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Reading:

1 Sub-gaussianity

1.1 Definitions and Properties

2

Definition 1.1. X is a mean-zero o°—subgaussian RV if

\2o2

E[exp’\X] Sexp( ) YAeR

Example: Gaussian random variables: If X ~ N (0, 02), then

\252

E[exp)‘X] :exp( > VA eR.

Bounded random variables also fall into the category of sub-gaussian random variables:
2
Example: If X € [a,b], then X is @ - subgaussian i.e,

E[exp)‘(x_IE [X]) ] = exp (W) YA eR

Proposition 1. Let X;’s be independent o2- subgaussian random variables. Then Yo Xiisa
> o2-subgaussian random variable.

Proof  B[exp X ] = I B [exp ¥ | = exp (X Tt ) 5

Now that we’ve defined sub-gaussian random variables and a few simple properties, lets use them
to obtain concentration inequalities similar to the Chernoff bounds.

1.2 Concentration inequalities

Lemma 2. If X is a 0°- subgaussian, then we have
—¢2
max (B(X — E[X] > 1), P(X — E[X] < ~)) < exp—{ 5}
Proof Let E[X] = 0 w.lo.g. We prove the above result using the techniques used to prove
Chernoff bounds i.e, applying Markov inequality on the exponentiation of the random variable:

P(X >t) = P(M >eM)
E[e/\X]
< et

2 2
= e/\QJ -t

YA eRT.



The LHS of the above equation is minimized for A = %, and therefore, we have

Corollary 3. (Hoeffding inequality) Let X; be independent 012 -subgaussian RVs. Then we have

1 < —nt?
PCY Xizt)<ep—{ocq—5} 20
”; 23, 0f

and .

1 —nt?
P(= X-St)gexp—{i} t<0
”; ' 230 0f

This inequality is heaviliy used in proving concentration results for bounded random variables
(see Example 1.1).

2 Covering Number and Metric Entropy
Let (G), d) be a metric space with distance measure d : © x © — R.
Definition 2.1. For any e > 0, {Qi}z‘]\; s the e-cover of © if
miind(H, 0;) <e VO e€O.

This naturally leads to the definition of covering number:
Definition 2.2. For € > 0, the covering number of © for metric d is

N(©,d,e) =inf {N : 3 an e — cover {Hi}ilil of ©}
and log N(©,d, €) is also referred as the metric entropy.

Covering a space is a task of covering the whole space with minimum number of balls. Extending
this idea, we define packing as

Definition 2.3. For anye >0 , {Hi}i]\il is the e-packing of © if
rril’ijnd(ﬁi,ﬁj) > €.
Similar to covering number, we define packing number as
Definition 2.4. For € > 0, the packing number of © with metric d is
M(O,d, e) = sup {N : 3 an € — packing {Gi}i\il of @}

and log M (©,d, €) is also referred as the packing entropy.



As one would suspect, covering and packing are related, and we indeed have the relation:
M(2€¢) < N(e) < M(e). (1)
Example: Consider the balls in R? with norm ||.||, let B={V € R?: ||V|| <1}, and © = rB
1. Since e packing is equivalent of having “disjoint” balls of radius €/2 we have
MVol(e/2) < Vol(r+¢€/2)
2r\d
=M < (1+7)

B €
2. Similarly € - covering covers the whole space with balls of radius € and hence we have

NVol(e) > Vol(r)
ryd
—x > ()
€
coupling the above inequality with equation 1, we obtain
d 2\ d
() =M= (1+7)
€

€

3 Bracketing number

When the underlying space © is a space of functions F = { f:X—= R}, we can define bracketing
numbers along the lines of covering , packing numbers. Formally,
N

Definition 3.1. Let F C {f X = R} be a collection of fns with measure . A set {[lijui]}izl of
functions p;, l; : X — R is a € - bracketing set of F if
VieFJistl < f(z) <p;
and [ (pi(z) — li(z)) du(z) < €.
In the spirit of defining “numbers” for each notion of covering we define

Definition 3.2. Bracketing number of F is
N (F,Lp(p),e) ==inf{N:3 a set {[li,ui]}]\il which is € — bracketing of F}

Claim 4. Let F = {77’L9 10 e @} where mg are L-Lipschitz in 6, theb N (}", Ly, eL) < N(O,]].]],€/2).
Proof Let {«92'}2.]\;1 be an €/2 -covering of ©, then lets define

ui(x): = me,(x)+ %L

@) = mae)— L.
We know that for any 6 € ©, 30; st [|[0 — 0;]| < §, and from Lipschitz properties of mg, we have
|mo(z) —me,(z)| < L6 = 04|
€
S §L.



Theorem 5. (Uniform Convergence) Let F satisfy Ny (.7:, Lp,e) < 00, then under i.i.d. sampling

sup|Pnf—Pf’ 5.
fer

Proof Forany given e > 0let {[li, uz}f\il be e-bracketing numbers then Vf € F, Jdis.tl; < f < uy,
and therefore we have

= Pyu; — Pu; + Pu; — Pl;
< op(l) + e

Since N7 is finite and € was arbitrary, we have

IN

sup [P, f — P/

‘NH ‘Op(l) + €
feF

< 2e¢—0.



