
Stats 300b: Theory of Statistics Winter 2017

Lecture 9 – February 7

Lecturer: John Duchi Scribe: Dylan Cable

� Warning: these notes may contain factual errors

Reading: Chapter 7.7 of Lehmann’s Elements of Large Sample Theory

Today we are going to finish up hypothesis and confidence tests. We will return to them when we
talk about optimality. Then, we will talk about uniform laws of large numbers - how you give law
of large numbers uniformly over a function class.

Outline :
Parametric Big 3 tests (Chapter 7.7 of Lehmann’s Elements of Large Sample Theory)

• Likelihood Ratio Test

• Wald Test

• Rao (score tests)

Begin Uniform Laws of Large Numbers (ULLNs)

• Concentration inequalities

• Sub-Gaussianity

Recap: Generalized Likelihood Ratio Test: Let (x1, . . . , xn) = x, Ln(x; θ) :=
∑n

i=1 lθ(xi), lθ(x) =
log pθ(x)

Let θ̂n = argmaxθ Ln(x; θ) and assume usual asymptotic normality conditions hold (twice dif-
ferentiable, Lipschitz-continuous hessian). Then δn = Ln(x; θ̂n)− Ln(x; θ) satisfies

2δn →
Pθ0

χ2
d, θ0 ∈ Rd

Definition: Let Tn be a sequence of tests for some model {Pθ}θ∈Θ, let

H0 : θ ∈ Θ0 ⊂ Θ

Then Tn is asymptotically level α if

lim
n→∞

sup
θ∈Θ0

Pθ(Tn rejects H0) ≤ α

Example: Generalized Likelihood Ratio Test is defined by reject if δn ≥ u2
d,α/2, where u2

d,α is

defined so that P(χ2
d ≥ u2

d,α) = α. This test is asymptotically level α.
Wald Tests Define Wald confidence ellipsoid for model {Pθ} with Fisher information Iθ by

Cn,γ = {θ ∈ Θ : (θ − θ̂n)T Iθ̂n(θ − θ̂n) ≤ γ/n}
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where θ̂n is Maximum Likelihood Estimator. We saw last time that

n(θ − θ̂n)T Iθ̂n(θ − θ̂n) →
Pθ0

χ2
d

Wald test of H0 : θ = θ0 against θ 6= θ0:
Acceptance: θ̂n ∈ {θ ∈ Θ : (θ − θ0)T Iθ̂n(θ − θ0 ≤ u2

d,α/n} := An
This is asymptotically level α. Why?

n(θ̂n − θ0)T Iθ̂n(θ̂n − θ0) →
Pθ0

χ2
d

Pθ0(θ̂n /∈ An) = Pθ0((θ̂n − θ0)T Iθ̂n(θ̂n − θ0) > u2
d,α/n)→ P(χ2

d ≥ u2
d,α) = α

Remark: If H0 = θ = θ0 is a point null, we can replace Iθ̂n with Iθ0 .
What about composite nulls (nuisance parameters)?
Example:
Xi ∼

i.i.d.
N(θ, σ2), σ2 is unknown.

H0 : θ = 0, but σ2 is unspecified.

To deal with this, let Σ(θ) = I−1(θ) so that
√
n(θ̂n − θ)

d→
Pθ0

N(0,Σ(θ))

For vector v ∈ Rd, let [v]1:k =

v1
...
vk

 ∈ Rk

For Σ = (eij)
d
i,j=1 ∈ Rd×d, let Σ(k) be the leading k-by-k principal submatrix (eij)

k
i,j=1

Then
√
n([θ̂n]1:k − [θ]1:k)→ N(0,Σ(k)(θ))

Fact: if A =

[
A11A12

A21A22

]
,M = A−1, then M11 = (A11 −A12A

−1
22 A21)−1 (exercise).

Then Σ(k)(θ) = ((I(θ))−1)k = (Ik(θ)− I12(θ)I22(θ)−1I21(θ))−1

Then Σ(k)(θ) � (I(k)(θ))−1 and equal if and only if I12(θ) = 0 (i.e. [θ̂n]1:k and [θ̂n]k+1:d are
asymptotically independent.)

n([θ̂n]1:k − [θ0]1:k)
TΣ(k)(θ̂n)−1([θ̂n]1:k − [θ0]1:k)→

θ0
χ2
k

Let H0 : θ1 = θ0
1, . . . , θk = θ0

k, and θk+1, . . . , θd are unspecified

θ̂n ∈ {θ : ([θ]1:k − [θ0]1:k)
TΣ(k)(θ̂n)−1([θ]1:k − [θ0]1:k) ≤ u2

k,α/n},P(χ2
k ≥ u2

k,α) = α

Then this test is asymptotically level α. We must use Σ(θ̂n) = I(θ̂n)−1 to get a consistent
estimator of I(θ) under H.

Example: Gaussian mean, unknown covariance. N(θ,Σ), θ ∈ Rd,Σ � 0

x̄n = 1
n

∑n
i=1 xi, Σ̂ = 1

n

∑n
i=1(xi − x̄n)(xi − x̄n)T

The test is reject if {x̄Tn Σ̂−1x̄n ≥ u2
d,α)/n} This is because the fisher information of Gaussian is

Σ̂−1.
Rao Score Test: Why the Rao Score Test? The MLE is a bit difficult to compute.
Suppose I have a point null H0 : θ = θ0

What is the limit of
√
nPn∇lθ0 under H0?

√
nPn∇lθ0 → N(0, Iθ0)
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n(Pn∇lθ0)T I−1
θ0

(Pn∇lθ0) →
Pθ0

χ2
d

Define: Rao test of H0 : θ = θ0 vs θ 6= θ0: Reject if (Pn∇lθ0)T I−1
θ0

(Pn∇lθ0) ≥ u2
d,α/n. This is

asymptotically level α.
Remarks: (1) Analogues for composite nulls. (2) Strong connections to optimal testing (we will

see later).
Uniform Laws of Large Numbers: (ULLN) Basic questions: Given collection F of functions

⊂ {f : X → R}, when do we have supf∈F |Pnf − Pf | →p 0?

Why should we care? M-estimators: Let mθ : X → R be defined for θ ∈ Θ. The associated
M-estimator is

θ̂n = argmax
θ∈Θ

Pnmθ(x)

When does θ̂n → argmaxθ∈Θ Pmθ(x)
Let M(θ) := Pmθ(x) be the population objective. Mn(θ) := Pnmθ(x).
When does M(θ̂n)→

p
supθ∈ΘM(θ)?

Suppose we had a ULLN: supθ∈Θ |Mn(θ)−M(θ)| →
p

0

Let θ̂n = argmaxθ∈ΘMn(θ)

Mn(θ̂n) = 1
n

∑n
i=1mθ̂n

(xi) is not an i.i.d sum because θ̂n depends on (xi).

But M(θ̂n)−M(θ∗) = (M(θ̂n)−Mn(θ̂n)) + (Mn(θ̂n)−Mn(θ∗)) + (Mn(θ∗)−M(θ∗))
≥ supθ∈Θ |Mn(θ)−M(θ)|+ 0 + op(1)

Applying our ULLN, we conclude M(θ̂n)→
p
M(θ∗)
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