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Outline of the lecture:

I Asymptotic Normality & Fisher information

(a) Basic Asymptotic Normality result
(b) Fisher information
i. Definitions, Examples
ii. Information Inequality (Cramer Rao Bound)

1 The basic normality result

As in the previous lecture, we assume as always that we have a model family {Fy}gco, each
distribution Py having density pg with respect to some base measure 1 on X'. We also use our usual
notation that ¢p(z) := logpy(x) is the log-likelihood. In order to get our asymptotic normality
results, we require a number of conditions on the smoothness of the log-likelihood so as to perform
appropriate Taylor expansions. Recall briefly that if a function f : R? — R that is k-times
continuously differentiable, then

flz+v) = f(z)+ Vi) Tv+ %UTV2f(m)v + -+ Rem(z + v)[v®],

where v®* indicates the k-th order tensor of v, i.e. the tensor in R™ indexed by [U®k]i17,_,7¢k =
v, -+ v, and Rem is a remainder function such that Rem(x + v) acts linearly on the argument
v®* and Rem(z 4+ v) — 0 as v — 0. In some instances, we may say stronger things, such as if the
(k — 1)th derivative is Lipschitz. To keep things concrete, suppose V2 is Lipschitz, meaning that
|Hv2f(x) - VQf(y)H’O < M ||z — y|| for some M < oco. In this case, we may take the remainder
term to satisfy ||[Rem(z + v)||,, < M |[v].

With these preliminaries out of the way, we begin with the major theorem we would like to
prove, which is that so long as the log likelihood fy(z) := log ps() is suitably smooth and that the
MLE 6,, is consistent, then 6,, is asymptotically normal.

Theorem 1. Let X; » Py, where Oy € int ©. Assume that lg(x) = log pp(z) is smooth enough that
Eg, [VﬂgOVK(,TO] exists and that the Hessian V*{y(z) is M (x)-Lipschitz in 0, that s,

IV, () = V2o, ()], < M |61 — 62,
where Eg [M(X)?] < co. Assume additionally that the MLE 0, is consistent, O, 2> 0.
V(B — 60) % N(0, I, )
where Iy = Ey [VﬁgVﬁg] 1s the Fisher information.



Proof Let 7(z) € R¥9 be the remainder matrix in Taylor expansion of the gradients of the
individual log likelihood terms around 0y guaranteed by Taylor’s theorem (which certainly depends
on 0, — 6y), that is,

Vg (x) = Vig, () + Vg, (2) (0 — O0) + F(x) (0 — o),

where by Taylor’s theorem ||7(x)]],, < M (2)]|6n — 6o|. Writing this out using the empirical distri-
bution and that 6,, = argmax, P,ly(X), we have

VPl = 0= P,Vlg, + P,V g, (0, — 00) + PoF(X) (0 — b0)- (1)
But of course, expanding the term P,7(X) € R*?, we find that

" 1~ . 1 o ~
Par(X) =~ ;T(Xi) and [|Purll, < - ;M(Xz') 16n — bol| = op(1).
a —— %0
ajAEGO [M(X)]

In particular, revisiting expression , we have

0= P,V + PV, (0, — 00) + 0p(1) (8, — ).

= ang.go + (Pgovzﬁgo + (Pn — P@O)V2€90 + Op(l)) (é\n — 90).

The strong law of large numbers guarantees that (P, — Py,)V?{g, = op(1), and multiplying each
side by +/n yields R
V(Py, V249, 4 0p(1))(0n — 00) = —/nP, Vi,

Applying Slutsky’s theorem gives the result: indeed, we have T,, = /nP,V{y, satisfies T), A
N(0, Iy,) by the central limit theorem, and noting that Py,V?{y, + op(1) is eventually invertible
gives

V(B — 60) 5 N(O, (Pg, V2Cg,) " Ig, (P, V20g,) )
as desired. Il

2 Fisher Information

Definition 2.1. For a model family {Pp},0 € © on X. The fisher information is Iy = 1(0) =
EQ[VZQOVZZ;] = Covy(Vly). When V and E are interchangable, then

Iy = —E[V?log Py(z)]

Example 1: Normal location family. {N(6,0?)}per, where @ is unknown,

0 06—z
20 log Py(x) = ot
Thus,
0 9, Var(X) 1
E[(%logpe(ﬂﬁ)) ] = ol g2



Heuristically speaking, if 02 — 0, then it’s easy to estimate the mean. If 02 — 0, then it’s hard to
estimate 6 because heavy tails. So fisher information roughly tells us how easy or hard to estimate
a parameter. &

Remark  What if we care about 7 = h(#) instead of 7 Then inverse function theorem yields:

_ 1 1
o O = =y = W

Therefore, we have

when h/(8) # 0. We can see this using the chain rule:

0 0
- log Pp-1(7) = 9 log Py

or
_ Olog Py 00
90 or
_ Olog Py O™ (7)
00 or

Example 2: Normal location h() = 62. h'(6) = 20, so

o1 1
107) = 3210 = g2

In particular, as 6 — 0, I(6) — co. Suppose 6 = 0, let 6, = (% S xi)?, then
n(l Zx)z = (L zn:x)Z 4 2
[t v i=1

where z ~ N(0,02). Therefore, we have an order of n convergence. In this case, our estimator
converges faster than y/n. So heuristically speaking, if we have a higher fisher information, our
estimator is somehow better. &

Additivity Property of Fisher information If x1 ~ Py, o ~ QQy, x1, 22 independent, then
ISL‘171‘2 (6) = Iy (9) + Iz, (0)
Proof Since x1 and x5 are independent,

Cov(Vlog Py(x1) + Vlog ggp(x2)) = Cov(Vlog Py(z1)) + Cov(Vlog gop(x2)) = I1 + Iy

Corollary 2. If z; % po, I1(0) = Info(x;), then I,(0) = nI(0).



Information Inequality We start with proving covariance “lower bound”.
For any decision procedure ¢ : X — R and any function ¢ : X — R, we have
Cov(3, 1)?
Var(§) > ———

"= Nar)

Proof The proof uses Cauchy Schwarz.
Cov(d,¢) = E[(0 — Eb)(¢) — Ea)]
< {E[(6 — &)} /*{E[(s - E5)*]}/?
= {Var(9)}'/* {Var(y)}'/2
Therefore, we have

Cov(8,v)?
Var(d) > Var(®)

Theorem 3. (1 dimensional information inequality). Assume that Eg[d] = g(0) ids differentiable
at 0 and Py is regular enough that Py = %Pg, [ Podp = %ngd,u =0, and fé(a:)Pg'(a:)du =
L Eo[0] = ¢'(0). Then
(9'(00))?

1(6o)
Why do we care about this? Suppose that Eg[d] = 0 and g(f) = 0. Therefore, ¢'(f) = 1 and

Eo((5 - 0)%) > 1(19)

In 1 dimension, any unbiased estimator has MSE > % However, this result is not true when
our estimator is biased.

Proof Take ¢(z)= % log Py(z) = %l@(l’) = Iizgig By covariance inequality,

Cov(d,4) = Eg[(6 — 9(0)) (v — E[¥])]
= E@[(Sv ¢]

Py(z)
Py(x)

Vargo ((5) Z

= Eg[d

Therefore, we have

Remark  This result is unsatisfying in two senses:



1. Tied to mean square error (MSE)

2. Requires unbiasedness

We will cover a major theorem later in the class, which is better than this result. Roughly speaking,
we will show that

Eo[L(v/n(0n — 0))] > E[L(Z)], Z~N(0,1(0)™"), Vb,

and symmetric quasi-convex L : R? — R,. (In fact, this holds for almost all §, though not
necessarily for all #.) More precisely, the following result holds true. Let h € R? and 6y € © be
arbitrary, where © C R? is open. In addition, assume that the distributions Py have log-likelihoods
smooth enough that the conditions of Theorem ?? are satisfied. Then for any sequence of estimators
6, : X" — O and any quasi-convex symmetric loss L : R* — R,

lim inf lim inf sup Eg\,/m | L(V(0n — (00 + h/vn)))| > E[L(Z)], Z ~N(0,1,").

Cc—00 n ”h”SC 0
That is, under perturbations of the true parameter 6y by amounts shrinking as 1/4/n, we have a

locally difficult estimation problem. (Here Ey denotes expectation taken w.r.t. i.i.d. sampling under
Py.)

Multidimensional Information Inequality We now generalize the result to § € R%.

Lemma 4. Let § : X = R, v : X — R Ey(¢p) = 0. Define v = [Cov(d, wj];lzl, C = Covy(y) =
Eg[ypT] = 0. Then
Var(8) > T C71y.

Proof Let v € R? be arbitrary. By 1 dimensional covariance inequality,

T,\2
Var(6) > SOV Y)°

—  Var(vT9)
(’YTU)2 T 1
= = C
JIov 7 7
The last inequality uses the following fact:
Fact 5. If A > 0, then
(v"u)? T 4—1
sgp Tay — U A

Proof We first use Cauchy Schwartz.
(vTu)? = (AV20)T(A712u)? < | AV20) 3| A7 20 = vT Avu” A7

Therefore, for all v,

T 4—1
<u'ATu
vTAv —

Now, we take v = A~ u to achieve this upper bound. v/




Theorem 6. Let g(0) = Eq[d] € RY, with lots of reqularity. Then we have
Varg(5) > Va(0)71(6) " Vg(0)
where 1(0) = Eg[VipVIL].

Proof Let ¢ = Vig(z) in covariance lower bound. Ey[¢)] = 0, Cov(d,¢) = E[0Vig] = VEy[d] =
Vé(0) ]

v

Corollary 7. Ifé cx — O € R? is unbiased,
Eo[(6 —6)(6 —6)"] > 1(6)"
Proof Take v € R%, §(z) = vT0. Then

E(8) = vT8 = g(6)
= Vyg(0) =v

So
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