Stats 300b: Theory of Statistics

Winter 2017

Lecture 4 – January 19

Lecturer: John Duchi

Scribe: Xiaotong Suo

Warning: these notes may contain factual errors

Reading: VDV Chapter 3

Outline of the lecture:

I Asymptotic Normality & Fisher information

- (a) Basic Asymptotic Normality result
- (b) Fisher information
 - i. Definitions, Examples
 - ii. Information Inequality (Cramer Rao Bound)

1 The basic normality result

As in the previous lecture, we assume as always that we have a model family $\{P_{\theta}\}_{\theta\in\Theta}$, each distribution P_{θ} having density p_{θ} with respect to some base measure μ on \mathcal{X} . We also use our usual notation that $\ell_{\theta}(x) := \log p_{\theta}(x)$ is the log-likelihood. In order to get our asymptotic normality results, we require a number of conditions on the smoothness of the log-likelihood so as to perform appropriate Taylor expansions. Recall briefly that if a function $f : \mathbb{R}^d \to \mathbb{R}$ that is k-times continuously differentiable, then

$$f(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \dots + \operatorname{Rem}(x+v)[v^{\otimes k}],$$

where $v^{\otimes k}$ indicates the k-th order tensor of v, i.e. the tensor in \mathbb{R}^{n^k} indexed by $[v^{\otimes k}]_{i_1,\ldots,i_k} = v_{i_1}\cdots v_{i_k}$, and Rem is a remainder function such that $\operatorname{Rem}(x+v)$ acts linearly on the argument $v^{\otimes k}$ and $\operatorname{Rem}(x+v) \to 0$ as $v \to 0$. In some instances, we may say stronger things, such as if the (k-1)th derivative is Lipschitz. To keep things concrete, suppose $\nabla^2 f$ is Lipschitz, meaning that $\||\nabla^2 f(x) - \nabla^2 f(y)|\|_{\operatorname{op}} \leq M ||x-y||$ for some $M < \infty$. In this case, we may take the remainder term to satisfy $\||\operatorname{Rem}(x+v)|\|_{\operatorname{op}} \leq M ||v||$.

With these preliminaries out of the way, we begin with the major theorem we would like to prove, which is that so long as the log likelihood $\ell_{\theta}(x) := \log p_{\theta}(x)$ is suitably smooth and that the MLE $\hat{\theta}_n$ is consistent, then $\hat{\theta}_n$ is asymptotically normal.

Theorem 1. Let $X_i \stackrel{\text{iid}}{\sim} P_{\theta_0}$ where $\theta_0 \in \text{int }\Theta$. Assume that $\ell_{\theta}(x) = \log p_{\theta}(x)$ is smooth enough that $\mathbb{E}_{\theta_0}[\nabla \ell_{\theta_0} \nabla \ell_{\theta_0}^T]$ exists and that the Hessian $\nabla^2 \ell_{\theta}(x)$ is M(x)-Lipschitz in θ , that is,

$$\left\| \left\| \nabla^2 \ell_{\theta_1}(x) - \nabla^2 \ell_{\theta_2}(x) \right\| \right\|_{\text{op}} \le M \left\| \theta_1 - \theta_2 \right\|$$

where $\mathbb{E}_{\theta_0}[M(X)^2] < \infty$. Assume additionally that the MLE $\hat{\theta}_n$ is consistent, $\hat{\theta}_n \xrightarrow{p} \theta_0$.

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathsf{N}(0, I_{\theta_0}^{-1})$$

where $I_{\theta} = \mathbb{E}_{\theta}[\nabla \ell_{\theta} \nabla \ell_{\theta}^{T}]$ is the Fisher information.

Proof Let $\hat{r}(x) \in \mathbb{R}^{d \times d}$ be the remainder matrix in Taylor expansion of the gradients of the individual log likelihood terms around θ_0 guaranteed by Taylor's theorem (which certainly depends on $\hat{\theta}_n - \theta_0$), that is,

$$\nabla \ell_{\widehat{\theta}_n}(x) = \nabla \ell_{\theta_0}(x) + \nabla^2 \ell_{\theta_0}(x)(\widehat{\theta}_n - \theta_0) + \widehat{r}(x)(\widehat{\theta}_n - \theta_0),$$

where by Taylor's theorem $\| \widehat{r}(x) \|_{\text{op}} \leq M(x) \| \widehat{\theta}_n - \theta_0 \|$. Writing this out using the empirical distribution and that $\widehat{\theta}_n = \operatorname{argmax}_{\theta} P_n \ell_{\theta}(X)$, we have

$$\nabla P_n \ell_{\widehat{\theta}_n} = 0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0} (\widehat{\theta}_n - \theta_0) + P_n \widehat{r}(X) (\widehat{\theta}_n - \theta_0).$$
(1)

But of course, expanding the term $P_n \hat{r}(X) \in \mathbb{R}^{d \times d}$, we find that

$$P_n \widehat{r}(X) = \frac{1}{n} \sum_{i=1}^n \widehat{r}(X_i) \text{ and } ||P_n \widehat{r}||_{\text{op}} \leq \underbrace{\frac{1}{n} \sum_{i=1}^n M(X_i)}_{\stackrel{\text{a.s.}}{\xrightarrow{\to}} \mathbb{E}_{\theta_0}[M(X)]} \underbrace{||\widehat{\theta}_n - \theta_0||}_{\stackrel{p}{\to} 0} = o_P(1).$$

In particular, revisiting expression (1), we have

$$0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0} (\widehat{\theta}_n - \theta_0) + o_P(1) (\widehat{\theta}_n - \theta_0).$$

= $P_n \nabla \ell_{\theta_0} + \left(P_{\theta_0} \nabla^2 \ell_{\theta_0} + (P_n - P_{\theta_0}) \nabla^2 \ell_{\theta_0} + o_P(1) \right) (\widehat{\theta}_n - \theta_0).$

The strong law of large numbers guarantees that $(P_n - P_{\theta_0})\nabla^2 \ell_{\theta_0} = o_P(1)$, and multiplying each side by \sqrt{n} yields

$$\sqrt{n}(P_{\theta_0}\nabla^2\ell_{\theta_0} + o_P(1))(\widehat{\theta}_n - \theta_0) = -\sqrt{n}P_n\nabla\ell_{\theta_0}.$$

Applying Slutsky's theorem gives the result: indeed, we have $T_n = \sqrt{n}P_n \nabla \ell_{\theta_0}$ satisfies $T_n \xrightarrow{d} \mathsf{N}(0, I_{\theta_0})$ by the central limit theorem, and noting that $P_{\theta_0} \nabla^2 \ell_{\theta_0} + o_P(1)$ is eventually invertible gives

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathsf{N}(0, (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1} I_{\theta_0} (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1})$$

as desired.

2 Fisher Information

Definition 2.1. For a model family $\{P_{\theta}\}, \theta \in \Theta$ on \mathcal{X} . The fisher information is $I_{\theta} = I(\theta) = \mathbb{E}_{\theta}[\nabla l_{\theta_0} \nabla l_{\theta_0}^T] = \operatorname{Cov}_{\theta}(\nabla l_{\theta})$. When ∇ and \mathbb{E} are interchangable, then

$$I_{\theta} = -\mathbb{E}[\nabla^2 \log P_{\theta}(x)]$$

Example 1: Normal location family. $\{N(\theta, \sigma^2)\}_{\theta \in \mathbb{R}}$, where θ is unknown,

$$\frac{\partial}{\partial \theta} \log P_{\theta}(x) = \frac{\theta - x}{\sigma^2}.$$

Thus,

$$\mathbb{E}[(\frac{\partial}{\partial\theta}\log P_{\theta}(x))^2] = \frac{\operatorname{Var}(X)}{\sigma^4} = \frac{1}{\sigma^2}$$

Heuristically speaking, if $\sigma^2 \to 0$, then it's easy to estimate the mean. If $\sigma^2 \to 0$, then it's hard to estimate θ because heavy tails. So fisher information roughly tells us how easy or hard to estimate a parameter.

Remark What if we care about $\tau = h(\theta)$ instead of θ ? Then inverse function theorem yields:

$$\frac{\partial}{\partial \tau} h^{-1}(\tau)(h(\theta)) = \frac{1}{h'(h^{-1}(\tau))} = \frac{1}{h'(\theta)}$$

Therefore, we have

$$I(\tau) = I(h(\theta)) = \frac{I(\theta)}{h'(\theta)^2}$$

when $h'(\theta) \neq 0$. We can see this using the chain rule:

$$\begin{aligned} \frac{\partial}{\partial \tau} \log P_{h^{-1}(\tau)} &= \frac{\partial}{\partial \tau} \log P_{\theta} \\ &= \frac{\partial \log P_{\theta}}{\partial \theta} \frac{\partial \theta}{\partial \tau} \\ &= \frac{\partial \log P_{\theta}}{\partial \theta} \frac{\partial h^{-1}(\tau)}{\partial \tau} \end{aligned}$$

Example 2: Normal location $h(\theta) = \theta^2$. $h'(\theta) = 2\theta$, so

$$I(\theta^2) = \frac{1}{4\theta^2}I(\theta) = \frac{1}{4\theta^2\sigma^2}$$

In particular, as $\theta \to 0$, $I(\theta) \to \infty$. Suppose $\theta = 0$, let $\hat{\theta}_n = (\frac{1}{n} \sum_{i=1}^n x_i)^2$, then

$$n(\frac{1}{n}\sum_{i=1}^{n}x_i)^2 = (\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_i)^2 \stackrel{d}{\to} z^2$$

where $z \sim N(0, \sigma^2)$. Therefore, we have an order of *n* convergence. In this case, our estimator converges faster than \sqrt{n} . So heuristically speaking, if we have a higher fisher information, our estimator is somehow better.

Additivity Property of Fisher information If $x_1 \sim P_{\theta}$, $x_2 \sim Q_{\theta}$, x_1, x_2 independent, then $I_{x_1,x_2}(\theta) = I_{x_1}(\theta) + I_{x_2}(\theta)$. **Proof** Since x_1 and x_2 are independent,

$$\operatorname{Cov}(\nabla \log P_{\theta}(x_1) + \nabla \log q_{\theta}(x_2)) = \operatorname{Cov}(\nabla \log P_{\theta}(x_1)) + \operatorname{Cov}(\nabla \log q_{\theta}(x_2)) = I_1 + I_2$$

Corollary 2. If $x_i \stackrel{\text{iid}}{\sim} p_{\theta}$, $I(\theta) = Info(x_i)$, then $I_n(\theta) = nI(\theta)$.

Information Inequality We start with proving covariance "lower bound".

For any decision procedure $\delta : \mathcal{X} \to \mathbb{R}$ and any function $\psi : \mathcal{X} \to \mathbb{R}$, we have

$$\operatorname{Var}(\delta) \ge \frac{\operatorname{Cov}(\delta, \psi)^2}{\operatorname{Var}(\psi)}$$

Proof The proof uses Cauchy Schwarz.

$$Cov(\delta, \psi) = \mathbb{E}[(\delta - \mathbb{E}\delta)(\psi - \mathbb{E}\psi)]$$

$$\leq \{\mathbb{E}[(\delta - \mathbb{E}\delta)^2]\}^{1/2} \{\mathbb{E}[(\delta - \mathbb{E}\delta)^2]\}^{1/2}$$

$$= \{Var(\delta)\}^{1/2} \{Var(\psi)\}^{1/2}$$

Therefore, we have

$$\operatorname{Var}(\delta) \ge \frac{\operatorname{Cov}(\delta,\psi)^2}{\operatorname{Var}(\psi)}$$

Theorem 3. (1 dimensional information inequality). Assume that $\mathbb{E}_{\theta}[\delta] = g(\theta)$ ids differentiable at θ and P_{θ} is regular enough that $\dot{P}_{\theta} = \frac{\partial}{\partial \theta} P_{\theta}$, $\int P_{\theta} d\mu = \frac{\partial}{\partial \theta} \int P_{\theta} d\mu = 0$, and $\int \delta(x) P_{\theta}(x) d\mu = 0$ $\frac{\partial}{\partial \theta} \mathbb{E}_{\theta}[\delta] = g'(\theta)$. Then

$$\operatorname{Var}_{\theta_0}(\delta) \ge \frac{(g'(\theta_0))^2}{I(\theta_0)}$$

Why do we care about this? Suppose that $\mathbb{E}_{\theta}[\delta] = 0$ and $g(\theta) = \theta$. Therefore, $g'(\theta) = 1$ and

$$\mathbb{E}_{\theta}((\delta - \theta)^2) \ge \frac{1}{I(\theta)}$$

In 1 dimension, any unbiased estimator has $MSE \geq \frac{1}{I(\theta)}$. However, this result is not true when our estimator is biased. **Proof** Take $\psi(x) = \frac{\partial}{\partial \theta} \log P_{\theta}(x) = \frac{\partial}{\partial \theta} l_{\theta}(x) = \frac{\dot{P}_{\theta}(x)}{P_{\theta}(x)}$. By covariance inequality,

$$C_{\theta}^{\text{ov}}(\delta,\psi) = \mathbb{E}_{\theta}[(\delta - g(\theta))(\psi - E[\psi])]$$

$$= \mathbb{E}_{\theta}[\delta,\psi]$$

$$= \mathbb{E}_{\theta}[\delta\frac{\dot{P}_{\theta}(x)}{P_{\theta}(x)}]$$

$$= \int \delta(x)\dot{P}_{\theta}(x)\frac{P_{\theta}(x)}{P_{\theta}(x)}d\mu(x)$$

$$= \frac{\partial}{\partial\theta}\int \delta P_{\theta}d\mu$$

$$= \frac{\partial}{\partial\theta}\mathbb{E}_{\theta}[\delta] = g'(\theta)$$

Therefore, we have

$$\operatorname{Var}(\delta) \ge \frac{\operatorname{Cov}(\delta,\psi)^2}{\operatorname{Var}(\psi)} = \frac{g'(\theta)}{I(\theta)}$$

Remark This result is unsatisfying in two senses:

- 1. Tied to mean square error (MSE)
- 2. Requires unbiasedness

We will cover a major theorem later in the class, which is better than this result. Roughly speaking, we will show that

$$\mathbb{E}_{\theta}[L(\sqrt{n}(\widehat{\theta}_n-\theta))] \geq \mathbb{E}[L(Z)], \quad Z \sim \mathsf{N}(0, I(\theta)^{-1}), \quad \forall \widehat{\theta}_n$$

and symmetric quasi-convex $L : \mathbb{R}^d \to \mathbb{R}_+$. (In fact, this holds for *almost* all θ , though not necessarily for all θ .) More precisely, the following result holds true. Let $h \in \mathbb{R}^d$ and $\theta_0 \in \Theta$ be arbitrary, where $\Theta \subset \mathbb{R}^d$ is open. In addition, assume that the distributions P_{θ} have log-likelihoods smooth enough that the conditions of Theorem ?? are satisfied. Then for any sequence of estimators $\hat{\theta}_n : \mathcal{X}^n \to \Theta$ and any quasi-convex symmetric loss $L : \mathbb{R}^d \to \mathbb{R}_+$,

$$\liminf_{c \to \infty} \liminf_{n} \sup_{\|h\| \le c} \mathbb{E}_{\theta_0 + h/\sqrt{n}} \left[L(\sqrt{n}(\widehat{\theta}_n - (\theta_0 + h/\sqrt{n}))) \right] \ge \mathbb{E}[L(Z)], \quad Z \sim \mathsf{N}(0, I_{\theta_0}^{-1}).$$

That is, under perturbations of the true parameter θ_0 by amounts shrinking as $1/\sqrt{n}$, we have a locally difficult estimation problem. (Here \mathbb{E}_{θ} denotes expectation taken w.r.t. i.i.d. sampling under P_{θ} .)

Multidimensional Information Inequality We now generalize the result to $\theta \in \mathbb{R}^d$. Lemma 4. Let $\delta : \mathcal{X} \to \mathbb{R}$, $\psi : \mathcal{X} \to \mathbb{R}^d$, $\mathbb{E}_{\theta}(\psi) = 0$. Define $\gamma = [\operatorname{Cov}(\delta, \psi_j]_{j=1}^d, C = \operatorname{Cov}_{\theta}(\psi) = \mathbb{E}_{\theta}[\psi\psi^T] = 0$. Then

$$\operatorname{Var}(\delta) \ge \gamma^T C^{-1} \gamma.$$

Proof Let $v \in \mathbb{R}^d$ be arbitrary. By 1 dimensional covariance inequality,

$$\begin{aligned} \operatorname{Var}(\delta) &\geq \frac{\operatorname{Cov}(\delta, v^T \psi)^2}{\operatorname{Var}(v^T \psi)} \\ &= \frac{(\gamma^T v)^2}{v^T C v} = \gamma^T C^{-1} \gamma \end{aligned}$$

The last inequality uses the following fact:

Fact 5. If A > 0, then

$$\sup_{v} \frac{(v^T u)^2}{v^T A v} = u^T A^{-1} u$$

Proof We first use Cauchy Schwartz.

$$(v^{T}u)^{2} = (A^{1/2}v)^{T}(A^{-1/2}u)^{2} \le \|A^{1/2}v\|_{2}^{2}\|A^{-1/2}u\|^{2} = v^{T}Avu^{T}A^{-1}u$$

Therefore, for all v,

$$\frac{(v^T u)^2}{v^T A v} \le u^T A^{-1} u$$

Now, we take $v = A^{-1}u$ to achieve this upper bound. \bigtriangledown

Theorem 6. Let $g(\theta) = \mathbb{E}_{\theta}[\delta] \in \mathbb{R}^d$, with lots of regularity. Then we have

$$\operatorname{Var}_{\theta}(\delta) \ge \nabla g(\theta)^T I(\theta)^{-1} \nabla g(\theta)$$

where $I(\theta) = \mathbb{E}_{\theta}[\nabla l_{\theta} \nabla l_{\theta}^{T}].$

Proof Let $\psi = \nabla l_{\theta}(x)$ in covariance lower bound. $\mathbb{E}_{\theta}[\psi] = 0$, $\operatorname{Cov}(\delta, \psi) = \mathbb{E}[\delta \nabla l_{\theta}] = \nabla \mathbb{E}_{\theta}[\delta] = \frac{\nabla \delta(\theta)}{\gamma}$.

Corollary 7. If $\hat{\theta} : x \to \Theta \in \mathbb{R}^d$ is unbiased,

$$\mathbb{E}_{\theta}[(\hat{\theta} - \theta)(\hat{\theta} - \theta)^{T}] \ge I(\theta)^{-1}$$

Proof Take $v \in \mathbb{R}^d$, $\delta(x) = v^T \hat{\theta}$. Then

$$\mathbb{E}(\delta) = v^T \theta = g(\theta)$$
$$\implies \nabla g(\theta) = v$$

 So

$$\mathbb{E}[(v^T(\hat{\theta} - \theta))^2] \ge v^T I(\theta)^{-1} v$$
$$= \mathbb{E}[v^T(\hat{\theta} - \theta)(\hat{\theta} - \theta)^T v]$$

		_	
_			