
Stats 300b: Theory of Statistics Winter 2017

Lecture 4 – January 19

Lecturer: John Duchi Scribe: Xiaotong Suo
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Outline of the lecture:

I Asymptotic Normality & Fisher information

(a) Basic Asymptotic Normality result

(b) Fisher information

i. Definitions, Examples

ii. Information Inequality (Cramer Rao Bound)

1 The basic normality result

As in the previous lecture, we assume as always that we have a model family {Pθ}θ∈Θ, each
distribution Pθ having density pθ with respect to some base measure µ on X . We also use our usual
notation that `θ(x) := log pθ(x) is the log-likelihood. In order to get our asymptotic normality
results, we require a number of conditions on the smoothness of the log-likelihood so as to perform
appropriate Taylor expansions. Recall briefly that if a function f : Rd → R that is k-times
continuously differentiable, then

f(x+ v) = f(x) +∇f(x)T v +
1

2
vT∇2f(x)v + · · ·+ Rem(x+ v)[v⊗k],

where v⊗k indicates the k-th order tensor of v, i.e. the tensor in Rnk indexed by [v⊗k]i1,...,ik =
vi1 · · · vik , and Rem is a remainder function such that Rem(x + v) acts linearly on the argument
v⊗k and Rem(x+ v)→ 0 as v → 0. In some instances, we may say stronger things, such as if the
(k − 1)th derivative is Lipschitz. To keep things concrete, suppose ∇2f is Lipschitz, meaning that∣∣∣∣∣∣∇2f(x)−∇2f(y)

∣∣∣∣∣∣
op
≤ M ‖x− y‖ for some M < ∞. In this case, we may take the remainder

term to satisfy |||Rem(x+ v)|||op ≤M ‖v‖.
With these preliminaries out of the way, we begin with the major theorem we would like to

prove, which is that so long as the log likelihood `θ(x) := log pθ(x) is suitably smooth and that the
MLE θ̂n is consistent, then θ̂n is asymptotically normal.

Theorem 1. Let Xi
iid∼ Pθ0 where θ0 ∈ int Θ. Assume that `θ(x) = log pθ(x) is smooth enough that

Eθ0 [∇`θ0∇`Tθ0 ] exists and that the Hessian ∇2`θ(x) is M(x)-Lipschitz in θ, that is,∣∣∣∣∣∣∇2`θ1(x)−∇2`θ2(x)
∣∣∣∣∣∣

op
≤M ‖θ1 − θ2‖ ,

where Eθ0 [M(X)2] <∞. Assume additionally that the MLE θ̂n is consistent, θ̂n
p→ θ0.

√
n(θ̂n − θ0)

d→ N(0, I−1
θ0

)

where Iθ = Eθ[∇`θ∇`Tθ ] is the Fisher information.
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Proof Let r̂(x) ∈ Rd×d be the remainder matrix in Taylor expansion of the gradients of the
individual log likelihood terms around θ0 guaranteed by Taylor’s theorem (which certainly depends
on θ̂n − θ0), that is,

∇`
θ̂n

(x) = ∇`θ0(x) +∇2`θ0(x)(θ̂n − θ0) + r̂(x)(θ̂n − θ0),

where by Taylor’s theorem |||r̂(x)|||op ≤M(x)‖θ̂n − θ0‖. Writing this out using the empirical distri-

bution and that θ̂n = argmaxθ Pn`θ(X), we have

∇Pn`θ̂n = 0 = Pn∇`θ0 + Pn∇2`θ0(θ̂n − θ0) + Pnr̂(X)(θ̂n − θ0). (1)

But of course, expanding the term Pnr̂(X) ∈ Rd×d, we find that

Pnr̂(X) =
1

n

n∑
i=1

r̂(Xi) and |||Pnr̂|||op ≤
1

n

n∑
i=1

M(Xi)︸ ︷︷ ︸
a.s.→ Eθ0 [M(X)]

‖θ̂n − θ0‖︸ ︷︷ ︸
p→0

= oP (1).

In particular, revisiting expression (1), we have

0 = Pn∇`θ0 + Pn∇2`θ0(θ̂n − θ0) + oP (1)(θ̂n − θ0).

= Pn∇`θ0 +
(
Pθ0∇2`θ0 + (Pn − Pθ0)∇2`θ0 + oP (1)

)
(θ̂n − θ0).

The strong law of large numbers guarantees that (Pn − Pθ0)∇2`θ0 = oP (1), and multiplying each
side by

√
n yields √

n(Pθ0∇2`θ0 + oP (1))(θ̂n − θ0) = −
√
nPn∇`θ0 .

Applying Slutsky’s theorem gives the result: indeed, we have Tn =
√
nPn∇`θ0 satisfies Tn

d→
N(0, Iθ0) by the central limit theorem, and noting that Pθ0∇2`θ0 + oP (1) is eventually invertible
gives

√
n(θ̂n − θ0)

d→ N(0, (Pθ0∇2`θ0)−1Iθ0(Pθ0∇2`θ0)−1)

as desired.

2 Fisher Information

Definition 2.1. For a model family {Pθ}, θ ∈ Θ on X . The fisher information is Iθ = I(θ) =
Eθ[∇lθ0∇lTθ0 ] = Covθ(∇lθ). When ∇ and E are interchangable, then

Iθ = −E[∇2 logPθ(x)]

Example 1: Normal location family. {N(θ, σ2)}θ∈R, where θ is unknown,

∂

∂θ
logPθ(x) =

θ − x
σ2

.

Thus,

E[(
∂

∂θ
logPθ(x))2] =

Var(X)

σ4
=

1

σ2
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Heuristically speaking, if σ2 → 0, then it’s easy to estimate the mean. If σ2 → 0, then it’s hard to
estimate θ because heavy tails. So fisher information roughly tells us how easy or hard to estimate
a parameter. ♣

Remark What if we care about τ = h(θ) instead of θ? Then inverse function theorem yields:

∂

∂τ
h−1(τ)(h(θ)) =

1

h′(h−1(τ))
=

1

h′(θ)

Therefore, we have

I(τ) = I(h(θ)) =
I(θ)

h′(θ)2

when h′(θ) 6= 0. We can see this using the chain rule:

∂

∂τ
logPh−1(τ) =

∂

∂τ
logPθ

=
∂ logPθ
∂θ

∂θ

∂τ

=
∂ logPθ
∂θ

∂h−1(τ)

∂τ

Example 2: Normal location h(θ) = θ2. h′(θ) = 2θ, so

I(θ2) =
1

4θ2
I(θ) =

1

4θ2σ2

In particular, as θ → 0, I(θ)→∞. Suppose θ = 0, let θ̂n = ( 1
n

∑n
i=1 xi)

2, then

n(
1

n

n∑
i=1

xi)
2 = (

1√
n

n∑
i=1

xi)
2 d→ z2

where z ∼ N(0, σ2). Therefore, we have an order of n convergence. In this case, our estimator
converges faster than

√
n. So heuristically speaking, if we have a higher fisher information, our

estimator is somehow better. ♣

Additivity Property of Fisher information If x1 ∼ Pθ, x2 ∼ Qθ, x1, x2 independent, then
Ix1,x2(θ) = Ix1(θ) + Ix2(θ).
Proof Since x1 and x2 are independent,

Cov(∇ logPθ(x1) +∇ log qθ(x2)) = Cov(∇ logPθ(x1)) + Cov(∇ log qθ(x2)) = I1 + I2

Corollary 2. If xi
iid∼ pθ, I(θ) = Info(xi), then In(θ) = nI(θ).
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Information Inequality We start with proving covariance “lower bound”.
For any decision procedure δ : X → R and any function ψ : X → R, we have

Var(δ) ≥ Cov(δ, ψ)2

Var(ψ)

Proof The proof uses Cauchy Schwarz.

Cov(δ, ψ) = E[(δ − Eδ)(ψ − Eψ)]

≤ {E[(δ − Eδ)2]}1/2{E[(δ − Eδ)2]}1/2

= {Var(δ)}1/2{Var(ψ)}1/2

Therefore, we have

Var(δ) ≥ Cov(δ, ψ)2

Var(ψ)

Theorem 3. (1 dimensional information inequality). Assume that Eθ[δ] = g(θ) ids differentiable
at θ and Pθ is regular enough that Ṗθ = ∂

∂θPθ,
∫
Pθdµ = ∂

∂θ

∫
Pθdµ = 0, and

∫
δ(x) ˙Pθ(x)dµ =

∂
∂θEθ[δ] = g′(θ). Then

Varθ0(δ) ≥ (g′(θ0))2

I(θ0)

Why do we care about this? Suppose that Eθ[δ] = 0 and g(θ) = θ. Therefore, g′(θ) = 1 and

Eθ((δ − θ)2) ≥ 1

I(θ)

In 1 dimension, any unbiased estimator has MSE ≥ 1
I(θ) . However, this result is not true when

our estimator is biased.
Proof Take ψ(x) = ∂

∂θ logPθ(x) = ∂
∂θ lθ(x) = Ṗθ(x)

Pθ(x) . By covariance inequality,

Cov
θ

(δ, ψ) = Eθ[(δ − g(θ))(ψ − E[ψ])]

= Eθ[δ, ψ]

= Eθ[δ
Ṗθ(x)

Pθ(x)
]

=

∫
δ(x)Ṗθ(x)

Pθ(x)

Pθ(x)
dµ(x)

=
∂

∂θ

∫
δPθdµ

=
∂

∂θ
Eθ[δ] = g′(θ)

Therefore, we have

Var(δ) ≥ Cov(δ, ψ)2

Var(ψ)
=
g′(θ)

I(θ)

Remark This result is unsatisfying in two senses:
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1. Tied to mean square error (MSE)

2. Requires unbiasedness

We will cover a major theorem later in the class, which is better than this result. Roughly speaking,
we will show that

Eθ[L(
√
n(θ̂n − θ))] ≥ E[L(Z)], Z ∼ N(0, I(θ)−1), ∀θ̂n

and symmetric quasi-convex L : Rd → R+. (In fact, this holds for almost all θ, though not
necessarily for all θ.) More precisely, the following result holds true. Let h ∈ Rd and θ0 ∈ Θ be
arbitrary, where Θ ⊂ Rd is open. In addition, assume that the distributions Pθ have log-likelihoods
smooth enough that the conditions of Theorem ?? are satisfied. Then for any sequence of estimators
θ̂n : X n → Θ and any quasi-convex symmetric loss L : Rd → R+,

lim inf
c→∞

lim inf
n

sup
‖h‖≤c

Eθ0+h/
√
n

[
L(
√
n(θ̂n − (θ0 + h/

√
n)))

]
≥ E[L(Z)], Z ∼ N(0, I−1

θ0
).

That is, under perturbations of the true parameter θ0 by amounts shrinking as 1/
√
n, we have a

locally difficult estimation problem. (Here Eθ denotes expectation taken w.r.t. i.i.d. sampling under
Pθ.)

Multidimensional Information Inequality We now generalize the result to θ ∈ Rd.

Lemma 4. Let δ : X → R, ψ : X → Rd, Eθ(ψ) = 0. Define γ = [Cov(δ, ψj ]
d
j=1, C = Covθ(ψ) =

Eθ[ψψT ] = 0. Then
Var(δ) ≥ γTC−1γ.

Proof Let v ∈ Rd be arbitrary. By 1 dimensional covariance inequality,

Var(δ) ≥ Cov(δ, vTψ)2

Var(vTψ)

=
(γT v)2

vTCv
= γTC−1γ

The last inequality uses the following fact:

Fact 5. If A > 0, then

sup
v

(vTu)2

vTAv
= uTA−1u

Proof We first use Cauchy Schwartz.

(vTu)2 = (A1/2v)T (A−1/2u)2 ≤ ‖A1/2v‖22‖A−1/2u‖2 = vTAvuTA−1u

Therefore, for all v,

(vTu)2

vTAv
≤ uTA−1u

Now, we take v = A−1u to achieve this upper bound. 5
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Theorem 6. Let g(θ) = Eθ[δ] ∈ Rd, with lots of regularity. Then we have

Varθ(δ) ≥ ∇g(θ)T I(θ)−1∇g(θ)

where I(θ) = Eθ[∇lθ∇lTθ ].

Proof Let ψ = ∇lθ(x) in covariance lower bound. Eθ[ψ] = 0, Cov(δ, ψ) = E[δ∇lθ] = ∇Eθ[δ] =
∇δ(θ)
γ .

Corollary 7. If θ̂ : x→ Θ ∈ Rd is unbiased,

Eθ[(θ̂ − θ)(θ̂ − θ)T ] ≥ I(θ)−1

Proof Take v ∈ Rd, δ(x) = vT θ̂. Then

E(δ) = vT θ = g(θ)

=⇒ ∇g(θ) = v

So

E[(vT (θ̂ − θ))2] ≥ vT I(θ)−1v

= E[vT (θ̂ − θ)(θ̂ − θ)T v]
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