| Stats 300b: Theory of Statistics | Winter 2017 |
| :--- | ---: | ---: |
| Lecture 6- January 26 | |
| Lecturer: John Duchi | Scribe: Yan Chen, Xiaoyan Han |

(2)Warning: these notes may contain factual errors

Reading: VDV Chapter 12

Outline:

- Efficiency of Estimators
- Super Efficiency
- U-Statistics (VDV Chapter 12)
- Definitions
- Examples
- Variance

1 Efficiency of Estimators

Recall: If $\hat{\theta}_{n}$ and T_{n} are estimators/statistics such that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$ for some $m(n) \rightarrow \infty$, and $\sqrt{n}\left(T_{m(n)}-\theta\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$, then the ARE (Asymptotic Relative Efficiency) of $\hat{\theta}_{n}$ w.r.t. T_{n} is $\liminf _{n \rightarrow \infty} \frac{m(n)}{n}$.

Observation 1. (Pitman Efficiency): Say that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} N\left(0, \sigma^{2}(\theta)\right)$ and $\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d}$ $N\left(0, \tau^{2}(\theta)\right)$. Then the ARE of $\hat{\theta}_{n}$ w.r.t. T_{n} is $\frac{\tau^{2}(\theta)}{\sigma^{2}(\theta)}$ in the one-dimensional case. (In higher dimensions, it is roughly $\operatorname{tr}\left(\tau^{2}(\theta)\left(\sigma^{2}(\theta)\right)^{-1}\right)$).

Proof Let $m(n)=\left\lceil\frac{\tau^{2}}{\sigma^{2}} n\right\rceil$. Then,

$$
\sqrt{n}\left(T_{m(n)}-\theta\right)=\underbrace{\sqrt{\frac{n}{m(n)}}}_{\rightarrow \frac{\sigma}{\tau}} \underbrace{}_{\xrightarrow[\rightarrow N\left(0, \tau^{2}\right)]{\sqrt{m(n)}\left(T_{m(n)}-\theta\right)} \underbrace{\xrightarrow{d}}_{\text {Slutsky's }} N\left(0, \sigma^{2}(\theta)\right), ~(\theta)}
$$

Roughly, if $\tau^{2}>\sigma^{2}$, we prefer $\hat{\theta}_{n}$ to T_{n} because T_{n} requires $\frac{\tau^{2}}{\sigma^{2}}$ times the sample size that $\hat{\theta}_{n}$ does for a similar quality.

1.1 Super-Efficiency

Definition 1.1 (Comparison of Estimators and Super-Efficiency). Recall if $I(\theta)$ is Fisher-Information for the model $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ and if $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow[P_{\theta}]{\vec{d}} N\left(0, I(\theta)^{-1}\right)$, then $\hat{\theta}_{n}$ is efficient. If $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow[P_{\theta}]{\vec{d}}$ $N\left(0, \sigma^{2}(\theta)\right)$, where $\sigma^{2}(\theta) \leq I(\theta)^{-1}$ and there is some θ_{0} such that $\sigma^{-1}\left(\theta_{0}\right)<I(\theta)^{-1}$, then we call $\hat{\theta}_{n}$ super-efficient.

Example: (Hodges Estimator for Gaussian Mean)
For $X_{i} \stackrel{i . i . d}{\sim} N(\theta, 1)$ and $\hat{\theta}_{n}=\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, let $T:=\left\{\begin{array}{ll}\bar{X}_{n} & \text { if }\left|\bar{X}_{n}\right| \geq n^{-1 / 4} \\ 0 & \text { if }\left|\bar{X}_{n}\right|<n^{-1 / 4}\end{array}\right.$.
If $\theta=0$, then

$$
P_{\theta}\left(\sqrt{n} T_{n}=0\right)=P_{\theta}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right)=P_{\theta}(|\underbrace{\sqrt{n} \bar{X}_{n}}_{N(0,1)}| \leq n^{1 / 4}) \rightarrow 1 \text { as } n \rightarrow \infty
$$

Therefore, $\sqrt{n}\left(T_{n}\right) \xrightarrow[P_{0}]{\vec{d}} 0$.
If $\theta \neq 0$, then

$$
\sqrt{n}\left(T_{n}-\theta\right)=\underbrace{\sqrt{n}\left(\bar{X}_{n}-\theta\right)}_{\underset{\rightarrow}{d} N(0,1)} \underbrace{\left\{\left|\bar{X}_{n}\right| \geq n^{-1 / 4}\right\}}_{\substack{a, s \\ \rightarrow}}+\sqrt{n}(0-\theta) \underbrace{\left\{\left|\bar{X}_{n}\right|<n^{-1 / 4}\right\}}_{\substack{a, s \\ \rightarrow 0}} \stackrel{d}{\rightarrow} N(0,1)
$$

So $\sqrt{n}\left(T_{n}-\theta\right) \xrightarrow{d}\left\{\begin{array}{ll}0 & \text { if } \theta=0 \\ N(0,1) & \text { o.w. }\end{array}\right.$.
This is a bad estimator. We will explore this in the homework.

2 U-Statistics

2.1 Definitions

Suppose I have $h: X^{r} \rightarrow \mathbb{R}$ and want to estimate $\theta=E\left[h\left(X_{1}, \ldots, X_{r}\right)\right]$ where the X_{i} are independent. Given a sample X_{1}, \ldots, X_{n}, how should I estimate θ ? (Why care about this?)
Example:
Observe that

$$
\operatorname{Var}(X)=E\left[X_{1}^{2}\right]-E\left[X_{1} X_{2}\right]=\frac{1}{2} E\left[\left(X_{1}-X_{2}\right)^{2}\right] .
$$

So,

$$
h\left(X_{1}, X_{2}\right)=\frac{1}{2}\left(X_{1}-X_{2}\right)^{2}
$$

Remark Always, without loss of generality, we assume h is symmetric.

I should estimate θ with with U-Statistics (Hoeffding 1940s). It allows us to (1) abstract away annoying details and still perform inference and (2) develop statistics and tests that do not depend on parametric assumptions (non-parametric) while things are parametric.
Definition 2.1 (U-Statistics). Let $h: X^{r} \rightarrow \mathbb{R}$ be symmetric. (Kernel Function). For $X_{i} \stackrel{i . i . d}{\sim} P$, define $\theta(P):=E_{P}\left[h\left(X_{1}, \ldots, X_{r}\right)\right]$ and

$$
U_{n}:=\frac{1}{\binom{n}{r}} \sum_{|\beta|=r, \beta \subset[n]} h\left(X_{\beta}\right)
$$

where β ranges over size r subsets of $[n]=\{1, \ldots, n\}, X_{\beta}=\left(X_{i_{1}}, \ldots, X_{i_{r}}\right)$ for $\beta=\left(i_{1}, \ldots, i_{r}\right)$.
Remark $\quad E_{P}\left[U_{n}\right]=\theta(P)$, so it is unbiased.
Why use an U-statistic at all? Why not

$$
\frac{1}{\left(\frac{n}{r}\right)} \sum_{\ell=1}^{\frac{n}{r}} h\left(X_{\ell(r-1)+1}, \ldots, X_{\ell r}\right) ?
$$

Let $\left\{X_{(1)}, \ldots, X_{(n)}\right\}$ be the sample with "index" information removed. (e.g. Order Statistics. Generally a histogram. For EE, called "type" of the sample.) Then, under $X_{i} \stackrel{i . i . d}{\sim} P$, then $\left\{X_{(i)}\right\}_{i=1}^{n}$ is a sufficient statistic for everything. Observe that

$$
E\left\{h\left(X_{1}, \ldots, X_{r}\right) \mid X_{(1)}, \ldots, X_{(n)}\right\}=U_{n}:=\frac{1}{\binom{n}{r}} \sum_{|\beta|=r, \beta \subset[n]} h\left(X_{\beta}\right)
$$

By Rao-Blackwellization,

$$
\operatorname{Var}\left(U_{n}\right) \leq \operatorname{Var}(\underbrace{\text { Other Unbiased Estimators }}_{\text {of form } \operatorname{Avg}\left(h\left(X_{\beta}\right),|\beta|=r\right)})
$$

2.2 Examples

Example (Sample Variance): Consider $h\left(X_{1}, X_{2}\right)=\frac{1}{2}\left(X_{1}-X_{2}\right)^{2}$ and $E\left[h\left(X_{1}, X_{2}\right)\right]=\frac{1}{2}\left(E\left[X_{1}^{2}\right]+E\left[X_{2}^{2}\right]\right)-$ $E\left[X_{1}, X_{2}\right]=\operatorname{Var}(X)$

$$
\begin{aligned}
U_{n} & =\frac{1}{\binom{n}{2}} \sum_{1 \leq i<j \leq n} \frac{1}{2}\left(X_{i}-X_{j}\right)^{2} \\
& =\frac{1}{2 n(n-1)} \sum_{i, j}\left(X_{i}-X_{j}\right)^{2} \\
& =\frac{1}{2 n(n-1)} \sum_{i, j}\left(\left(X_{i}-\bar{X}_{n}\right)-\left(X_{j}-\bar{X}_{n}\right)\right)^{2} \\
& =\frac{1}{2 n(n-1)} \sum_{i, j}\left(\left(X_{i}-\bar{X}_{n}\right)^{2}+\left(X_{j}-\bar{X}_{n}\right)^{2}\right) \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\end{aligned}
$$

Example (Gini's Mean-Difference):

$$
h\left(X_{1}, X_{2}\right)=\left|X_{1}-X_{2}\right| \text { and } E\left[U_{n}\right]=E\left[\left|X_{1}-X_{2}\right|\right]
$$

Example (Quantiles):

$$
\theta(P)=P(X \leq t)=\int_{-\infty}^{t} d p \text { and } h(X)=\mathbf{1}\{X \leq t\}
$$

This is a 1st order U-statistic.

Example (Signed Rank Statistic): Suppose we want to know if central location of P is 0 or not. (Even if $E[X]$ does not exist.)

$$
\theta(P):=P\left(X_{1}+X_{2}>0\right)
$$

Remark If X_{1}, X_{2} are symmetric about 0 and $\theta(P)=\frac{1}{2}$, then $h\left(X_{1}, X_{2}\right)=\mathbf{1}\left\{X_{1}+X_{2}>0\right\}$ and $U_{n}=\frac{1}{\binom{n}{2}} \sum_{i<j} \mathbf{1}\left\{X_{i}+X_{j}>0\right\}$.

Definition 2.2 (Two-sample U-Statistic). For the samples $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\}$,

$$
U=\frac{1}{\binom{n}{r}\binom{m}{s}} \sum_{|\alpha|=s, \alpha \subset[m]} \sum_{|\beta|=r, \beta \subset[n]} h\left(X_{\beta}, Y_{\alpha}\right)
$$

where $h: X^{r} \times Y^{s} \rightarrow \mathbb{R}$. h is symmetric in X and Y variables individually.

Example (Mann-Whitney Statistic):
Is X stochastically dominated by Y? Or are the at the same location?

$$
\begin{aligned}
\theta(P) & =P(X \leq Y) \\
h(X, Y) & =\mathbf{1}\{X \leq Y\} \\
U_{n, m} & =\frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{1}\left\{X_{i} \leq Y_{j}\right\}
\end{aligned}
$$

2.3 Variance of U-Statistics

This is a precursor to asymptotic normality because "1st order terms" dominate everything else.
Definition 2.3. Assume that $E\left[|h|^{2}\right]<\infty$ for any $c<r$. Define

$$
h_{c}\left(X_{1}, \ldots, X_{c}\right):=E[h(\underbrace{X_{1}, \ldots, X_{c}}_{\text {fixed }}, \underbrace{X_{c+1}, \ldots, X_{r}}_{\text {i.i.d } P})] .
$$

Remark

1. $h_{0}=E\left[h\left(X_{1}, \ldots, X_{r}\right)\right]=\theta(P)$
2. $E\left[h_{c}\left(X_{1}, \ldots, X_{c}\right)\right]=E\left[h\left(X_{1}, \ldots, X_{r}\right)\right]=\theta(P)$

Definition 2.4.

$$
\begin{aligned}
\hat{h}_{c}: & =h_{c}-E\left[h_{c}\right]=h_{c}-\theta(P) \\
E\left[\hat{h}_{c}\right] & =0
\end{aligned}
$$

Then define

$$
\zeta_{c}:=\operatorname{Var}\left(h_{c}\left(X_{1}, \ldots, X_{c}\right)\right)=E\left[\hat{h}_{c}^{2}\right]
$$

Goal: Write $\operatorname{Var}\left[U_{n}\right]$ in terms of $\zeta_{c}^{\prime} s$ for $c=1,2, \ldots, r$. Note the following:
If $\beta=\left\{i_{1}, \ldots, i_{r}\right\}, \alpha=\left\{i_{1}^{\prime}, \ldots, i_{r}^{\prime}\right\}, S=\alpha \cap \beta,|S|=c$, then

$$
E\left[\hat{h}\left(X_{\beta}\right) \hat{h}\left(X_{\alpha}\right)\right]=\zeta_{c} .
$$

