ and hence we have

$$
\begin{aligned}
N \operatorname{Vol}(\epsilon) & \geq \operatorname{Vol}(r) \\
\Longrightarrow N & \geq\left(\frac{r}{\epsilon}\right)^{d}
\end{aligned}
$$

coupling the above inequality with equation 1 , we obtain

$$
\left(\frac{r}{\epsilon}\right)^{d} \leq N(\epsilon) \leq\left(1+\frac{2 r}{\epsilon}\right)^{d}
$$

3 Bracketing number

When the underlying space Θ is a space of functions $\mathcal{F}=\{f: \mathcal{X} \rightarrow \mathbb{R}\}$, we can define bracketing numbers along the lines of covering, packing numbers. Formally,
Definition 3.1. Let $\mathcal{F} \subseteq\{f: \mathcal{X} \rightarrow \mathbb{R}\}$ be a collection of fns with measure μ. A set $\left\{\left[l_{i}, u_{i}\right]\right\}_{i=1}^{N}$ of functions $\mu_{i}, l_{i}: \mathcal{X} \rightarrow \mathbb{R}$ is a ϵ-bracketing set of \mathcal{F} if

$$
\forall f \in \mathcal{F} \exists i \text { s.t } l_{i} \leq f(x) \leq \mu_{i}
$$

and $\int\left(\mu_{i}(x)-l_{i}(x)\right)^{p} d \mu(x) \leq \epsilon^{p}$.
In the spirit of defining "numbers" for each notion of covering we define
Definition 3.2. Bracketing number of \mathcal{F} is

$$
N_{\square}\left(\mathcal{F}, L_{p}(\mu), \epsilon\right):=\inf \left\{N: \exists \text { a set }\left\{\left[l_{i}, u_{i}\right]\right\}_{i=1}^{N} \text { which is } \epsilon-\text { bracketing of } \mathcal{F}\right\}
$$

Claim 4. Let $\mathcal{F}=\left\{m_{\theta}: \theta \in \Theta\right\}$ where m_{θ} are L-Lipschitz in θ, theb $N_{\square}\left(\mathcal{F}, L_{p}, \epsilon L\right) \leq N(\Theta,\|\cdot\|, \epsilon / 2)$.
Proof Let $\left\{\theta_{i}\right\}_{i=1}^{N}$ be an $\epsilon / 2$-covering of Θ, then lets define

$$
\begin{aligned}
u_{i}(x): & =m_{\theta_{i}}(x)+\frac{\epsilon}{2} L \\
l_{i}(x): & =m_{\theta_{i}}(x)-\frac{\epsilon}{2} L .
\end{aligned}
$$

We know that for any $\theta \in \Theta, \exists \theta_{i} \mathrm{~s}, \mathrm{t}\left\|\theta-\theta_{i}\right\| \leq \frac{\epsilon}{2}$, and from Lipschitz properties of m_{θ}, we have

$$
\begin{aligned}
\left|m_{\theta}(x)-m_{\theta_{i}}(x)\right| & \leq L| | \theta-\theta_{i}| | \\
& \leq \frac{\epsilon}{2} L .
\end{aligned}
$$

Theorem 5. (Uniform Convergence) Let \mathcal{F} satisfy $N_{\square}\left(\mathcal{F}, L_{p}, \epsilon\right)<\infty$, then under i.i.d. sampling

$$
\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| \xrightarrow{p} 0
$$

Proof For any given $\epsilon>0$ let $\left\{\left[l_{i}, u_{i}\right\}_{i=1}^{N}\right.$ be ϵ-bracketing numbers then $\forall f \in \mathcal{F}, \exists i$ s.t $l_{i} \leq f \leq u_{i}$, and therefore we have

$$
\begin{aligned}
P_{n} f-P f & \leq P_{n} u_{i}-P l_{i} \\
& =P_{n} u_{i}-P u_{i}+P u_{i}-P l_{i} \\
& \leq o_{p}(1)+\epsilon .
\end{aligned}
$$

Since N_{\square} is finite and ϵ was arbitrary, we have

$$
\begin{aligned}
\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| & \leq\left|N_{\square}\right| o_{p}(1)+\epsilon \\
& \leq 2 \epsilon \rightarrow 0 .
\end{aligned}
$$

