Lecture 4 - January 19

Lecturer: John Duchi
Scribe: Xiaotong Suo
(2) Warning: these notes may contain factual errors

Reading: VDV Chapter 3

Outline of the lecture:

I Asymptotic Normality \& Fisher information
(a) Basic Asymptotic Normality result
(b) Fisher information
i. Definitions, Examples
ii. Information Inequality (Cramer Rao Bound)

1 The basic normality result

As in the previous lecture, we assume as always that we have a model family $\left\{P_{\theta}\right\}_{\theta \in \Theta}$, each distribution P_{θ} having density p_{θ} with respect to some base measure μ on \mathcal{X}. We also use our usual notation that $\ell_{\theta}(x):=\log p_{\theta}(x)$ is the \log-likelihood. In order to get our asymptotic normality results, we require a number of conditions on the smoothness of the log-likelihood so as to perform appropriate Taylor expansions. Recall briefly that if a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that is k-times continuously differentiable, then

$$
f(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v+\cdots+\operatorname{Rem}(x+v)\left[v^{\otimes k}\right]
$$

where $v^{\otimes k}$ indicates the k-th order tensor of v, i.e. the tensor in $\mathbb{R}^{n^{k}}$ indexed by $\left[v^{\otimes k}\right]_{i_{1}, \ldots, i_{k}}=$ $v_{i_{1}} \cdots v_{i_{k}}$, and Rem is a remainder function such that $\operatorname{Rem}(x+v)$ acts linearly on the argument $v^{\otimes k}$ and $\operatorname{Rem}(x+v) \rightarrow 0$ as $v \rightarrow 0$. In some instances, we may say stronger things, such as if the $(k-1)$ th derivative is Lipschitz. To keep things concrete, suppose $\nabla^{2} f$ is Lipschitz, meaning that $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{\text {op }} \leq M\|x-y\|$ for some $M<\infty$. In this case, we may take the remainder term to satisfy $\|\operatorname{Rem}(x+v)\|_{\text {op }} \leq M\|v\|$.

With these preliminaries out of the way, we begin with the major theorem we would like to prove, which is that so long as the \log likelihood $\ell_{\theta}(x):=\log p_{\theta}(x)$ is suitably smooth and that the MLE $\widehat{\theta}_{n}$ is consistent, then $\widehat{\theta}_{n}$ is asymptotically normal.
Theorem 1. Let $X_{i} \stackrel{\text { iid }}{\sim} P_{\theta_{0}}$ where $\theta_{0} \in \operatorname{int} \Theta$. Assume that $\ell_{\theta}(x)=\log p_{\theta}(x)$ is smooth enough that $\mathbb{E}_{\theta_{0}}\left[\nabla \ell_{\theta_{0}} \nabla \ell_{\theta_{0}}^{T}\right]$ exists and that the Hessian $\nabla^{2} \ell_{\theta}(x)$ is $M(x)$-Lipschitz in θ, that is,

$$
\left\|\nabla^{2} \ell_{\theta_{1}}(x)-\nabla^{2} \ell_{\theta_{2}}(x)\right\|_{\mathrm{op}} \leq M\left\|\theta_{1}-\theta_{2}\right\|,
$$

where $\mathbb{E}_{\theta_{0}}\left[M(X)^{2}\right]<\infty$. Assume additionally that the MLE $\widehat{\theta}_{n}$ is consistent, $\widehat{\theta}_{n} \xrightarrow{p} \theta_{0}$.

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \mathrm{~N}\left(0, I_{\theta_{0}}^{-1}\right)
$$

where $I_{\theta}=\mathbb{E}_{\theta}\left[\nabla \ell_{\theta} \nabla \ell_{\theta}^{T}\right]$ is the Fisher information.

Proof Let $\widehat{r}(x) \in \mathbb{R}^{d \times d}$ be the remainder matrix in Taylor expansion of the gradients of the individual \log likelihood terms around θ_{0} guaranteed by Taylor's theorem (which certainly depends on $\left.\widehat{\theta}_{n}-\theta_{0}\right)$, that is,

$$
\nabla \ell_{\widehat{\theta}_{n}}(x)=\nabla \ell_{\theta_{0}}(x)+\nabla^{2} \ell_{\theta_{0}}(x)\left(\widehat{\theta}_{n}-\theta_{0}\right)+\widehat{r}(x)\left(\widehat{\theta}_{n}-\theta_{0}\right)
$$

where by Taylor's theorem $\|\widehat{r}(x)\|_{\mathrm{op}} \leq M(x)\left\|\widehat{\theta}_{n}-\theta_{0}\right\|$. Writing this out using the empirical distribution and that $\widehat{\theta}_{n}=\operatorname{argmax}_{\theta} P_{n} \ell_{\theta}(X)$, we have

$$
\begin{equation*}
\nabla P_{n} \ell_{\widehat{\theta}_{n}}=0=P_{n} \nabla \ell_{\theta_{0}}+P_{n} \nabla^{2} \ell_{\theta_{0}}\left(\widehat{\theta}_{n}-\theta_{0}\right)+P_{n} \widehat{r}(X)\left(\widehat{\theta}_{n}-\theta_{0}\right) \tag{1}
\end{equation*}
$$

But of course, expanding the term $P_{n} \widehat{r}(X) \in \mathbb{R}^{d \times d}$, we find that

$$
P_{n} \widehat{r}(X)=\frac{1}{n} \sum_{i=1}^{n} \widehat{r}\left(X_{i}\right) \text { and }\left\|P_{n} \widehat{r}\right\|_{\mathrm{op}} \leq \underbrace{\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right)}_{\substack{\text { a.s } \\ \rightarrow} \mathbb{E}_{\theta_{0}}[M(X)]} \underbrace{\left\|\widehat{\theta}_{n}-\theta_{0}\right\|}_{\xrightarrow{p} 0}=o_{P}(1)
$$

In particular, revisiting expression (1), we have

$$
\begin{aligned}
0 & =P_{n} \nabla \ell_{\theta_{0}}+P_{n} \nabla^{2} \ell_{\theta_{0}}\left(\widehat{\theta}_{n}-\theta_{0}\right)+o_{P}(1)\left(\widehat{\theta}_{n}-\theta_{0}\right) \\
& =P_{n} \nabla \ell_{\theta_{0}}+\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}+\left(P_{n}-P_{\theta_{0}}\right) \nabla^{2} \ell_{\theta_{0}}+o_{P}(1)\right)\left(\widehat{\theta}_{n}-\theta_{0}\right) .
\end{aligned}
$$

The strong law of large numbers guarantees that $\left(P_{n}-P_{\theta_{0}}\right) \nabla^{2} \ell_{\theta_{0}}=o_{P}(1)$, and multiplying each side by \sqrt{n} yields

$$
\sqrt{n}\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}+o_{P}(1)\right)\left(\widehat{\theta}_{n}-\theta_{0}\right)=-\sqrt{n} P_{n} \nabla \ell_{\theta_{0}}
$$

Applying Slutsky's theorem gives the result: indeed, we have $T_{n}=\sqrt{n} P_{n} \nabla \ell_{\theta_{0}}$ satisfies $T_{n} \xrightarrow{d}$ $\mathrm{N}\left(0, I_{\theta_{0}}\right)$ by the central limit theorem, and noting that $P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}+o_{P}(1)$ is eventually invertible gives

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} \mathrm{~N}\left(0,\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}\right)^{-1} I_{\theta_{0}}\left(P_{\theta_{0}} \nabla^{2} \ell_{\theta_{0}}\right)^{-1}\right)
$$

as desired.

2 Fisher Information

Definition 2.1. For a model family $\left\{P_{\theta}\right\}, \theta \in \Theta$ on \mathcal{X}. The fisher information is $I_{\theta}=I(\theta)=$ $\mathbb{E}_{\theta}\left[\nabla l_{\theta_{0}} \nabla l_{\theta_{0}}^{T}\right]=\operatorname{Cov}_{\theta}\left(\nabla l_{\theta}\right)$. When ∇ and \mathbb{E} are interchangable, then

$$
I_{\theta}=-\mathbb{E}\left[\nabla^{2} \log P_{\theta}(x)\right]
$$

Example 1: Normal location family. $\left\{\mathrm{N}\left(\theta, \sigma^{2}\right)\right\}_{\theta \in \mathbb{R}}$, where θ is unknown,

$$
\frac{\partial}{\partial \theta} \log P_{\theta}(x)=\frac{\theta-x}{\sigma^{2}}
$$

Thus,

$$
\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log P_{\theta}(x)\right)^{2}\right]=\frac{\operatorname{Var}(X)}{\sigma^{4}}=\frac{1}{\sigma^{2}}
$$

Heuristically speaking, if $\sigma^{2} \rightarrow 0$, then it's easy to estimate the mean. If $\sigma^{2} \rightarrow 0$, then it's hard to estimate θ because heavy tails. So fisher information roughly tells us how easy or hard to estimate a parameter.

Remark What if we care about $\tau=h(\theta)$ instead of θ ? Then inverse function theorem yields:

$$
\frac{\partial}{\partial \tau} h^{-1}(\tau)(h(\theta))=\frac{1}{h^{\prime}\left(h^{-1}(\tau)\right)}=\frac{1}{h^{\prime}(\theta)}
$$

Therefore, we have

$$
I(\tau)=I(h(\theta))=\frac{I(\theta)}{h^{\prime}(\theta)^{2}}
$$

when $h^{\prime}(\theta) \neq 0$. We can see this using the chain rule:

$$
\begin{aligned}
\frac{\partial}{\partial \tau} \log P_{h^{-1}(\tau)} & =\frac{\partial}{\partial \tau} \log P_{\theta} \\
& =\frac{\partial \log P_{\theta}}{\partial \theta} \frac{\partial \theta}{\partial \tau} \\
& =\frac{\partial \log P_{\theta}}{\partial \theta} \frac{\partial h^{-1}(\tau)}{\partial \tau}
\end{aligned}
$$

Example 2: Normal location $h(\theta)=\theta^{2} . h^{\prime}(\theta)=2 \theta$, so

$$
I\left(\theta^{2}\right)=\frac{1}{4 \theta^{2}} I(\theta)=\frac{1}{4 \theta^{2} \sigma^{2}}
$$

In particular, as $\theta \rightarrow 0, I(\theta) \rightarrow \infty$. Suppose $\theta=0$, let $\hat{\theta}_{n}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}$, then

$$
n\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}=\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}\right)^{2} \xrightarrow{d} z^{2}
$$

where $z \sim N\left(0, \sigma^{2}\right)$. Therefore, we have an order of n convergence. In this case, our estimator converges faster than \sqrt{n}. So heuristically speaking, if we have a higher fisher information, our estimator is somehow better.

Additivity Property of Fisher information If $x_{1} \sim P_{\theta}, x_{2} \sim Q_{\theta}, x_{1}, x_{2}$ independent, then $I_{x_{1}, x_{2}}(\theta)=I_{x_{1}}(\theta)+I_{x_{2}}(\theta)$.
Proof Since x_{1} and x_{2} are independent,

$$
\operatorname{Cov}\left(\nabla \log P_{\theta}\left(x_{1}\right)+\nabla \log q_{\theta}\left(x_{2}\right)\right)=\operatorname{Cov}\left(\nabla \log P_{\theta}\left(x_{1}\right)\right)+\operatorname{Cov}\left(\nabla \log q_{\theta}\left(x_{2}\right)\right)=I_{1}+I_{2}
$$

Corollary 2. If $x_{i} \stackrel{\mathrm{iid}}{\sim} p_{\theta}, I(\theta)=\operatorname{Info}\left(x_{i}\right)$, then $I_{n}(\theta)=n I(\theta)$.

Information Inequality We start with proving covariance "lower bound".
For any decision procedure $\delta: \mathcal{X} \rightarrow \mathbb{R}$ and any function $\psi: \mathcal{X} \rightarrow \mathbb{R}$, we have

$$
\operatorname{Var}(\delta) \geq \frac{\operatorname{Cov}(\delta, \psi)^{2}}{\operatorname{Var}(\psi)}
$$

Proof The proof uses Cauchy Schwarz.

$$
\begin{aligned}
\operatorname{Cov}(\delta, \psi) & =\mathbb{E}[(\delta-\mathbb{E} \delta)(\psi-\mathbb{E} \psi)] \\
& \leq\left\{\mathbb{E}\left[(\delta-\mathbb{E} \delta)^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}\left[(\delta-\mathbb{E} \delta)^{2}\right]\right\}^{1 / 2} \\
& =\{\operatorname{Var}(\delta)\}^{1 / 2}\{\operatorname{Var}(\psi)\}^{1 / 2}
\end{aligned}
$$

Therefore, we have

$$
\operatorname{Var}(\delta) \geq \frac{\operatorname{Cov}(\delta, \psi)^{2}}{\operatorname{Var}(\psi)}
$$

Theorem 3. (1 dimensional information inequality). Assume that $\mathbb{E}_{\theta}[\delta]=g(\theta)$ ids differentiable at θ and P_{θ} is regular enough that $\dot{P}_{\theta}=\frac{\partial}{\partial \theta} P_{\theta}, \int P_{\theta} d \mu=\frac{\partial}{\partial \theta} \int P_{\theta} d \mu=0$, and $\int \delta(x) P_{\theta}(x) d \mu=$ $\frac{\partial}{\partial \theta} \mathbb{E}_{\theta}[\delta]=g^{\prime}(\theta)$. Then

$$
\operatorname{Var}_{\theta_{0}}(\delta) \geq \frac{\left(g^{\prime}\left(\theta_{0}\right)\right)^{2}}{I\left(\theta_{0}\right)}
$$

Why do we care about this? Suppose that $\mathbb{E}_{\theta}[\delta]=0$ and $g(\theta)=\theta$. Therefore, $g^{\prime}(\theta)=1$ and

$$
\mathbb{E}_{\theta}\left((\delta-\theta)^{2}\right) \geq \frac{1}{I(\theta)}
$$

In 1 dimension, any unbiased estimator has $M S E \geq \frac{1}{I(\theta)}$. However, this result is not true when our estimator is biased.
Proof Take $\psi(x)=\frac{\partial}{\partial \theta} \log P_{\theta}(x)=\frac{\partial}{\partial \theta} l_{\theta}(x)=\frac{\dot{P}_{\theta}(x)}{P_{\theta}(x)}$. By covariance inequality,

$$
\begin{aligned}
\underset{\theta}{\operatorname{Cov}(\delta, \psi)} & =\mathbb{E}_{\theta}[(\delta-g(\theta))(\psi-E[\psi])] \\
& =\mathbb{E}_{\theta}[\delta, \psi] \\
& =\mathbb{E}_{\theta}\left[\delta \frac{\dot{P}_{\theta}(x)}{P_{\theta}(x)}\right] \\
& =\int \delta(x) \dot{P}_{\theta}(x) \frac{P_{\theta}(x)}{P_{\theta}(x)} d \mu(x) \\
& =\frac{\partial}{\partial \theta} \int \delta P_{\theta} d \mu \\
& =\frac{\partial}{\partial \theta} \mathbb{E}_{\theta}[\delta]=g^{\prime}(\theta)
\end{aligned}
$$

Therefore, we have

$$
\operatorname{Var}(\delta) \geq \frac{\operatorname{Cov}(\delta, \psi)^{2}}{\operatorname{Var}(\psi)}=\frac{g^{\prime}(\theta)}{I(\theta)}
$$

Remark This result is unsatisfying in two senses:

1. Tied to mean square error (MSE)
2. Requires unbiasedness

We will cover a major theorem later in the class, which is better than this result. Roughly speaking, we will show that

$$
\mathbb{E}_{\theta}\left[L\left(\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right)\right)\right] \geq \mathbb{E}[L(Z)], \quad Z \sim \mathrm{~N}\left(0, I(\theta)^{-1}\right), \quad \forall \widehat{\theta}_{n}
$$

and symmetric quasi-convex $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$. (In fact, this holds for almost all θ, though not necessarily for all θ.) More precisely, the following result holds true. Let $h \in \mathbb{R}^{d}$ and $\theta_{0} \in \Theta$ be arbitrary, where $\Theta \subset \mathbb{R}^{d}$ is open. In addition, assume that the distributions P_{θ} have log-likelihoods smooth enough that the conditions of Theorem ?? are satisfied. Then for any sequence of estimators $\widehat{\theta}_{n}: \mathcal{X}^{n} \rightarrow \Theta$ and any quasi-convex symmetric loss $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$,

$$
\liminf _{c \rightarrow \infty} \liminf _{n} \sup _{\|h\| \leq c} \mathbb{E}_{\theta_{0}+h / \sqrt{n}}\left[L\left(\sqrt{n}\left(\widehat{\theta}_{n}-\left(\theta_{0}+h / \sqrt{n}\right)\right)\right)\right] \geq \mathbb{E}[L(Z)], \quad Z \sim \mathrm{~N}\left(0, I_{\theta_{0}}^{-1}\right) .
$$

That is, under perturbations of the true parameter θ_{0} by amounts shrinking as $1 / \sqrt{n}$, we have a locally difficult estimation problem. (Here \mathbb{E}_{θ} denotes expectation taken w.r.t. i.i.d. sampling under P_{θ}.)

Multidimensional Information Inequality We now generalize the result to $\theta \in \mathbb{R}^{d}$.
Lemma 4. Let $\delta: \mathcal{X} \rightarrow \mathbb{R}, \psi: \mathcal{X} \rightarrow \mathbb{R}^{d}, \mathbb{E}_{\theta}(\psi)=0$. Define $\gamma=\left[\operatorname{Cov}\left(\delta, \psi_{j}\right]_{j=1}^{d}, C=\operatorname{Cov}_{\theta}(\psi)=\right.$ $\mathbb{E}_{\theta}\left[\psi \psi^{T}\right]=0$. Then

$$
\operatorname{Var}(\delta) \geq \gamma^{T} C^{-1} \gamma
$$

Proof Let $v \in \mathbb{R}^{d}$ be arbitrary. By 1 dimensional covariance inequality,

$$
\begin{aligned}
\operatorname{Var}(\delta) & \geq \frac{\operatorname{Cov}\left(\delta, v^{T} \psi\right)^{2}}{\operatorname{Var}\left(v^{T} \psi\right)} \\
& =\frac{\left(\gamma^{T} v\right)^{2}}{v^{T} C v}=\gamma^{T} C^{-1} \gamma
\end{aligned}
$$

The last inequality uses the following fact:
Fact 5. If $A>0$, then

$$
\sup _{v} \frac{\left(v^{T} u\right)^{2}}{v^{T} A v}=u^{T} A^{-1} u
$$

Proof We first use Cauchy Schwartz.

$$
\left(v^{T} u\right)^{2}=\left(A^{1 / 2} v\right)^{T}\left(A^{-1 / 2} u\right)^{2} \leq\left\|A^{1 / 2} v\right\|_{2}^{2}\left\|A^{-1 / 2} u\right\|^{2}=v^{T} A v u^{T} A^{-1} u
$$

Therefore, for all v,

$$
\frac{\left(v^{T} u\right)^{2}}{v^{T} A v} \leq u^{T} A^{-1} u
$$

Now, we take $v=A^{-1} u$ to achieve this upper bound.

Theorem 6. Let $g(\theta)=\mathbb{E}_{\theta}[\delta] \in \mathbb{R}^{d}$, with lots of regularity. Then we have

$$
\operatorname{Var}_{\theta}(\delta) \geq \nabla g(\theta)^{T} I(\theta)^{-1} \nabla g(\theta)
$$

where $I(\theta)=\mathbb{E}_{\theta}\left[\nabla l_{\theta} \nabla l_{\theta}^{T}\right]$.
Proof Let $\psi=\nabla l_{\theta}(x)$ in covariance lower bound. $\mathbb{E}_{\theta}[\psi]=0, \operatorname{Cov}(\delta, \psi)=\mathbb{E}\left[\delta \nabla l_{\theta}\right]=\nabla \mathbb{E}_{\theta}[\delta]=$ $\frac{\nabla \delta(\theta)}{\gamma}$.

Corollary 7. If $\hat{\theta}: x \rightarrow \Theta \in \mathbb{R}^{d}$ is unbiased,

$$
\mathbb{E}_{\theta}\left[(\hat{\theta}-\theta)(\hat{\theta}-\theta)^{T}\right] \geq I(\theta)^{-1}
$$

Proof Take $v \in \mathbb{R}^{d}, \delta(x)=v^{T} \hat{\theta}$. Then

$$
\begin{aligned}
& \mathbb{E}(\delta)=v^{T} \theta=g(\theta) \\
& \Longrightarrow \nabla g(\theta)=v
\end{aligned}
$$

So

$$
\begin{aligned}
\mathbb{E}\left[\left(v^{T}(\hat{\theta}-\theta)\right)^{2}\right] & \geq v^{T} I(\theta)^{-1} v \\
& =\mathbb{E}\left[v^{T}(\hat{\theta}-\theta)(\hat{\theta}-\theta)^{T} v\right]
\end{aligned}
$$

