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The method of moments determines estimators by comparing sample and theoretical moments.
Let X1, -+, X, be a sample from a distribution Py that depends on a parameter 8, ranging over
some set ©. Given f: X — R? with Py, || f]|5 < oo. By central limit theorem,

\/E(Pnf - PBof) ~ N <O7 Ce(gv(f)> : (1)

Let e : © — R? be the vector-valued expectation e() = Pyf. If e is “nice” in that e~1(Py, f) = 6p.
Then by delta method,

Vi (e N (Puf) — e Y (Payf)) = v (e (Puf) = 00) ~ (e(Payf)) ' N (0, C@(;v(f)) .

Theorem 1. inverse function theorem Let F : R® — R? be continuously differentiable in a
neighborhood of 0 € RY, where F'(0) is invertible, that is, det(F'()) # 0. Then in a neighborhood
of t = F(0), we have
_ 0 _ -1
(F 1)/(75)251?’(75): [F' (F~'(1))] (2)

and (F~1) is continuous.

Theorem 2. Suppose that e(0) = Pyf is one-to-one on an open set © C R? and continuously
differentiable at 0y with nonsingular derivative ego. Moreover, assume that P90||f|\§ < 00. Then

moment estimators 0, exist with probability tending to one and satisfy

V0, = 00) ~ N (0. (e(60)) " Pay 17 ((e(00)) ™)) ®)

Proof Continuous differentiability at 6y presumes differentiability in a neighborhood and the
continuity of 6 — ej, and non singularity of 6/90 imply non-singularity in a neighborhood. Therefore,
by the inverse function theorem, there exist open neighborhoods U of 6y and V' of P, f such that
e : U +— V is a differentiable bijection with a differentiable inverse e™! : V + U. Moment estimators
0,, = e 1 (P,f) exist as soon as P, f € V, which happens with probability tending to 1 by the law
of large numbers. We know, by central limit theorem, that

ViiP.f = Fugf) ~ ¥ (0.Cov(1). (1)
Apply Delta Method, we get:

V(e (Paf) = 7 (Poy ) = VB = 60) ~ N (0, (e(00)) " Pan 7 ((e00)) 7)) . (5)
O



Example 1. Let X; be i.i.d Bernoulli{£1} random variables. Then

efr 1
Pg(X:x):1+eGJ::1+e—9x'
1 1 e —1
0) = Ep| X| = — = .
e() 0[ ] 14+ ef 14 e? ed +1
) 629 6

Then e~!(t) = log 1 and €'(0) = T Casyie (1f69)2 = Py(1 — Py). In particular, (¢'(§))~! =

m. The covariance Covg(z) is 4Py(1 — Py). Applying Theorem 2, we get

4

v (e 1 (X, = 0)) ~ N(0, m)~

1 Exponential Family

Given a measure u, we define an exponential family of probability distributions as those distributions
whose density (relative to p have the following general form:

p(z]0) = h(z) exp[¢” T(x) — A(6)], (6)

for a parameter vector 6, often referred to as the canonical parameter, and for given functions T’
and h. The statistic T'(X) is referred to as a sufficient statistic; the function A(#) is known as the
cumulant function. Integrating (6) with respect to the measure u, we have

14(9)=:log”/mh(x)exrﬂﬁTiYaﬁ]u(dx)- (7)

The set of parameters 6 for which the integral in (7) is finite is referred to as the natural parameter
space:

N={0: / h(z) exp{0TT ()} u(dar) < oo} (8)

We will restrict ourselves to exponential families for which the natural parameter space is a
nonempty open set. Such families are referred to as reqular.

Proposition 3. A(6) is convex and infintiely differentiable.

As a consequence, we can calculate expectation and variance by differentiating A with respect

to 6:
0A  [T(z)exp{0TT(x)}h(z)u(dz)

00T [exp{0T (x)}h(z)u(dx)
_ / T(z) exp{87T(z) — A(O)}h(z)u(d)
= E[T(x)].

2
coar = [ T@T@) — 5 AG)T exp{6"T(w) — A)}h()uds)



In general, higher-order moments of sufficient statistic can be obtained by taking higher-order
derivatives of A.

With the above techniques, it’s not hard to obtain maximum likelihood estimates of the mean
parameter in exponential family distributions. Consider an i.i.d. data set, S = {Xy, -+, X,,}. The

log likelihood is:
0(68) = log (H h(Xi)> +67 <Z T(Xi)) —nA(h). (9)
i=1 i=1

Taking the graduate with respect to 6 yields:

Vol = T(X;) — nVgA(6), (10)
i=1
and setting it to zero gives:
R 1 &
A(0) = — T(X;). 11
VoA(B) = 5 3 T(X) (11)

Finally, defining u = E[T'(X)], we obtain
1 n
fin = ﬁZT(XZ-) (12)
=1
as the general formula for maximum likelihood estimation of the mean parameter in the exponential

family.

Theorem 4. Let © C R? be open. Let the (exponential) family of densities py be given by (6) and
be of full rank, meaning Covg(T) > 0. Then the likelihood equation VoA(0) = 3 | T(X;) has a

unique solution 0,, with probability tending to 1 and
V(b — 00) ~p,, N (0, V2A(6) ") (13)

Proof By central limit theorem, we know
Vn(P,T — Py, T) ~ N (O, Ceov(T)) .
0
Define e(@) = PyT as before. Then e(d) = P,T = VA(0) and (e(fy)) " = (VQA(QO))_I. Since
Covg, (T) = V2A(6p)~!, apply Theorem 2 and (13) follows. O
Remark: in exponential family, Fisher information
1(0) = Eg[VEaVIE] = Cov(T) = V2A(6).

Example 2 (Linear Regression). Let (z,y) € R x R be i.i.d samples with density

po(ylz) = exp (—;(mT@ - y)2> :

where Y|X = x follows N(0Tx,1). Then L,(0) = SN log Py(yi|x:) = —3|lwo — yoll3 and 6, =
argmax | Xy — V|3 = (XTX)'XTY. Furthermore, ly(Y|X = ) = —3(2T0 —y)? = Vip(y|X =
z) = z(z70 —y) = V2 = xx”. Thus, 1(0) = E[XXT]. Apply Theorem 4, we obtain

V(b —0) ~ NO,EXXT]71).



Definition 1.1. efficient We say an estimator 0, is efficient for a parameter 0 in model { Py} if
V(b — 0) ~p, N(0,I;).

Definition 1.2. asymptotic relative efficiency (ARE) Let 6, and T), be estimators of param-
eter € R. Assume that

V(6 — 6) ~ N(0,0%(8)). (14)
Let m(n) — oo such that
The asymptotic relative efficiency of 0,, with respect to T, is
lim inf ™. (16)
n—oo n

The intuition here is if ARE = ¢ > 1, then T,, requires sample size C,, > n to get estimate of
quality as 6,. We can also see the interpretation through confidence interval: if ARE of 8,, vs T,

is ¢, then the asymptotic 1 — a confidence interval fro 6 take Z;_,/, such that
Pr (’2’2 Zlfa/Z) =Q,
where a ~ N(0,1). The confidence intervals of 8, and T}, are:
X o2 .
Co, | On— Z1-a)2 gt On + Z1—a)2 ;
m(n) -2 m(n) -2
Cr, i | Th — Z1_a)2 nTan + Z1_as2 nn

lim Py(0 € C; )= lim Py(0 € Cr,) =1—a.
n—oo n n—oo

Then we have

Furthermore,
m = V/ARE of 6,, with respect to T, = m?(zm

Proposition 5. Suppose 0,, and T,, are estimators of 0 such that

Vil — ) ~ N(0,6%(9));

V(T —9)MN(0 72(0)).
Then the ARE of 0,, with respect to T}, is Tzt (In higher dimensions, it is roughly Tr(m*(0)(c*(0)~1).
Proof Let m(n)= [;—2 rﬂ Then

(T = 0)
F V() (L) — 6) ~ N(0,0%(9)).
~N(0,72)

Thus, ARE is @ = ;—z O

R . 2 ., . A
If 72 > o2, we prefer 6,, over T}, because T}, requires ;—2 times the sample size 6,, does for the

similar quality.



