
Stats 300b: Theory of Statistics Winter 2017

Lecture 8 – February 2

Lecturer: John Duchi Scribe: Dylan Greaves

� Warning: these notes may contain factual errors

Reading:

Outline:

• Finish U-statistics

• Testing and Confidence Intervals

• Duality between Testing and Confidence

• (Generalized) Likelihood Ratio Tests

Recap: Last lecture, we proved the following two results:

Claim 1. Let Un =
(
n
r

)−1∑
|β|=r h(Xβ), and hc(x1, . . . , xc) = E[h(x1, . . . , xc, Xc+1, . . . , Xr)], then

Var(Un) =
r2

n
ζ1 +O(n−2),

where ζ1 = Var(h1).

Claim 2. If S is a linear subspace and Ŝn is the projection of Tn on S, then

Var(Ŝn)

Var(Tn)
→ 1 =⇒ Tn − ETn√

Var(Tn)
− Ŝn − EŜn√

Var(Ŝn)

P−→ 0.

We will combine these two ideas to show the asymptotic normaility of U-statistics.

1 Asymptotic Normality of U-statistics

(Hajék) The main idea is to use projections onto sets of the form

Sn = {
n∑
i=1

gi(Xi) : gi(Xi) ∈ L2(P )}.

Theorem 3. Let h be a symmetric kernel (function) of order r and let Eh2 < ∞, Un be the
associated U-statistic, then

√
n(Un − θ)

d−→ N(0, r2ζ1),

where θ = EUn = Eh(X1, . . . , Xn).
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Proof Let Ûn be defined as Ûn =
∑n

i=1 E[Un − θ|Xi], then Ûn is the projection of Un − θ onto
Sn. Let’s compare the variances and expectations.

Let β ⊆ [n], |β| = r, then

E[h(Xβ)− θ|Xi] =

{
0 i 6∈ β
h1(Xi) i ∈ β

.

Then

E[Un − θ|Xi] =

(
n

r

)−1 ∑
|β|=r

E[h(Xβ)− θ|Xi = x]

=

(
n

r

)−1 ∑
|β|=r,i∈β

h1(Xi)

=

(
n

r

)−1(n− 1

r − 1

)
h1(Xi) =

r

n
h1(Xi)

It follows that Ûn = r
n

∑n
i=1 h1(Xi) and certainly

√
n(Ûn − θ)

d−→ N(0, r2ζ1).

Now apply ratio of variance condition (Claim 2), since

Var(Un) =
r2

n
ζ1 +O(n−2)

Var(Ûn) =
r2

n
ζ1

we have Var(Un)

Var(Ûn)
→ 1 as n → ∞, from which we conclude Un and Ûn have the same asymptotic

behavior.

2 Testing and Confidence Intervals

We’ve seen a number of scenarios where

√
n(θ̂n − θ0)

d−→ N(0,Σ).

Suppose we would like to make the following claim about the population parameter θ0: ”With
reasonably high confidence, θ0 ∈ Cn, where Cn ⊆ Rd is a set.”

Example 1: Suppose
√
n(θ̂n − θ0)

d−→
θ0

N(0, I−1
θ0

). Say Iθ is continuous in θ and Iθ is invertible.

Let
Cn,γ := {θ ∈ Rd : (θ − θ̂n)T Iθ̂n(θ − θ̂n) ≤ γ

n
}.

2



For θ = θ0, we have

n(θ0 − θ̂n)T Iθ̂n(θ0 − θ̂n) = (
√
n(θ̂n − θ0))T (Iθ0 + oP (1))(

√
n(θ̂n − θ0)

= (
√
n(θ̂n − θ0)︸ ︷︷ ︸
d−→N(0,I−1

θ0
)

)T Iθ0(
√
n(θ̂n − θ0)) + oP (1)

d−→ ZT Iθ0Z Z ∼ N(0, I−1
θ0

)

d≡ ‖W‖22
d≡ χ2

d W ∼ N(0, Id×d)

Then

Pθ0(θ0 ∈ Cn,γ) = Pθ0((θ0 − θ̂n)T Iθ̂n(θn − θ̂n) ≤ γ

n
)

→ P(‖W‖22 ≤ γ) W ∼ N(0, Id×d)

= P(χ2
d ≤ γ).

Cn,γ is pivotal, since it doesn’t depend on the parameter θ0. If for some level α < 1 you want that
Pθ0(θ0 ∈ Cn,γ)→ α, take Cn = Cn,γ , where γ is chosen such that P (χ2

d ≤ γ) = α. ♣

3 Dual Problem to Confidence Sets

The typical approach to hypothesis testing is the following: Can we reject some type of null
hypothesis, that is supposingly conjecture H0 : Pθ0? Can we get results like

Pθ0(data at least as “extreme” as what we got) ≤ α?

It’s questionable whether this is even a reasonable thing to do, since this is a ill-formed definition
– “extreme” is vague. One might also take philosophical issue with this approach, since the only
conclusions that result from it are negative statements – “this null hypothesis doesn’t explain the
world.” While this may be troubling, it’s worthwhile to note that this is also nature of the scientific
method: scientific hypotheses are never proven “true,” prevailing hypotheses are only held until
they are falsified by new observations (e.g. Michelson-Morley experiment (1887) and the æther
drag hypothesis).

Definition 3.1 (p-value). Let H0 : {Pθ : θ ∈ Θ0}. The p-value associated with a sample X1, . . . , Xn

is defined to be
sup
θ∈Θ0

Pθ(data as extreme as X1, . . . , Xn observed)

Example 2: Let H0 : Xi
iid∼ N(0, 1). The standard p-value is given by

P0(|Z̄| > |θ̂|),

where θ̂n = 1
n

∑n
i=1Xi. ♣

How can we understand these and develop a few tests with reasonable properties?
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4 Generalized Likelihood Ratio Tests

Recall the classic Neyman-Pearson setup with simple null and alternative:

H0 : p0

H1 : p1

The test that is the “best” (maximizes power at all levels) is the likelihood ratio test, where if
L1(x) = log dP1(x), L0(x) = log dP0(x), and T (x) = L1(x)−L0(x) = log dP1

dP0
(x), the most powerful

test is given by 
accept H1/reject H0 T > t

accept H0/reject H1 T < t

balance T = t

for some t.

4.1 Generalized LRT

We now consider a more general scenario with composite null and alternative. Suppose

H0 : θ ∈ Θ0

H1 : θ ∈ Θ

where usually Θ0 ⊆ Θ. Define

T (x) = log
supθ∈Θ p(x, θ)

supθ∈Θ0
p(x, θ)

=
p(x, θ̂MLE)

supθ∈Θ0
p(x, θ)

.

The Generalized LRT rejects H0 if T (x) > t.

Suppose {Pθ}θ∈Θ is nice enough that the MLE is asymptotically normal,

Iθ0 = E∇`θ0`Tθ0 = −E∇2`θ0 ,

and ∣∣∣∣∣∣∇2`θ(x)−∇2`θ′(x)
∣∣∣∣∣∣

op
≤M(x)

∥∥θ − θ′∥∥ ,
where EθM2(X) <∞. Then we have the following asymptotic result:

Proposition 4 (Wilk’s Theorem). Let Θ0 = {θ0} be a point null, Θ = Rd. Let Ln(x, θ) =∑n
i=1 `θ(xi) =

∑n
i=1 log pθ(xi) and Tn(x) = Ln(x, θ̂MLE)− Ln(x, θ0). Then

2Tn(X)
d−→
θ0

χ2
d,

where X = (X1, . . . , Xn) and Xi
iid∼ Pθ0.

Proof Let θ̂n = argmaxθ∈Θ Ln(X, θ) = θ̂MLE.

Under H0, θ̂MLE − θ0
P−→
θ0

0 and
√
n(θ̂MLE − θ0)

d→ N(0, I−1
θ0

).
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By Taylor’s Theorem, we have

0 = ∇Ln(X, θ̂n) = ∇Ln(X, θ0) +∇2Ln(X, θ0)(θ̂n − θ0) +
n∑
i=1

Err
(1)
i (θ̂ − θ),

where
∣∣∣∣∣∣∣∣∣Err

(1)
i

∣∣∣∣∣∣∣∣∣
op
≤M(Xi)

∥∥∥θ̂n − θ0

∥∥∥ .
Similarly,

Ln(X, θ̂n) = Ln(X, θ0)+∇Ln(X, θ0)T (θ̂n−θ0)+
1

2
(θ̂n−θ0)T∇2Ln(X, θ0)(θ̂n−θ0)+

n∑
i=1

(θ̂n−θ0)TErr
(2)
i (θ̂n−θ0)

where
∣∣∣∣∣∣∣∣∣Err

(2)
i

∣∣∣∣∣∣∣∣∣
op
≤M(Xi)

∥∥∥θ̂n − θ0

∥∥∥ .
Substituting the first equation into the second, and letting Erri = Err

(2)
i − Err

(1)
i , we have

T (X) = Ln(X, θ̂n)−Ln(X, θ0) = −1

2
(θ̂n − θ0)T∇2Ln(X, θ0)(θ̂n − θ0) +

n∑
i=1

(θ̂n − θ0)TErri(θ̂n − θ0).

Since 1
n

∑n
i=1∇2`θ0(Xi)

P−→ −Iθ0 ,
∑n

i=1 Erri
P−→ 0, and

√
n(θ̂n − θ)

d−−→
H0

N(0, I−1
θ0

), it follows that

2T (X) =
√
n(θ̂n − θ0)T Iθ0(θ̂n − θ0) + oP (1)

d−→ χ2
d.
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