	Lecture $7-$ January 31	
Lecturer: John Duchi	Scribe: Kenneth Tay	

(2) Warning: these notes may contain factual errors

Reading:

Outline of the Lecture 7:

- U-Statistics
- Variance computations
- Projections of random variables and vectors
- Asymptotic normality of U-statistics

1 Variance of U-Statistics

Recall these definitions that we set up last lecture:
Definition 1.1. Given a symmetric kernel function $h: \mathcal{X}^{r} \rightarrow \mathbb{R}$, define the associated \boldsymbol{U}-statistic as

$$
U_{n}:=\frac{1}{\binom{n}{r}} \sum_{\beta \subseteq[n],|\beta|=r} h\left(X_{\beta}\right) .
$$

Definition 1.2. For each $c \in\{0, \ldots, r\}$, define

$$
h_{c}\left(x_{1}, \ldots, x_{c}\right):=\mathbb{E}\left[h\left(x_{1}, \ldots, x_{c}, X_{c+1}, \ldots, X_{r}\right)\right] .
$$

Define \hat{h}_{c} to be the centered version of h_{c}, i.e.

$$
\hat{h}_{c}:=h_{c}-\mathbb{E}\left[h_{c}\right]=h_{c}-\theta,
$$

where $\theta=\mathbb{E} U_{n}$.
Definition 1.3. For each $c \in\{0, \ldots, r\}$, define

$$
\zeta_{c}:=\operatorname{Var}\left[h_{c}\left(X_{1}, \ldots, X_{c}\right)\right]=\mathbb{E}\left[h_{c}\left(X_{1}, \ldots, X_{c}\right)^{2}\right] .
$$

(Note that $\left.\zeta_{0}=0.\right)$
Goal: Write $\operatorname{Var} U_{n}$ as a sum of the ζ_{c} 's.
Lemma 1. If $\alpha, \beta \subseteq[n], S=\alpha \cap \beta, c=|S|$, then

$$
\mathbb{E}\left[\hat{h}\left(X_{\alpha}\right) \hat{h}\left(X_{\beta}\right)\right]=\zeta_{c} .
$$

Proof Using the symmetry of h,

$$
\begin{aligned}
\mathbb{E}\left[\hat{h}\left(X_{\alpha}\right) \hat{h}\left(X_{\beta}\right)\right] & =\mathbb{E}\left[\hat{h}\left(X_{\alpha \backslash S}, X_{S}\right) \hat{h}\left(X_{\beta \backslash S}, X_{S}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\hat{h}\left(X_{\alpha \backslash S}, X_{S}\right) \mid X_{S}\right] \cdot \mathbb{E}\left[\hat{h}\left(X_{\beta \backslash S}, X_{S}\right) \mid X_{S}\right]\right] \quad\left(\text { since } X_{\alpha \backslash S}, X_{\beta \backslash S}\right. \text { indep.) } \\
& =\mathbb{E}\left[\hat{h}_{c}\left(X_{S}\right) \cdot \hat{h}_{c}\left(X_{S}\right)\right] \\
& =\zeta_{c}
\end{aligned}
$$

Theorem 2. Let U_{n} be an $r^{\text {th }}$ order U-statistic. Then

$$
\operatorname{Var} U_{n}=\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right)
$$

Proof There are $\binom{n}{r}\binom{r}{c}\binom{n-r}{r-c}$ ways to select a pair of subsets of $[n]$, each of size r, with c common elements. Hence,

$$
\begin{aligned}
U_{n}-\theta & =\binom{n}{r}^{-1} \sum_{|\beta|=r} \hat{h}\left(X_{\beta}\right) \\
\operatorname{Var} U_{n} & =\binom{n}{r}^{-2} \sum_{|\alpha|=r} \sum_{|\beta|=r} \mathbb{E}\left[\hat{h}\left(X_{\alpha}\right) \hat{h}\left(X_{\beta}\right)\right] \\
& =\binom{n}{r}^{-2} \sum_{c=1}^{r}\binom{n}{r}\binom{r}{c}\binom{n-r}{r-c} \zeta_{c} \\
& =\sum_{c=1}^{r} \frac{r!^{2}}{c!(r-c)!^{2}} \frac{(n-r)(n-r-1) \ldots(n-2 r+c+1)}{n(n-1) \ldots(n-r+1)} \zeta_{c}
\end{aligned}
$$

For fixed $c, \frac{(n-r)(n-r-1) \ldots(n-2 r+c+1)}{n(n-1) \ldots(n-r+1)}$ has $r-c$ terms in the numerator and r terms in the denominator. Hence,

$$
\begin{aligned}
\operatorname{Var} U_{n} & =r^{2} \frac{(n-r)(n-r-1) \ldots(n-2 r+2)}{n(n-1) \ldots(n-r+1)} \zeta_{1}+\sum_{c=2}^{r} O\left(\frac{n^{r-c}}{n^{r}}\right) \zeta_{c} \\
& =r^{2}\left[\frac{1}{n}+O\left(n^{-2}\right)\right] \zeta_{1}+O\left(n^{-2}\right) \\
& =\frac{r^{2}}{n} \zeta_{1}+O\left(n^{-2}\right)
\end{aligned}
$$

With this theorem, we know that the variance of U-statistics behaves like the variance of a sample mean plus high-order errors.

New Goal: Show that U_{n} is asymptotically normal by projecting out all high-order interactions.
To do this, we need some theory on projections.

2 Projections

Let \mathcal{V} be a Hilbert space, i.e. there is an inner product $\langle\cdot, \cdot\rangle$ on \mathcal{V}, an associated norm $\|v\|_{2}^{2}=\langle v, v\rangle$, and \mathcal{V} is complete w.r.t. this norm. (Note that $\|v\|_{2}=0$ iff $v=0$.)
Definition 2.1. Let $C \subseteq \mathcal{V}$ be a convex and closed set. Define the projection of w onto C as

$$
\pi_{C}(w):=\underset{v \in C}{\operatorname{argmin}}\left\{\|w-v\|_{2}^{2}\right\} .
$$

Theorem 3. $\pi_{C}(w)$ exists, is unique, and is characterized by the inequality

$$
\begin{equation*}
\left\langle w-\pi_{C}(w), v-\pi_{C}(w)\right\rangle \leq 0 \tag{1}
\end{equation*}
$$

Loosely speaking, the inequality means that the "angle" between $w-\pi_{C}(w)$ and $v-\pi_{C}(w)$ is obtuse.

Corollary 4. Suppose C is a linear subspace of \mathcal{V}. Then $\pi_{c}(w)$ is the projection of w onto C iff for all $v \in C$,

$$
\left\langle w-\pi_{C}(w), v\right\rangle=0
$$

Proof If C is linear, then $v \in C \Leftrightarrow-v \in C$. Hence, by Equation 1,

$$
\begin{aligned}
\left\langle w-\pi_{C}(w), v\right\rangle & \leq\left\langle w-\pi_{C}(w), \pi_{C}(w)\right\rangle \text { and } \\
\left\langle w-\pi_{C}(w), v\right\rangle & \leq-\left\langle w-\pi_{C}(w), \pi_{C}(w)\right\rangle \\
\Rightarrow\left\langle w-\pi_{C}(w), v\right\rangle & =0 .
\end{aligned}
$$

Let's now put these ideas in the random variable setting.
Fact 5. Random variables with 2 moments form a Hilbert space iwth inner product $\langle X, Y\rangle=\mathbb{E}[X Y]$. We wil call this space $L_{2}(P)$.
Corollary 6. If \mathcal{S} is a linear subspace of $L_{2}(P)$, then $\hat{S} \in \mathcal{S}$ is the projection of $T \in L_{2}(P)$ onto \mathcal{S} iff for all $S \in \mathcal{S}$,

$$
\mathbb{E}[(T-\hat{S}) S]=0
$$

If this is the case, then

$$
\mathbb{E}\left[T^{2}\right]=\mathbb{E}\left[(T-\hat{S})^{2}\right]+\mathbb{E}\left[\hat{S}^{2}\right]
$$

Proof The characterization of \hat{S} follows directly from Corollary 4.

$$
\begin{aligned}
\mathbb{E}\left[T^{2}\right] & =\mathbb{E}\left[(T-\hat{S}+\hat{S})^{2}\right] \\
& =\mathbb{E}\left[(T-\hat{S})^{2}\right]+\mathbb{E}\left[\hat{S}^{2}\right]+2 \operatorname{Cov}(T-\hat{S}, S) \\
& =\mathbb{E}\left[(T-\hat{S})^{2}\right]+\mathbb{E}\left[\hat{S}^{2}\right] .
\end{aligned}
$$

Idea: Try to understand when T_{n} and its projections have the same asymptotic behavior.
Theorem 7. Let T_{n} be statistics, and let \hat{S}_{n} be the projections of T_{n} onto subspaces \mathcal{S}_{n} which contain constant random variables.

$$
\text { If } \frac{\operatorname{Var} T_{n}}{\operatorname{Var} \hat{S}_{n}} \rightarrow 1 \text {, then } \frac{T_{n}-\mathbb{E} T_{n}}{\sqrt{\operatorname{Var} T_{n}}}-\frac{\hat{S}_{n}-\mathbb{E} \hat{S}_{n}}{\sqrt{\operatorname{Var} \hat{S}_{n}}} \xrightarrow{p} 0 .
$$

Proof Let $A_{n}=\frac{T_{n}-\mathbb{E} T_{n}}{\sqrt{\operatorname{Var} T_{n}}}-\frac{\hat{S}_{n}-\mathbb{E} \hat{S}_{n}}{\sqrt{\operatorname{Var} \hat{S}_{n}}}$. Note that $\mathbb{E} A_{n}=0$. Thus, if we can show that $\operatorname{Var} A_{n} \rightarrow 0$, we are done.

Note that

$$
\begin{aligned}
\operatorname{Cov}\left(T_{n}, \hat{S}_{n}\right) & =\mathbb{E}\left[T_{n} \hat{S}_{n}\right]-\mathbb{E}\left[T_{n}\right] \mathbb{E}\left[\hat{S}_{n}\right] \\
& =\mathbb{E}\left[\left(T_{n}-\hat{S}_{n}+\hat{S}_{n}\right) \hat{S}_{n}\right]-\mathbb{E}\left[\hat{S}_{n}\right]^{2} \\
& =\mathbb{E}\left[\hat{S}_{n}^{2}\right]-\mathbb{E}\left[\hat{S}_{n}\right]^{2} \\
& =\operatorname{Var} \hat{S}_{n} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{Var} A_{n} & =\operatorname{Var} \frac{T_{n}-\mathbb{E} T_{n}}{\sqrt{\operatorname{Var} T_{n}}}+\operatorname{Var} \frac{\hat{S}_{n}-\mathbb{E} \hat{S}_{n}}{\sqrt{\operatorname{Var} \hat{S}_{n}}}-\frac{2 \operatorname{Cov}\left(T_{n}, \hat{S}_{n}\right)}{\sqrt{\operatorname{Var} T_{n} \operatorname{Var} \hat{S}_{n}}} \\
& =2-2 \sqrt{\frac{\operatorname{Var} \hat{S}_{n}}{\operatorname{Var} T_{n}}} \\
& \rightarrow 0 .
\end{aligned}
$$

2.1 Conditional Expectations

Conditional expectations are simply projections.
Definition 2.2. If $X \in L_{2}(P), Y$ is a random variable, $\mathcal{S}=\left\{\right.$ all measurable functions $g(Y)$ with $\mathbb{E}\left[g^{2}(Y)\right]<$ $\infty\}$, we define the conditional expectation of X given $Y, \mathbb{E}[X \mid Y]$, as the projection of X onto \mathcal{S}, i.e.

$$
\mathbb{E}[(X-\mathbb{E}[X \mid Y]) g(Y)]=0
$$

for all $g \in \mathcal{S}$.
By choosing g appropriately, some nice properties of conditional expectation are immediate:

- $\mathbb{E}[X-\mathbb{E}[X \mid Y]]=0$, and
- $\mathbb{E}[f(Y) X \mid Y]=f(Y) \mathbb{E}[X \mid Y]$.

2.2 Hájek Projections

Idea: Apply these ideas to U-statistics, i.e. project them onto spaces of the form $\sum_{i=1}^{n} g_{i}\left(X_{i}\right)$.
Lemma 8 (11.10 in VDV). Let X_{1}, \ldots, X_{n} be independent. Let $\mathcal{S}=\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right): g_{i} \in L_{2}(P)\right\}$.
If $\mathbb{E} T^{2}<\infty$, then the projection \hat{S} of T onto \mathcal{S} is given by

$$
\begin{equation*}
\hat{S}=\sum_{i=1}^{n} \mathbb{E}\left[T \mid X_{i}\right]-(n-1) \mathbb{E} T \tag{2}
\end{equation*}
$$

Proof Note that

$$
\mathbb{E}\left[\mathbb{E}\left[T \mid X_{i}\right] \mid X_{j}\right]= \begin{cases}\mathbb{E}\left[T \mid X_{i}\right] & \text { if } i=j, \\ \mathbb{E} T & \text { if } i \neq j\end{cases}
$$

If \hat{S} is as stated in Equation 2, then

$$
\begin{aligned}
\mathbb{E}\left[\hat{S} \mid X_{j}\right] & =(n-1) \mathbb{E} T+\mathbb{E}\left[T \mid X_{j}\right]-(n-1) \mathbb{E} T=\mathbb{E}\left[T \mid X_{j}\right], \\
\mathbb{E}\left[(T-\hat{S}) g_{j}\left(X_{j}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[T-\hat{S} \mid X_{j}\right] g_{j}\left(X_{j}\right)\right] \\
& =0, \\
\mathbb{E}\left[(T-\hat{S}) \sum_{j=1}^{n} g_{j}\left(X_{j}\right)\right] & =0 .
\end{aligned}
$$

Thus, \hat{S} must be the projection of T onto \mathcal{S}.

Next move: Project the U-statistic U_{n} onto the space $\left\{\sum_{i=1}^{n} g_{i}\left(X_{i}\right): g_{i} \in L_{2}(P)\right\}$. We will show that $\operatorname{Var} \hat{U}_{n}=\operatorname{Var} U_{n}+O\left(n^{-2}\right)$ so that $\frac{\operatorname{Var} \hat{U}_{n}}{\operatorname{Var} U_{n}} \rightarrow 1$, and then use it to show that $\hat{U}_{n} \xrightarrow{d}$ Normal.

