Winter 2017

Lecture 6– January 26

Lecturer: John Duchi

Scribe: Yan Chen, Xiaoyan Han

Warning: these notes may contain factual errors

Reading: VDV Chapter 12

Outline:

- Efficiency of Estimators
 - Super Efficiency
- U-Statistics (VDV Chapter 12)
 - Definitions
 - Examples
 - Variance

1 Efficiency of Estimators

Recall: If $\hat{\theta}_n$ and T_n are estimators/statistics such that $\sqrt{n} \left(\hat{\theta}_n - \theta \right) \xrightarrow{d} N(0, \sigma^2)$ for some $m(n) \to \infty$, and $\sqrt{n} \left(T_{m(n)} - \theta \right) \xrightarrow{d} N(0, \sigma^2)$, then the ARE (Asymptotic Relative Efficiency) of $\hat{\theta}_n$ w.r.t. T_n is $\liminf_{n \to \infty} \frac{m(n)}{n}$.

Observation 1. (Pitman Efficiency): Say that $\sqrt{n} \left(\hat{\theta}_n - \theta\right) \xrightarrow{d} N\left(0, \sigma^2\left(\theta\right)\right)$ and $\sqrt{n} \left(T_n - \theta\right) \xrightarrow{d} N\left(0, \tau^2\left(\theta\right)\right)$. Then the ARE of $\hat{\theta}_n$ w.r.t. T_n is $\frac{\tau^2\left(\theta\right)}{\sigma^2\left(\theta\right)}$ in the one-dimensional case. (In higher dimensions, it is roughly $tr\left(\tau^2\left(\theta\right)\left(\sigma^2\left(\theta\right)\right)^{-1}\right)$).

Proof Let $m(n) = \left\lceil \frac{\tau^2}{\sigma^2} n \right\rceil$. Then,

$$\sqrt{n}\left(T_{m(n)} - \theta\right) = \underbrace{\sqrt{\frac{n}{m(n)}}}_{\rightarrow \frac{\sigma}{\tau}} \underbrace{\sqrt{m(n)}\left(T_{m(n)} - \theta\right)}_{\frac{d}{\rightarrow N(0,\tau^2)}} \underbrace{\overset{d}{\rightarrow}}_{\text{Slutsky's}} N\left(0, \sigma^2\left(\theta\right)\right)$$

Roughly, if $\tau^2 > \sigma^2$, we prefer $\hat{\theta}_n$ to T_n because T_n requires $\frac{\tau^2}{\sigma^2}$ times the sample size that $\hat{\theta}_n$ does for a similar quality.

1.1 Super-Efficiency

Definition 1.1 (Comparison of Estimators and Super-Efficiency). Recall if $I(\theta)$ is Fisher-Information for the model $\{P_{\theta}\}_{\theta\in\Theta}$ and if $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d}_{P_{\theta}} N\left(0, I\left(\theta\right)^{-1}\right)$, then $\hat{\theta}_{n}$ is efficient. If $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d}_{P_{\theta}} N\left(0, \sigma^{2}\left(\theta\right)\right)$, where $\sigma^{2}\left(\theta\right) \leq I\left(\theta\right)^{-1}$ and there is some θ_{0} such that $\sigma^{-1}\left(\theta_{0}\right) < I\left(\theta\right)^{-1}$, then we call $\hat{\theta}_{n}$ super-efficient.

Example: (Hodges Estimator for Gaussian Mean)

For $X_i \stackrel{i.i.d}{\sim} N(\theta, 1)$ and $\hat{\theta}_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, let $T := \begin{cases} \bar{X}_n & \text{if } |\bar{X}_n| \ge n^{-1/4} \\ 0 & \text{if } |\bar{X}_n| < n^{-1/4} \end{cases}$. If $\theta = 0$, then

$$P_{\theta}\left(\sqrt{n}T_n = 0\right) = P_{\theta}\left(\left|\bar{X}_n\right| \le n^{-1/4}\right) = P_{\theta}\left(\left|\underbrace{\sqrt{n}\bar{X}_n}_{N(0,1)}\right| \le n^{1/4}\right) \to 1 \text{ as } n \to \infty.$$

Therefore, $\sqrt{n} (T_n) \xrightarrow{d}_{P_0} 0$. If $\theta \neq 0$, then

$$\sqrt{n}\left(T_n - \theta\right) = \underbrace{\sqrt{n}\left(\bar{X}_n - \theta\right)}_{\stackrel{d}{\to} N(0,1)} \underbrace{\mathbf{1}\left\{\left|\bar{X}_n\right| \ge n^{-1/4}\right\}}_{\stackrel{a.s.}{\to} 1} + \sqrt{n}\left(0 - \theta\right) \underbrace{\mathbf{1}\left\{\left|\bar{X}_n\right| < n^{-1/4}\right\}}_{\stackrel{a.s.}{\to} 0} \stackrel{d}{\to} N\left(0,1\right)$$

So
$$\sqrt{n} (T_n - \theta) \stackrel{d}{\to} \begin{cases} 0 & \text{if } \theta = 0 \\ N(0, 1) & \text{o.w.} \end{cases}$$

This is a bad estimator. We will explore this in the homework. \clubsuit

2 U-Statistics

2.1 Definitions

Suppose I have $h : X^r \to \mathbb{R}$ and want to estimate $\theta = E[h(X_1, ..., X_r)]$ where the X_i are independent. Given a sample $X_1, ..., X_n$, how should I estimate θ ? (Why care about this?) **Example:**

Observe that

Var
$$(X) = E[X_1^2] - E[X_1X_2] = \frac{1}{2}E[(X_1 - X_2)^2].$$

So,

$$h(X_1, X_2) = \frac{1}{2} (X_1 - X_2)^2$$

÷

Remark Always, without loss of generality, we assume *h* is symmetric.

I should estimate θ with with U-Statistics (Hoeffding 1940s). It allows us to (1) abstract away annoying details and still perform inference and (2) develop statistics and tests that do not depend on parametric assumptions (non-parametric) while things are parametric.

Definition 2.1 (U-Statistics). Let $h: X^r \to \mathbb{R}$ be symmetric. (Kernel Function). For $X_i \stackrel{i.i.d}{\sim} P$, define $\theta(P) := E_P[h(X_1, ..., X_r)]$ and

$$U_n := \frac{1}{\binom{n}{r}} \sum_{|\beta|=r,\beta \in [n]} h\left(X_\beta\right)$$

where β ranges over size r subsets of $[n] = \{1, ..., n\}$, $X_{\beta} = (X_{i_1}, ..., X_{i_r})$ for $\beta = (i_1, ..., i_r)$.

Remark $E_P[U_n] = \theta(P)$, so it is unbiased.

Why use an U-statistic at all? Why not

$$\frac{1}{\left(\frac{n}{r}\right)} \sum_{\ell=1}^{\frac{n}{r}} h\left(X_{\ell(r-1)+1}, ..., X_{\ell r}\right)?$$

Let $\{X_{(1)}, ..., X_{(n)}\}$ be the sample with "index" information removed. (e.g. Order Statistics. Generally a histogram. For EE, called "type" of the sample.) Then, under $X_i \stackrel{i.i.d}{\sim} P$, then $\{X_{(i)}\}_{i=1}^n$ is a sufficient statistic for everything. Observe that

$$E\left\{h\left(X_{1},...,X_{r}\right)|X_{(1)},...,X_{(n)}\right\} = U_{n} := \frac{1}{\binom{n}{r}}\sum_{|\beta|=r,\beta \subset [n]}h\left(X_{\beta}\right)$$

By Rao-Blackwellization,

$$\operatorname{Var}(U_n) \leq \operatorname{Var}\left(\underbrace{\operatorname{Other Unbiased Estimators}}_{\text{of form }\operatorname{Avg}(h(X_\beta), \ |\beta|=r)}\right).$$

2.2 Examples

Example (Sample Variance): Consider $h(X_1, X_2) = \frac{1}{2} (X_1 - X_2)^2$ and $E[h(X_1, X_2)] = \frac{1}{2} (E[X_1^2] + E[X_2^2]) - E[X_1, X_2] = Var(X)$

$$U_{n} = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} \frac{1}{2} (X_{i} - X_{j})^{2}$$

= $\frac{1}{2n(n-1)} \sum_{i,j} (X_{i} - X_{j})^{2}$
= $\frac{1}{2n(n-1)} \sum_{i,j} ((X_{i} - \bar{X}_{n}) - (X_{j} - \bar{X}_{n}))^{2}$
= $\frac{1}{2n(n-1)} \sum_{i,j} ((X_{i} - \bar{X}_{n})^{2} + (X_{j} - \bar{X}_{n})^{2})$
= $\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$

÷

Example (Gini's Mean-Difference):

$$h(X_1, X_2) = |X_1 - X_2|$$
 and $E[U_n] = E[|X_1 - X_2|]$

÷

Example (Quantiles):

$$\theta(P) = P(X \le t) = \int_{-\infty}^{t} dp \text{ and } h(X) = \mathbf{1} \{X \le t\}$$

This is a 1st order U-statistic.

÷

Example (Signed Rank Statistic): Suppose we want to know if central location of P is 0 or not. (Even if E[X] does not exist.)

$$\theta(P) := P(X_1 + X_2 > 0)$$

Remark If X_1, X_2 are symmetric about 0 and $\theta(P) = \frac{1}{2}$, then $h(X_1, X_2) = \mathbf{1} \{X_1 + X_2 > 0\}$ and $U_n = \frac{1}{\binom{n}{2}} \sum_{i < j} \mathbf{1} \{X_i + X_j > 0\}$.

÷

Definition 2.2 (Two-sample U-Statistic). For the samples $\{X_1, ..., X_n\}$ and $\{Y_1, ..., Y_n\}$,

$$U = \frac{1}{\binom{n}{r}\binom{m}{s}} \sum_{|\alpha|=s,\alpha \subset [m]} \sum_{|\beta|=r,\beta \subset [n]} h\left(X_{\beta}, Y_{\alpha}\right)$$

where $h: X^r \times Y^s \to \mathbb{R}$. h is symmetric in X and Y variables individually.

Example (Mann-Whitney Statistic):

Is X stochastically dominated by Y? Or are the at the same location?

$$\theta(P) = P(X \le Y)$$

$$h(X, Y) = \mathbf{1} \{X \le Y\}$$

$$U_{n,m} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{1} \{X_i \le Y_j\}$$

÷

2.3 Variance of U-Statistics

This is a precursor to asymptotic normality because "1st order terms" dominate everything else.

Definition 2.3. Assume that $E\left[|h|^2\right] < \infty$ for any c < r. Define

$$h_c\left(X_1,...,X_c\right) := E\left[h\left(\underbrace{X_1,...,X_c}_{fixed},\underbrace{X_{c+1},...,X_r}_{i.i.d\ P}\right)\right].$$

Remark

1.
$$h_0 = E[h(X_1, ..., X_r)] = \theta(P)$$

2. $E[h_c(X_1, ..., X_c)] = E[h(X_1, ..., X_r)] = \theta(P)$

Definition 2.4.

$$\hat{h}_{c} := h_{c} - E[h_{c}] = h_{c} - \theta(P)$$
$$E[\hat{h}_{c}] = 0$$

Then define

$$\zeta_c := Var(h_c(X_1, ..., X_c)) = E\left[\hat{h}_c^2\right]$$

Goal: Write $Var[U_n]$ in terms of $\zeta'_c s$ for c = 1, 2, ..., r. Note the following: If $\beta = \{i_1, ..., i_r\}, \alpha = \{i'_1, ..., i'_r\}, S = \alpha \cap \beta, |S| = c$, then

$$E\left[\hat{h}\left(X_{\beta}\right)\hat{h}\left(X_{\alpha}\right)\right]=\zeta_{c}.$$