Stats 300b: Theory of Statistics

Winter 2017

Lecture 7 – January 31

Lecturer: John Duchi

Scribe: Kenneth Tay

Warning: these notes may contain factual errors

Reading:

Outline of the Lecture 7:

- U-Statistics
 - Variance computations
 - Projections of random variables and vectors
 - Asymptotic normality of U-statistics

1 Variance of U-Statistics

Recall these definitions that we set up last lecture:

Definition 1.1. Given a symmetric kernel function $h : \mathcal{X}^r \to \mathbb{R}$, define the associated U-statistic as

$$U_n := \frac{1}{\binom{n}{r}} \sum_{\beta \subseteq [n], |\beta| = r} h(X_\beta)$$

Definition 1.2. For each $c \in \{0, \ldots, r\}$, define

 $h_c(x_1,\ldots,x_c) := \mathbb{E}[h(x_1,\ldots,x_c,X_{c+1},\ldots,X_r)].$

Define h_c to be the centered version of h_c , i.e.

$$\hat{h}_c := h_c - \mathbb{E}[h_c] = h_c - \theta,$$

where $\theta = \mathbb{E}U_n$.

Definition 1.3. For each $c \in \{0, \ldots, r\}$, define

$$\zeta_c := \operatorname{Var}[h_c(X_1, \dots, X_c)] = \mathbb{E}[h_c(X_1, \dots, X_c)^2].$$

(Note that $\zeta_0 = 0.$)

Goal: Write $\operatorname{Var} U_n$ as a sum of the ζ_c 's.

Lemma 1. If $\alpha, \beta \subseteq [n], S = \alpha \cap \beta, c = |S|$, then

$$\mathbb{E}\left[\hat{h}(X_{\alpha})\hat{h}(X_{\beta})\right] = \zeta_c.$$

Proof Using the symmetry of h,

$$\begin{split} \mathbb{E}\left[\hat{h}(X_{\alpha})\hat{h}(X_{\beta})\right] &= \mathbb{E}\left[\hat{h}(X_{\alpha\setminus S}, X_{S})\hat{h}(X_{\beta\setminus S}, X_{S})\right] \\ &= \mathbb{E}\left[\mathbb{E}[\hat{h}(X_{\alpha\setminus S}, X_{S}) \mid X_{S}] \cdot \mathbb{E}[\hat{h}(X_{\beta\setminus S}, X_{S}) \mid X_{S}]\right] \quad (\text{since } X_{\alpha\setminus S}, X_{\beta\setminus S} \text{ indep.}) \\ &= \mathbb{E}\left[\hat{h}_{c}(X_{S}) \cdot \hat{h}_{c}(X_{S})\right] \\ &= \zeta_{c}. \end{split}$$

Theorem 2. Let U_n be an r^{th} order U-statistic. Then

$$\operatorname{Var}U_n = \frac{r^2}{n}\zeta_1 + O(n^{-2}).$$

Proof There are $\binom{n}{r}\binom{r}{c}\binom{n-r}{r-c}$ ways to select a pair of subsets of [n], each of size r, with c common elements. Hence,

$$U_n - \theta = \binom{n}{r}^{-1} \sum_{|\beta|=r} \hat{h}(X_\beta),$$

$$\operatorname{Var}U_n = \binom{n}{r}^{-2} \sum_{|\alpha|=r} \sum_{|\beta|=r} \mathbb{E} \left[\hat{h}(X_\alpha) \hat{h}(X_\beta) \right]$$

$$= \binom{n}{r}^{-2} \sum_{c=1}^r \binom{n}{r} \binom{r}{c} \binom{n-r}{r-c} \zeta_c$$

$$= \sum_{c=1}^r \frac{r!^2}{c!(r-c)!^2} \frac{(n-r)(n-r-1)\dots(n-2r+c+1)}{n(n-1)\dots(n-r+1)} \zeta_c.$$

For fixed c, $\frac{(n-r)(n-r-1)\dots(n-2r+c+1)}{n(n-1)\dots(n-r+1)}$ has r-c terms in the numerator and r terms in the denominator. Hence,

$$\operatorname{Var}U_{n} = r^{2} \frac{(n-r)(n-r-1)\dots(n-2r+2)}{n(n-1)\dots(n-r+1)} \zeta_{1} + \sum_{c=2}^{r} O\left(\frac{n^{r-c}}{n^{r}}\right) \zeta_{c}$$
$$= r^{2} \left[\frac{1}{n} + O(n^{-2})\right] \zeta_{1} + O(n^{-2})$$
$$= \frac{r^{2}}{n} \zeta_{1} + O(n^{-2}).$$

With this theorem, we know that the variance of U-statistics behaves like the variance of a sample mean plus high-order errors.

New Goal: Show that U_n is asymptotically normal by projecting out all high-order interactions. To do this, we need some theory on projections.

2 **Projections**

Let \mathcal{V} be a Hilbert space, i.e. there is an inner product $\langle \cdot, \cdot \rangle$ on \mathcal{V} , an associated norm $||v||_2^2 = \langle v, v \rangle$, and \mathcal{V} is complete w.r.t. this norm. (Note that $||v||_2 = 0$ iff v = 0.)

Definition 2.1. Let $C \subseteq \mathcal{V}$ be a convex and closed set. Define the projection of w onto C as

$$\pi_C(w) := \operatorname*{argmin}_{v \in C} \{ \|w - v\|_2^2 \}.$$

Theorem 3. $\pi_C(w)$ exists, is unique, and is characterized by the inequality

$$\langle w - \pi_C(w), v - \pi_C(w) \rangle \le 0.$$
(1)

Loosely speaking, the inequality means that the "angle" between $w - \pi_C(w)$ and $v - \pi_C(w)$ is obtuse.

Corollary 4. Suppose C is a linear subspace of \mathcal{V} . Then $\pi_c(w)$ is the projection of w onto C iff for all $v \in C$,

$$\langle w - \pi_C(w), v \rangle = 0.$$

Proof If C is linear, then $v \in C \Leftrightarrow -v \in C$. Hence, by Equation 1,

$$\langle w - \pi_C(w), v \rangle \leq \langle w - \pi_C(w), \pi_C(w) \rangle$$
 and

$$\langle w - \pi_C(w), v \rangle \leq - \langle w - \pi_C(w), \pi_C(w) \rangle ,$$

$$\Rightarrow \langle w - \pi_C(w), v \rangle = 0.$$

	٦

Let's now put these ideas in the random variable setting.

Fact 5. Random variables with 2 moments form a Hilbert space iwth inner product $\langle X, Y \rangle = \mathbb{E}[XY]$. We will call this space $L_2(P)$.

Corollary 6. If S is a linear subspace of $L_2(P)$, then $\hat{S} \in S$ is the projection of $T \in L_2(P)$ onto S iff for all $S \in S$,

$$\mathbb{E}[(T-S)S] = 0.$$

If this is the case, then

$$\mathbb{E}[T^2] = \mathbb{E}[(T - \hat{S})^2] + \mathbb{E}[\hat{S}^2].$$

Proof The characterization of \hat{S} follows directly from Corollary 4.

$$\mathbb{E}[T^2] = \mathbb{E}[(T - \hat{S} + \hat{S})^2] = \mathbb{E}[(T - \hat{S})^2] + \mathbb{E}[\hat{S}^2] + 2\operatorname{Cov}(T - \hat{S}, S) = \mathbb{E}[(T - \hat{S})^2] + \mathbb{E}[\hat{S}^2].$$

Idea: Try to understand when T_n and its projections have the same asymptotic behavior.

Theorem 7. Let T_n be statistics, and let \hat{S}_n be the projections of T_n onto subspaces S_n which contain constant random variables.

If
$$\frac{\operatorname{Var}T_n}{\operatorname{Var}\hat{S}_n} \to 1$$
, then $\frac{T_n - \mathbb{E}T_n}{\sqrt{\operatorname{Var}T_n}} - \frac{\hat{S}_n - \mathbb{E}\hat{S}_n}{\sqrt{\operatorname{Var}\hat{S}_n}} \xrightarrow{p} 0$.

Proof Let $A_n = \frac{T_n - \mathbb{E}T_n}{\sqrt{\operatorname{Var}T_n}} - \frac{\hat{S}_n - \mathbb{E}\hat{S}_n}{\sqrt{\operatorname{Var}\hat{S}_n}}$. Note that $\mathbb{E}A_n = 0$. Thus, if we can show that $\operatorname{Var}A_n \to 0$, we are done.

Note that

$$Cov(T_n, \hat{S}_n) = \mathbb{E}[T_n \hat{S}_n] - \mathbb{E}[T_n]\mathbb{E}[\hat{S}_n]$$

= $\mathbb{E}[(T_n - \hat{S}_n + \hat{S}_n)\hat{S}_n] - \mathbb{E}[\hat{S}_n]^2$
= $\mathbb{E}[\hat{S}_n^2] - \mathbb{E}[\hat{S}_n]^2$
= $Var\hat{S}_n$.

Hence,

$$\operatorname{Var} A_n = \operatorname{Var} \frac{T_n - \mathbb{E}T_n}{\sqrt{\operatorname{Var} T_n}} + \operatorname{Var} \frac{\hat{S}_n - \mathbb{E}\hat{S}_n}{\sqrt{\operatorname{Var}\hat{S}_n}} - \frac{2\operatorname{Cov}(T_n, \hat{S}_n)}{\sqrt{\operatorname{Var} T_n \operatorname{Var}\hat{S}_n}}$$
$$= 2 - 2\sqrt{\frac{\operatorname{Var}\hat{S}_n}{\operatorname{Var} T_n}}$$
$$\to 0.$$

г		

2.1 Conditional Expectations

Conditional expectations are simply projections.

Definition 2.2. If $X \in L_2(P)$, Y is a random variable, $S = \{all \text{ measurable functions } g(Y) \text{ with } \mathbb{E}[g^2(Y)] < \infty\}$, we define the **conditional expectation of** X **given** Y, $\mathbb{E}[X | Y]$, as the projection of X onto S, i.e.

$$\mathbb{E}\left[\left(X - \mathbb{E}[X \mid Y]\right)g(Y)\right] = 0$$

for all $g \in S$.

By choosing g appropriately, some nice properties of conditional expectation are immediate:

- $\mathbb{E}[X \mathbb{E}[X \mid Y]] = 0$, and
- $\mathbb{E}[f(Y)X \mid Y] = f(Y)\mathbb{E}[X \mid Y].$

2.2 Hájek Projections

Idea: Apply these ideas to U-statistics, i.e. project them onto spaces of the form $\sum_{i=1}^{n} g_i(X_i)$.

Lemma 8 (11.10 in VDV). Let X_1, \ldots, X_n be independent. Let $S = \left\{ \sum_{i=1}^n g_i(X_i) : g_i \in L_2(P) \right\}$. If $\mathbb{E}T^2 < \infty$, then the projection \hat{S} of T onto S is given by

$$\hat{S} = \sum_{i=1}^{n} \mathbb{E}[T \mid X_i] - (n-1)\mathbb{E}T.$$
(2)

Proof Note that

 $\mathbb E$

$$\mathbb{E}\left[\mathbb{E}[T \mid X_i] \mid X_j\right] = \begin{cases} \mathbb{E}[T \mid X_i] & \text{if } i = j, \\ \mathbb{E}T & \text{if } i \neq j. \end{cases}$$

If \hat{S} is as stated in Equation 2, then

$$\mathbb{E}[\hat{S} \mid X_j] = (n-1)\mathbb{E}T + \mathbb{E}[T \mid X_j] - (n-1)\mathbb{E}T = \mathbb{E}[T \mid X_j],$$
$$\mathbb{E}[(T-\hat{S})g_j(X_j)] = \mathbb{E}[\mathbb{E}[T-\hat{S} \mid X_j]g_j(X_j)]$$
$$= 0,$$
$$\left[(T-\hat{S})\sum_{j=1}^n g_j(X_j)\right] = 0.$$

Thus, \hat{S} must be the projection of T onto S.

Next move: Project the U-statistic U_n onto the space $\left\{\sum_{i=1}^n g_i(X_i) : g_i \in L_2(P)\right\}$. We will show that $\operatorname{Var}\hat{U}_n = \operatorname{Var}U_n + O(n^{-2})$ so that $\frac{\operatorname{Var}\hat{U}_n}{\operatorname{Var}U_n} \to 1$, and then use it to show that $\hat{U}_n \xrightarrow{d}$ Normal.