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The method of moments determines estimators by comparing sample and theoretical moments.

Let X1, · · · , Xn be a sample from a distribution Pθ that depends on a parameter θ, ranging over
some set Θ. Given f : X → Rd with Pθ0 ||f ||

2
2 <∞. By central limit theorem,

√
n(Pnf − Pθ0f) ; N

(
0,Cov

θ0
(f)

)
. (1)

Let e : Θ→ Rd be the vector-valued expectation e(θ) = Pθf . If e is “nice” in that e−1(Pθ0f) = θ0.
Then by delta method,

√
n
(
e−1(Pnf)− e−1(Pθ0f)

)
=
√
n
(
e−1(Pnf)− θ0

)
;
(
e(Pθ0f)′

)−1
N

(
0,Cov

θ0
(f)

)
.

Theorem 1. inverse function theorem Let F : Rd → Rd be continuously differentiable in a
neighborhood of θ ∈ Rd, where F ′(θ) is invertible, that is, det(F ′(θ)) 6= 0. Then in a neighborhood
of t = F (θ), we have

(F−1)′(t) =
∂

∂t
F ′(t) =

[
F ′
(
F−1(t)

)]−1
(2)

and (F−1)′ is continuous.

Theorem 2. Suppose that e(θ) = Pθf is one-to-one on an open set Θ ⊂ Rd and continuously
differentiable at θ0 with nonsingular derivative e′θ0. Moreover, assume that Pθ0 ||f ||

2
2 < ∞. Then

moment estimators θ̂n exist with probability tending to one and satisfy

√
n(θ̂n − θ0) ; N

(
0, (e(θ0)

′)−1Pθ0ff
T
(
(e(θ0)

′)−1
)T)

(3)

Proof Continuous differentiability at θ0 presumes differentiability in a neighborhood and the
continuity of θ 7→ e′θ and non singularity of e′θ0 imply non-singularity in a neighborhood. Therefore,
by the inverse function theorem, there exist open neighborhoods U of θ0 and V of Pθ0f such that
e : U 7→ V is a differentiable bijection with a differentiable inverse e−1 : V 7→ U . Moment estimators
θ̂n = e−1(Pnf) exist as soon as Pnf ∈ V , which happens with probability tending to 1 by the law
of large numbers. We know, by central limit theorem, that

√
n(Pnf − Pθ0f) ; N

(
0,Cov

θ0
(f)

)
. (4)

Apply Delta Method, we get:

√
n
(
e−1(Pnf)− e−1(Pθ0f)

)
=
√
n(θ̂n − θ0) ; N

(
0, (e(θ0)

′)−1Pθ0ff
T
(
(e(θ0)

′)−1
)T)

. (5)
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Example 1. Let Xi be i.i.d Bernoulli{±1} random variables. Then

Pθ(X = x) =
eθx

1 + eθx
=

1

1 + e−θx
.

e(θ) = Eθ[X] =
1

1 + e−θ
− 1

1 + eθ
=
eθ − 1

eθ + 1
.

Then e−1(t) = log 1+t
1−t and e′(θ) = eθ

eθ+1
− e2θ

(eθ+1)2
= eθ

(1+eθ)2
= Pθ(1−Pθ). In particular, (e′(θ))−1 =

1
Pθ(1−Pθ) . The covariance Covθ(x) is 4Pθ(1− Pθ). Applying Theorem 2, we get

√
n
(
e−1(Xn − θ)

)
; N(0,

4

Pθ(1− Pθ)
).

1 Exponential Family

Given a measure µ, we define an exponential family of probability distributions as those distributions
whose density (relative to µ have the following general form:

p(x|θ) = h(x) exp[θTT (x)−A(θ)], (6)

for a parameter vector θ, often referred to as the canonical parameter, and for given functions T
and h. The statistic T (X) is referred to as a sufficient statistic; the function A(θ) is known as the
cumulant function. Integrating (6) with respect to the measure µ, we have

A(θ) = log

∫
h(x) exp[θTT (x)]µ(dx). (7)

The set of parameters θ for which the integral in (7) is finite is referred to as the natural parameter
space:

N = {θ :

∫
h(x) exp{θTT (x)}µ(dx) <∞}. (8)

We will restrict ourselves to exponential families for which the natural parameter space is a
nonempty open set. Such families are referred to as regular.

Proposition 3. A(θ) is convex and infintiely differentiable.

As a consequence, we can calculate expectation and variance by differentiating A with respect
to θ:

∂A

∂θT
=

∫
T (x) exp{θTT (x)}h(x)µ(dx)∫

exp{θT (x)}h(x)µ(dx)

=

∫
T (x) exp{θTT (x)−A(θ)}h(x)µ(dx)

= E[T (x)].

∂2A

∂θ∂θT
=

∫
T (x)(T (x)− ∂

∂θT
A(θ))T exp{θTT (x)−A(θ)}h(x)µ(dx)

=

∫
T (x)(T (x)− E[T (x)]T exp{θTT (x)−A(θ)}h(x)µ(dx)

= E[T (X)T (X)T ]− E[T (X)]E[T (X)]T

= Var[T (X)].

2



In general, higher-order moments of sufficient statistic can be obtained by taking higher-order
derivatives of A.

With the above techniques, it’s not hard to obtain maximum likelihood estimates of the mean
parameter in exponential family distributions. Consider an i.i.d. data set, S = {X1, · · · , Xn}. The
log likelihood is:

`(θ|S) = log

(
n∏
i=1

h(Xi)

)
+ θT

(
n∑
i=1

T (Xi)

)
− nA(θ). (9)

Taking the graduate with respect to θ yields:

∇θ` =

n∑
i=1

T (Xi)− n∇θA(θ), (10)

and setting it to zero gives:

∇θA(θ̂) =
1

n

n∑
i=1

T (Xi). (11)

Finally, defining µ = E[T (X)], we obtain

µ̂ML =
1

n

n∑
i=1

T (Xi) (12)

as the general formula for maximum likelihood estimation of the mean parameter in the exponential
family.

Theorem 4. Let Θ ⊂ Rd be open. Let the (exponential) family of densities pθ be given by (6) and
be of full rank, meaning Covθ(T ) > 0. Then the likelihood equation ∇θA(θ̂) = 1

n

∑n
i=1 T (Xi) has a

unique solution θ̂n with probability tending to 1 and
√
n(θ̂n − θ0) ;Pθ0

N
(
0,∇2A(θ0)

−1) (13)

Proof By central limit theorem, we know

√
n(PnT − Pθ0T ) ; N

(
0,Cov

θ0
(T )

)
.

Define e(θ) = PθT as before. Then e(θ) = PnT = ∇A(θ) and (e(θ0)
′)−1 =

(
∇2A(θ0)

)−1
. Since

Covθ0(T ) = ∇2A(θ0)
−1, apply Theorem 2 and (13) follows.

Remark: in exponential family, Fisher information

I(θ) = Eθ[∇`θ∇`Tθ ] = Cov
θ

(T ) = ∇2A(θ).

Example 2 (Linear Regression). Let (x, y) ∈ Rd ×R be i.i.d samples with density

pθ(y|x) = exp

(
−1

2
(xT θ − y)2

)
,

where Y |X = x follows N(θTx, 1). Then Ln(θ) =
∑N

i=1 logPθ(yi|xi) = −1
2 ||xθ − yθ||

2
2 and θ̂n =

argmaxθ ||Xθ − Y ||22 = (XTX)−1XTY . Furthermore, `θ(Y |X = x) = −1
2(xT θ − y)2 ⇒ ∇`θ(y|X =

x) = x(xT θ − y)⇒ ∇2`θ = xxT . Thus, I(θ) = E[XXT ]. Apply Theorem 4, we obtain
√
n(θ̂n − θ) ; N(0,E[XXT ]−1).

3



Definition 1.1. efficient We say an estimator θ̂n is efficient for a parameter θ in model {Pθ} if
√
n(θ̂n − θ) ;Pθ N(0, I−1θ ).

Definition 1.2. asymptotic relative efficiency (ARE) Let θ̂n and Tn be estimators of param-
eter θ ∈ R. Assume that √

n(θ̂n − θ) ; N(0, σ2(θ)). (14)

Let m(n)→∞ such that √
n(Tm(n) − θ) ; N(0, σ2(θ)). (15)

The asymptotic relative efficiency of θ̂n with respect to Tn is

lim
n→∞

inf
m(n)

n
. (16)

The intuition here is if ARE = c� 1, then Tn requires sample size Cn � n to get estimate of
quality as θ̂n. We can also see the interpretation through confidence interval: if ARE of θ̂n vs Tn
is c, then the asymptotic 1− α confidence interval fro θ take Z1−α/2 such that

Pr
(
|Z|≥ Z1−α/2

)
= α,

where α ∼ N(0, 1). The confidence intervals of θ̂n and Tn are:

Cθ̂n :

(
θ̂n − Z1−α/2

√
α2

n
, θ̂n + Z1−α/2

√
α2

n

)
;

CTn :

Tn − Z1−α/2

√
m(n)
n σ2

n
, Tn + Z1−α/2

√
m(n)
n σ2

n

 .

Then we have
lim
n→∞

Pθ(θ ∈ Cθ̂n) = lim
n→∞

Pθ(θ ∈ CTn) = 1− α.

Furthermore,

lengthC(CTn)

lengthC(θ̂n)
=
√

ARE of θ̂n with respect to Tn =

√
m(n)

n
.

Proposition 5. Suppose θ̂n and Tn are estimators of θ such that
√
n(θ̂n − θ) ; N(0, σ2(θ));
√
n(Tn − θ) ; N(0, τ2(θ)).

Then the ARE of θ̂n with respect to Tn is τ2(θ)
σ2(θ)

. (In higher dimensions, it is roughly Tr(τ2(θ)(σ2(θ)−1).

Proof Let m(n) = d τ2
σ2 · ne. Then

√
n
(
Tm(n) − θ

)
=

√
n

m(n)︸ ︷︷ ︸
→σ

τ

√
m(n)

(
Tm(n) − θ

)︸ ︷︷ ︸
;N(0,τ2)

; N(0, σ2(θ)).

Thus, ARE is m(n)
n = τ2

σ2 .

If τ2 > σ2, we prefer θ̂n over Tn, because Tn requires τ2

σ2 times the sample size θ̂n does for the
similar quality.
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