
Stats 300b: Theory of Statistics Winter 2017

Lecture 7 – January 31

Lecturer: John Duchi Scribe: Kenneth Tay

� Warning: these notes may contain factual errors

Reading:

Outline of the Lecture 7:

• U-Statistics

– Variance computations

– Projections of random variables and vectors

– Asymptotic normality of U-statistics

1 Variance of U-Statistics

Recall these definitions that we set up last lecture:

Definition 1.1. Given a symmetric kernel function h : X r → R, define the associated U-statistic
as

Un :=
1(
n
r

) ∑
β⊆[n],|β|=r

h(Xβ).

Definition 1.2. For each c ∈ {0, . . . , r}, define

hc(x1, . . . , xc) := E[h(x1, . . . , xc, Xc+1, . . . , Xr)].

Define ĥc to be the centered version of hc, i.e.

ĥc := hc − E[hc] = hc − θ,

where θ = EUn.

Definition 1.3. For each c ∈ {0, . . . , r}, define

ζc := Var[hc(X1, . . . , Xc)] = E[hc(X1, . . . , Xc)
2].

(Note that ζ0 = 0.)

Goal: Write VarUn as a sum of the ζc’s.

Lemma 1. If α, β ⊆ [n], S = α ∩ β, c = |S|, then

E
[
ĥ(Xα)ĥ(Xβ)

]
= ζc.

1



Proof Using the symmetry of h,

E
[
ĥ(Xα)ĥ(Xβ)

]
= E

[
ĥ(Xα\S , XS)ĥ(Xβ\S , XS)

]
= E

[
E[ĥ(Xα\S , XS) | XS ] · E[ĥ(Xβ\S , XS) | XS ]

]
(since Xα\S , Xβ\S indep.)

= E
[
ĥc(XS) · ĥc(XS)

]
= ζc.

Theorem 2. Let Un be an rth order U-statistic. Then

VarUn =
r2

n
ζ1 +O(n−2).

Proof There are
(
n
r

)(
r
c

)(
n−r
r−c
)

ways to select a pair of subsets of [n], each of size r, with c common
elements. Hence,

Un − θ =

(
n

r

)−1 ∑
|β|=r

ĥ(Xβ),

VarUn =

(
n

r

)−2 ∑
|α|=r

∑
|β|=r

E
[
ĥ(Xα)ĥ(Xβ)

]

=

(
n

r

)−2 r∑
c=1

(
n

r

)(
r

c

)(
n− r
r − c

)
ζc

=
r∑
c=1

r!2

c!(r − c)!2
(n− r)(n− r − 1) . . . (n− 2r + c+ 1)

n(n− 1) . . . (n− r + 1)
ζc.

For fixed c, (n−r)(n−r−1)...(n−2r+c+1)
n(n−1)...(n−r+1) has r − c terms in the numerator and r terms in the

denominator. Hence,

VarUn = r2
(n− r)(n− r − 1) . . . (n− 2r + 2)

n(n− 1) . . . (n− r + 1)
ζ1 +

r∑
c=2

O

(
nr−c

nr

)
ζc

= r2
[

1

n
+O(n−2)

]
ζ1 +O(n−2)

=
r2

n
ζ1 +O(n−2).

With this theorem, we know that the variance of U-statistics behaves like the variance of a
sample mean plus high-order errors.
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New Goal: Show that Un is asymptotically normal by projecting out all high-order interactions.
To do this, we need some theory on projections.

2 Projections

Let V be a Hilbert space, i.e. there is an inner product 〈·, ·〉 on V, an associated norm ‖v‖22 = 〈v, v〉,
and V is complete w.r.t. this norm. (Note that ‖v‖2 = 0 iff v = 0.)

Definition 2.1. Let C ⊆ V be a convex and closed set. Define the projection of w onto C as

πC(w) := argmin
v∈C

{‖w − v‖22}.

Theorem 3. πC(w) exists, is unique, and is characterized by the inequality

〈w − πC(w), v − πC(w)〉 ≤ 0. (1)

Loosely speaking, the inequality means that the “angle” between w − πC(w) and v − πC(w) is
obtuse.

Corollary 4. Suppose C is a linear subspace of V. Then πc(w) is the projection of w onto C iff
for all v ∈ C,

〈w − πC(w), v〉 = 0.

Proof If C is linear, then v ∈ C ⇔ −v ∈ C. Hence, by Equation 1,

〈w − πC(w), v〉 ≤ 〈w − πC(w), πC(w)〉 and

〈w − πC(w), v〉 ≤ − 〈w − πC(w), πC(w)〉 ,
⇒ 〈w − πC(w), v〉 = 0.

Let’s now put these ideas in the random variable setting.

Fact 5. Random variables with 2 moments form a Hilbert space iwth inner product 〈X,Y 〉 = E[XY ].
We wil call this space L2(P ).

Corollary 6. If S is a linear subspace of L2(P ), then Ŝ ∈ S is the projection of T ∈ L2(P ) onto
S iff for all S ∈ S,

E[(T − Ŝ)S] = 0.

If this is the case, then
E[T 2] = E[(T − Ŝ)2] + E[Ŝ2].

Proof The characterization of Ŝ follows directly from Corollary 4.

E[T 2] = E[(T − Ŝ + Ŝ)2]

= E[(T − Ŝ)2] + E[Ŝ2] + 2 Cov(T − Ŝ, S)

= E[(T − Ŝ)2] + E[Ŝ2].
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Idea: Try to understand when Tn and its projections have the same asymptotic behavior.

Theorem 7. Let Tn be statistics, and let Ŝn be the projections of Tn onto subspaces Sn which
contain constant random variables.

If
VarTn

VarŜn
→ 1, then

Tn − ETn√
VarTn

− Ŝn − EŜn√
VarŜn

p→ 0.

Proof Let An =
Tn − ETn√

VarTn
− Ŝn − EŜn√

VarŜn
. Note that EAn = 0. Thus, if we can show that

VarAn → 0, we are done.
Note that

Cov(Tn, Ŝn) = E[TnŜn]− E[Tn]E[Ŝn]

= E[(Tn − Ŝn + Ŝn)Ŝn]− E[Ŝn]2

= E[Ŝ2
n]− E[Ŝn]2

= VarŜn.

Hence,

VarAn = Var
Tn − ETn√

VarTn
+ Var

Ŝn − EŜn√
VarŜn

− 2 Cov(Tn, Ŝn)√
VarTnVarŜn

= 2− 2

√
VarŜn
VarTn

→ 0.

2.1 Conditional Expectations

Conditional expectations are simply projections.

Definition 2.2. If X ∈ L2(P ), Y is a random variable, S = {all measurable functions g(Y ) with E[g2(Y )] <
∞}, we define the conditional expectation of X given Y , E[X | Y ], as the projection of X
onto S, i.e.

E [(X − E[X | Y ]) g(Y )] = 0

for all g ∈ S.

By choosing g appropriately, some nice properties of conditional expectation are immediate:

• E[X − E[X | Y ]] = 0, and

• E[f(Y )X | Y ] = f(Y )E[X | Y ].
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2.2 Hájek Projections

Idea: Apply these ideas to U-statistics, i.e. project them onto spaces of the form
n∑
i=1

gi(Xi).

Lemma 8 (11.10 in VDV). Let X1, . . . , Xn be independent. Let S =

{
n∑
i=1

gi(Xi) : gi ∈ L2(P )

}
.

If ET 2 <∞, then the projection Ŝ of T onto S is given by

Ŝ =

n∑
i=1

E[T | Xi]− (n− 1)ET. (2)

Proof Note that

E [E[T | Xi] | Xj ] =

{
E[T | Xi] if i = j,

ET if i 6= j.

If Ŝ is as stated in Equation 2, then

E[Ŝ | Xj ] = (n− 1)ET + E[T | Xj ]− (n− 1)ET = E[T | Xj ],

E[(T − Ŝ)gj(Xj)] = E[E[T − Ŝ | Xj ]gj(Xj)]

= 0,

E

(T − Ŝ)

n∑
j=1

gj(Xj)

 = 0.

Thus, Ŝ must be the projection of T onto S.

Next move: Project the U-statistic Un onto the space

{
n∑
i=1

gi(Xi) : gi ∈ L2(P )

}
. We will show

that VarÛn = VarUn +O(n−2) so that
VarÛn
VarUn

→ 1, and then use it to show that Ûn
d→ Normal.
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