
Stats 300b: Theory of Statistics Winter 2017

Lecture 6– January 26

Lecturer: John Duchi Scribe: Yan Chen, Xiaoyan Han

� Warning: these notes may contain factual errors

Reading: VDV Chapter 12

Outline:

• Efficiency of Estimators

– Super Efficiency

• U-Statistics (VDV Chapter 12)

– Definitions

– Examples

– Variance

1 Efficiency of Estimators

Recall: If θ̂n and Tn are estimators/statistics such that
√
n
(
θ̂n − θ

)
d→ N

(
0, σ2

)
for some

m (n) → ∞, and
√
n
(
Tm(n) − θ

) d→ N
(
0, σ2

)
, then the ARE (Asymptotic Relative Efficiency)

of θ̂n w.r.t. Tn is lim infn→∞
m(n)
n .

Observation 1. (Pitman Efficiency): Say that
√
n
(
θ̂n − θ

)
d→ N

(
0, σ2 (θ)

)
and
√
n (Tn − θ)

d→

N
(
0, τ2 (θ)

)
. Then the ARE of θ̂n w.r.t. Tn is τ2(θ)

σ2(θ)
in the one-dimensional case. (In higher

dimensions, it is roughly tr
(
τ2 (θ)

(
σ2 (θ)

)−1
)

).

Proof Let m (n) =
⌈
τ2

σ2n
⌉
. Then,

√
n
(
Tm(n) − θ

)
=

√
n

m (n)︸ ︷︷ ︸
→σ

τ

√
m (n)

(
Tm(n) − θ

)︸ ︷︷ ︸
d→N(0,τ2)

d→︸︷︷︸
Slutsky’s

N
(
0, σ2 (θ)

)

Roughly, if τ2 > σ2 , we prefer θ̂n to Tn because Tn requires τ2

σ2 times the sample size that θ̂n
does for a similar quality.
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1.1 Super-Efficiency

Definition 1.1 (Comparison of Estimators and Super-Efficiency). Recall if I(θ) is Fisher-Information

for the model {Pθ}θ∈Θ and if
√
n
(
θ̂n − θ

)
d→
Pθ
N
(

0, I (θ)−1
)

, then θ̂n is efficient. If
√
n
(
θ̂n − θ

)
d→
Pθ

N
(
0, σ2 (θ)

)
, where σ2 (θ) ≤ I (θ)−1 and there is some θ0 such that σ−1 (θ0) < I (θ)−1, then we call

θ̂n super-efficient.

Example: (Hodges Estimator for Gaussian Mean)

For Xi
i.i.d∼ N (θ, 1) and θ̂n = X̄n = 1

n

∑n
i=1Xi, let T :=

{
X̄n if

∣∣X̄n

∣∣ ≥ n−1/4

0 if
∣∣X̄n

∣∣ < n−1/4
.

If θ = 0, then

Pθ
(√
nTn = 0

)
= Pθ

(∣∣X̄n

∣∣ ≤ n−1/4
)

= Pθ


∣∣∣∣∣∣∣
√
nX̄n︸ ︷︷ ︸

N(0,1)

∣∣∣∣∣∣∣ ≤ n1/4

→ 1 as n→∞.

Therefore,
√
n (Tn)

d→
P0

0.

If θ 6= 0, then

√
n (Tn − θ) =

√
n
(
X̄n − θ

)︸ ︷︷ ︸
d→N(0,1)

1
{∣∣X̄n

∣∣ ≥ n−1/4
}

︸ ︷︷ ︸
a.s→1

+
√
n (0− θ) 1

{∣∣X̄n

∣∣ < n−1/4
}

︸ ︷︷ ︸
a.s→0

d→ N (0, 1)

So
√
n (Tn − θ)

d→

{
0 if θ = 0

N (0, 1) o.w.
.

This is a bad estimator. We will explore this in the homework.
♣

2 U-Statistics

2.1 Definitions

Suppose I have h : Xr → R and want to estimate θ = E [h (X1, ..., Xr)] where the Xi are
independent. Given a sample X1, ..., Xn, how should I estimate θ? (Why care about this?)
Example:

Observe that

Var (X) = E
[
X2

1

]
− E [X1X2] =

1

2
E
[
(X1 −X2)2

]
.

So,

h (X1, X2) =
1

2
(X1 −X2)2

♣

Remark Always, without loss of generality, we assume h is symmetric.
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I should estimate θ with with U-Statistics (Hoeffding 1940s). It allows us to (1) abstract away
annoying details and still perform inference and (2) develop statistics and tests that do not depend
on parametric assumptions (non-parametric) while things are parametric.

Definition 2.1 (U-Statistics). Let h : Xr → R be symmetric. (Kernel Function). For Xi
i.i.d∼ P ,

define θ (P ) := EP [h (X1, ..., Xr)] and

Un :=
1(
n
r

) ∑
|β|=r,β⊂[n]

h (Xβ)

where β ranges over size r subsets of [n] = {1, ..., n}, Xβ = (Xi1 , ..., Xir) for β = (i1, ..., ir).

Remark EP [Un] = θ (P ) , so it is unbiased.

Why use an U-statistic at all? Why not

1(
n
r

) n
r∑
`=1

h
(
X`(r−1)+1, ..., X`r

)
?

Let
{
X(1), ..., X(n)

}
be the sample with “index” information removed. (e.g. Order Statistics.

Generally a histogram. For EE, called “type” of the sample.) Then, under Xi
i.i.d∼ P , then

{
X(i)

}n
i=1

is a sufficient statistic for everything. Observe that

E
{
h (X1, ..., Xr) |X(1), ..., X(n)

}
= Un :=

1(
n
r

) ∑
|β|=r,β⊂[n]

h (Xβ)

By Rao-Blackwellization,

Var (Un) ≤ Var

Other Unbiased Estimators︸ ︷︷ ︸
of form Avg(h(Xβ), |β|=r)

 .

2.2 Examples

Example (Sample Variance): Consider h (X1, X2) = 1
2 (X1 −X2)2 and E [h (X1, X2)] = 1

2

(
E
[
X2

1

]
+ E

[
X2

2

])
−

E [X1, X2] = Var (X)

Un =
1(
n
2

) ∑
1≤i<j≤n

1

2
(Xi −Xj)

2

=
1

2n (n− 1)

∑
i,j

(Xi −Xj)
2

=
1

2n (n− 1)

∑
i,j

((
Xi − X̄n

)
−
(
Xj − X̄n

))2
=

1

2n (n− 1)

∑
i,j

((
Xi − X̄n

)2
+
(
Xj − X̄n

)2)
=

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
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♣

Example (Gini’s Mean-Difference):

h (X1, X2) = |X1 −X2| and E [Un] = E [|X1 −X2|]

♣

Example (Quantiles):

θ (P ) = P (X ≤ t) =

∫ t

−∞
dp and h (X) = 1 {X ≤ t}

This is a 1st order U-statistic.
♣

Example (Signed Rank Statistic): Suppose we want to know if central location of P is 0 or not.
(Even if E [X] does not exist.)

θ (P ) := P (X1 +X2 > 0)

Remark If X1, X2 are symmetric about 0 and θ (P ) = 1
2 , then h (X1, X2) = 1 {X1 +X2 > 0}

and Un = 1

(n2)

∑
i<j 1 {Xi +Xj > 0} .

♣

Definition 2.2 (Two-sample U-Statistic). For the samples {X1, ..., Xn}and {Y1, ..., Yn},

U =
1(

n
r

)(
m
s

) ∑
|α|=s,α⊂[m]

∑
|β|=r,β⊂[n]

h (Xβ, Yα)

where h : Xr × Y s → R. h is symmetric in X and Y variables individually.

Example (Mann-Whitney Statistic):
Is X stochastically dominated by Y? Or are the at the same location?

θ (P ) = P (X ≤ Y )

h (X,Y ) = 1 {X ≤ Y }

Un,m =
1

nm

n∑
i=1

m∑
j=1

1 {Xi ≤ Yj}

♣
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2.3 Variance of U-Statistics

This is a precursor to asymptotic normality because ”1st order terms” dominate everything else.

Definition 2.3. Assume that E
[
|h|2
]
<∞ for any c < r. Define

hc (X1, ..., Xc) := E

h
X1, ..., Xc︸ ︷︷ ︸

fixed

, Xc+1, ..., Xr︸ ︷︷ ︸
i.i.d P


 .

Remark

1. h0 = E [h (X1, ..., Xr)] = θ (P )

2. E [hc (X1, ..., Xc)] = E [h (X1, ..., Xr)] = θ (P )

Definition 2.4.

ĥc : = hc − E [hc] = hc − θ (P )

E
[
ĥc

]
= 0

Then define

ζc := Var (hc (X1, ..., Xc)) = E
[
ĥ2
c

]
Goal: Write V ar [Un] in terms of ζ ′cs for c = 1, 2, ..., r. Note the following:

If β = {i1, ..., ir}, α = {i′1, ..., i′r}, S = α ∩ β, |S| = c, then

E
[
ĥ (Xβ) ĥ (Xα)

]
= ζc.
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