Stats 300b: Theory of Statistics

Winter 2017

Lecture 5 – January 24

Lecturer: John Duchi

Scribe: Amanda Zhang

Warning: these notes may contain factual errors

Reading: VDV 4

The method of moments determines estimators by comparing sample and theoretical moments. Let X_1, \dots, X_n be a sample from a distribution P_{θ} that depends on a parameter θ , ranging over some set Θ . Given $f : \mathcal{X} \to \mathbb{R}^d$ with $P_{\theta_0} ||f||_2^2 < \infty$. By central limit theorem,

$$\sqrt{n}(P_n f - P_{\theta_0} f) \rightsquigarrow N\left(0, \operatorname{Cov}_{\theta_0}(f)\right).$$
 (1)

Let $e: \Theta \to \mathbb{R}^d$ be the vector-valued expectation $e(\theta) = P_{\theta}f$. If e is "nice" in that $e^{-1}(P_{\theta_0}f) = \theta_0$. Then by delta method,

$$\sqrt{n} \left(e^{-1}(P_n f) - e^{-1}(P_{\theta_0} f) \right) = \sqrt{n} \left(e^{-1}(P_n f) - \theta_0 \right) \rightsquigarrow \left(e(P_{\theta_0} f)' \right)^{-1} N \left(0, \operatorname{Cov}_{\theta_0}(f) \right)$$

Theorem 1. inverse function theorem Let $F : \mathbb{R}^d \to \mathbb{R}^d$ be continuously differentiable in a neighborhood of $\theta \in \mathbb{R}^d$, where $F'(\theta)$ is invertible, that is, $\det(F'(\theta)) \neq 0$. Then in a neighborhood of $t = F(\theta)$, we have

$$(F^{-1})'(t) = \frac{\partial}{\partial t}F'(t) = \left[F'\left(F^{-1}(t)\right)\right]^{-1} \tag{2}$$

and $(F^{-1})'$ is continuous.

Theorem 2. Suppose that $e(\theta) = P_{\theta}f$ is one-to-one on an open set $\Theta \subset \mathbb{R}^d$ and continuously differentiable at θ_0 with nonsingular derivative e'_{θ_0} . Moreover, assume that $P_{\theta_0} ||f||_2^2 < \infty$. Then moment estimators $\hat{\theta}_n$ exist with probability tending to one and satisfy

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N\left(0, (e(\theta_0)')^{-1} P_{\theta_0} f f^T \left((e(\theta_0)')^{-1}\right)^T\right)$$
(3)

Proof Continuous differentiability at θ_0 presumes differentiability in a neighborhood and the continuity of $\theta \mapsto e'_{\theta}$ and non singularity of e'_{θ_0} imply non-singularity in a neighborhood. Therefore, by the inverse function theorem, there exist open neighborhoods U of θ_0 and V of $P_{\theta_0}f$ such that $e: U \mapsto V$ is a differentiable bijection with a differentiable inverse $e^{-1}: V \mapsto U$. Moment estimators $\hat{\theta}_n = e^{-1}(P_n f)$ exist as soon as $P_n f \in V$, which happens with probability tending to 1 by the law of large numbers. We know, by central limit theorem, that

$$\sqrt{n}(P_n f - P_{\theta_0} f) \rightsquigarrow N\left(0, \operatorname{Cov}_{\theta_0}(f)\right).$$
(4)

Apply Delta Method, we get:

$$\sqrt{n} \left(e^{-1} (P_n f) - e^{-1} (P_{\theta_0} f) \right) = \sqrt{n} (\hat{\theta}_n - \theta_0) \rightsquigarrow N \left(0, (e(\theta_0)')^{-1} P_{\theta_0} f f^T \left((e(\theta_0)')^{-1} \right)^T \right).$$
(5)

Example 1. Let X_i be *i.i.d* Bernoulli $\{\pm 1\}$ random variables. Then

$$P_{\theta}(X = x) = \frac{e^{\theta x}}{1 + e^{\theta x}} = \frac{1}{1 + e^{-\theta x}}.$$
$$e(\theta) = \mathbb{E}_{\theta}[X] = \frac{1}{1 + e^{-\theta}} - \frac{1}{1 + e^{\theta}} = \frac{e^{\theta} - 1}{e^{\theta} + 1}.$$

Then $e^{-1}(t) = \log \frac{1+t}{1-t}$ and $e'(\theta) = \frac{e^{\theta}}{e^{\theta}+1} - \frac{e^{2\theta}}{(e^{\theta}+1)^2} = \frac{e^{\theta}}{(1+e^{\theta})^2} = P_{\theta}(1-P_{\theta})$. In particular, $(e'(\theta))^{-1} = \frac{1}{P_{\theta}(1-P_{\theta})}$. The covariance $\operatorname{Cov}_{\theta}(x)$ is $4P_{\theta}(1-P_{\theta})$. Applying Theorem 2, we get

$$\sqrt{n} \left(e^{-1} (\overline{X_n} - \theta) \right) \rightsquigarrow N(0, \frac{4}{P_{\theta}(1 - P_{\theta})})$$

1 Exponential Family

Given a measure μ , we define an *exponential family* of probability distributions as those distributions whose density (relative to μ have the following general form:

$$p(x|\theta) = h(x) \exp[\theta^T T(x) - A(\theta)],$$
(6)

for a parameter vector θ , often referred to as the *canonical parameter*, and for given functions Tand h. The statistic T(X) is referred to as a *sufficient statistic*; the function $A(\theta)$ is known as the *cumulant function*. Integrating (6) with respect to the measure μ , we have

$$A(\theta) = \log \int h(x) \exp[\theta^T T(x)] \mu(dx).$$
(7)

The set of parameters θ for which the integral in (7) is finite is referred to as the *natural parameter* space:

$$\mathcal{N} = \{\theta : \int h(x) \exp\{\theta^T T(x)\} \mu(dx) < \infty\}.$$
(8)

We will restrict ourselves to exponential families for which the natural parameter space is a nonempty open set. Such families are referred to as *regular*.

Proposition 3. $A(\theta)$ is convex and infinitely differentiable.

As a consequence, we can calculate expectation and variance by differentiating A with respect to θ :

$$\begin{aligned} \frac{\partial A}{\partial \theta^T} &= \frac{\int T(x) \exp\{\theta^T T(x)\}h(x)\mu(dx)}{\int \exp\{\theta T(x)\}h(x)\mu(dx)} \\ &= \int T(x) \exp\{\theta^T T(x) - A(\theta)\}h(x)\mu(dx) \\ &= \mathbb{E}[T(x)]. \end{aligned}$$
$$\begin{aligned} \frac{\partial^2 A}{\partial \theta \partial \theta^T} &= \int T(x)(T(x) - \frac{\partial}{\partial \theta^T}A(\theta))^T \exp\{\theta^T T(x) - A(\theta)\}h(x)\mu(dx) \\ &= \int T(x)(T(x) - \mathbb{E}[T(x)]^T \exp\{\theta^T T(x) - A(\theta)\}h(x)\mu(dx) \\ &= \mathbb{E}[T(X)T(X)^T] - \mathbb{E}[T(X)]\mathbb{E}[T(X)]^T \\ &= \operatorname{Var}[T(X)]. \end{aligned}$$

In general, higher-order moments of sufficient statistic can be obtained by taking higher-order derivatives of A.

With the above techniques, it's not hard to obtain maximum likelihood estimates of the mean parameter in exponential family distributions. Consider an i.i.d. data set, $S = \{X_1, \dots, X_n\}$. The log likelihood is:

$$\ell(\theta|S) = \log\left(\prod_{i=1}^{n} h(X_i)\right) + \theta^T\left(\sum_{i=1}^{n} T(X_i)\right) - nA(\theta).$$
(9)

Taking the graduate with respect to θ yields:

$$\nabla_{\theta}\ell = \sum_{i=1}^{n} T(X_i) - n\nabla_{\theta}A(\theta), \tag{10}$$

and setting it to zero gives:

$$\nabla_{\theta} A(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} T(X_i).$$
(11)

Finally, defining $\mu = \mathbb{E}[T(X)]$, we obtain

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} T(X_i)$$
(12)

as the general formula for maximum likelihood estimation of the mean parameter in the exponential family.

Theorem 4. Let $\Theta \subset \mathbb{R}^d$ be open. Let the (exponential) family of densities p_{θ} be given by (6) and be of full rank, meaning $\operatorname{Cov}_{\theta}(T) > 0$. Then the likelihood equation $\nabla_{\theta} A(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} T(X_i)$ has a unique solution $\hat{\theta}_n$ with probability tending to 1 and

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow_{P_{\theta_0}} N\left(0, \nabla^2 A(\theta_0)^{-1}\right)$$
(13)

Proof By central limit theorem, we know

$$\sqrt{n}(P_nT - P_{\theta_0}T) \rightsquigarrow N\left(0, \operatorname{Cov}_{\theta_0}(T)\right).$$

Define $e(\theta) = P_{\theta}T$ as before. Then $e(\theta) = P_nT = \nabla A(\theta)$ and $(e(\theta_0)')^{-1} = (\nabla^2 A(\theta_0))^{-1}$. Since $\operatorname{Cov}_{\theta_0}(T) = \nabla^2 A(\theta_0)^{-1}$, apply Theorem 2 and (13) follows.

Remark: in exponential family, Fisher information

$$I(\theta) = \mathbb{E}_{\theta}[\nabla \ell_{\theta} \nabla \ell_{\theta}^{T}] = \operatorname{Cov}_{\theta}(T) = \nabla^{2} A(\theta).$$

Example 2 (Linear Regression). Let $(x, y) \in \mathbb{R}^d \times R$ be i.i.d samples with density

$$p_{\theta}(y|x) = \exp\left(-\frac{1}{2}(x^T\theta - y)^2\right),$$

where Y|X = x follows $N(\theta^T x, 1)$. Then $L_n(\theta) = \sum_{i=1}^N \log P_{\theta}(y_i|x_i) = -\frac{1}{2} \|x_{\theta} - y_{\theta}\|_2^2$ and $\hat{\theta}_n = \arg\max_{\theta} \|X_{\theta} - Y\|_2^2 = (X^T X)^{-1} X^T Y$. Furthermore, $\ell_{\theta}(Y|X = x) = -\frac{1}{2} (x^T \theta - y)^2 \Rightarrow \nabla \ell_{\theta}(y|X = x) = x (x^T \theta - y) \Rightarrow \nabla^2 \ell_{\theta} = x x^T$. Thus, $I(\theta) = \mathbb{E}[XX^T]$. Apply Theorem 4, we obtain

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow N(0, \mathbb{E}[XX^T]^{-1}).$$

Definition 1.1. efficient We say an estimator $\hat{\theta}_n$ is efficient for a parameter θ in model $\{P_{\theta}\}$ if $\sqrt{n}(\hat{\theta}_n - \theta) \sim_{P_{\theta}} N(0, I_{\theta}^{-1}).$

Definition 1.2. asymptotic relative efficiency (ARE) Let $\hat{\theta}_n$ and T_n be estimators of parameter $\theta \in \mathbb{R}$. Assume that

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow N(0, \sigma^2(\theta)).$$
(14)

Let $m(n) \to \infty$ such that

$$\sqrt{n}(T_{m(n)} - \theta) \rightsquigarrow N(0, \sigma^2(\theta)).$$
(15)

The asymptotic relative efficiency of $\hat{\theta}_n$ with respect to T_n is

$$\lim_{n \to \infty} \inf \frac{m(n)}{n}.$$
 (16)

The intuition here is if $ARE = c \gg 1$, then T_n requires sample size $C_n \gg n$ to get estimate of quality as $\hat{\theta}_n$. We can also see the interpretation through confidence interval: if ARE of $\hat{\theta}_n$ vs T_n is c, then the asymptotic $1 - \alpha$ confidence interval fro θ take $Z_{1-\alpha/2}$ such that

$$Pr\left(|Z| \ge Z_{1-\alpha/2}\right) = \alpha,$$

where $\alpha \sim N(0, 1)$. The confidence intervals of $\hat{\theta}_n$ and T_n are:

$$C_{\hat{\theta}_n} : \left(\hat{\theta}_n - Z_{1-\alpha/2}\sqrt{\frac{\alpha^2}{n}}, \hat{\theta}_n + Z_{1-\alpha/2}\sqrt{\frac{\alpha^2}{n}}\right);$$
$$C_{T_n} : \left(T_n - Z_{1-\alpha/2}\sqrt{\frac{\frac{m(n)}{n}\sigma^2}{n}}, T_n + Z_{1-\alpha/2}\sqrt{\frac{\frac{m(n)}{n}\sigma^2}{n}}\right).$$

Then we have

$$\lim_{n \to \infty} P_{\theta}(\theta \in C_{\hat{\theta}_n}) = \lim_{n \to \infty} P_{\theta}(\theta \in C_{T_n}) = 1 - \alpha.$$

Furthermore,

$$\frac{\text{length}C(C_{T_n})}{\text{length}C(\hat{\theta}_n)} = \sqrt{\text{ARE}} \text{ of } \hat{\theta}_n \text{ with respect to } T_n = \sqrt{\frac{m(n)}{n}}.$$

Proposition 5. Suppose $\hat{\theta}_n$ and T_n are estimators of θ such that

$$\sqrt{n}(\hat{\theta}_n - \theta) \rightsquigarrow N(0, \sigma^2(\theta));$$

$$\sqrt{n}(T_n - \theta) \rightsquigarrow N(0, \tau^2(\theta)).$$

Then the ARE of $\hat{\theta}_n$ with respect to T_n is $\frac{\tau^2(\theta)}{\sigma^2(\theta)}$. (In higher dimensions, it is roughly $Tr(\tau^2(\theta)(\sigma^2(\theta)^{-1}))$. **Proof** Let $m(n) = \lceil \frac{\tau^2}{\sigma^2} \cdot n \rceil$. Then

$$\sqrt{n} \left(T_{m(n)} - \theta \right)$$

$$= \underbrace{\sqrt{\frac{n}{m(n)}}}_{\rightarrow \frac{\sigma}{\tau}} \underbrace{\sqrt{m(n)} \left(T_{m(n)} - \theta \right)}_{\sim N(0,\tau^2)} \sim N(0,\sigma^2(\theta))$$

Thus, ARE is $\frac{m(n)}{n} = \frac{\tau^2}{\sigma^2}$.

If $\tau^2 > \sigma^2$, we prefer $\hat{\theta}_n$ over T_n , because T_n requires $\frac{\tau^2}{\sigma^2}$ times the sample size $\hat{\theta}_n$ does for the similar quality.