
Stats 300b: Theory of Statistics Winter 2017

Lecture 2 – January 12

Lecturer: John Duchi Scribe: Yi Liu

� Warning: these notes may contain factual errors

Reading: A.W. van der Vaart. Asymptotic Statistics. Chapter 2 and Chapter 3

1. Prohorov Theorem

2. Portmanteau Lemma

3. Delta Method

1 Prohorov Theorem

Definition 1.1. A collection of random vectors {Xα}α∈A is uniformly tight if for all ε > 0, there
exists M such that

sup
α

P(‖Xα‖ ≥M) ≤ ε

Remark A single random vector is tight since limn→∞ P(‖X‖ > M) = 0

Remark If Xn converges in distribution to X, then {Xn}n∈N is uniformly tight
Proof Fix a number M such that P(‖X‖ ≥M) < ε. By the portmanteau lemma P(‖Xn‖ ≥M)
exceeds P(‖X‖ ≥M) arbitrarily little for sufficient large n. Thus there exists N such that P (‖X‖ ≥
M) < 2ε, for all n ≥ N . Because each of the finitely many variables Xn with n < N is tight, the
value fo M can be increased, if necessary, to ensure that P(‖Xn‖ ≥M) < 2ε for every n.

Theorem 1 (Prohorov’s theorem). A collection of random vectors {Xα}α∈A is uniformly tight if
and only if it is sequentially compact for weak convergence. i.e. ∀ sequences {Xn}n∈N ⊂ {Xα}α∈A,
there exist nk, a subsequence and a random vector X such that Xnk converges in distribution in X.

Proof d-dimensional analogue of Helly selection

Example 1: Random variable bounded in expectation
Let {Xα}α∈A satisfy E(‖Xα‖) < M <∞, for α ∈ A. Then {Xα}α∈A is uniformly tight.
Proof By markov inequality,

P(‖Xα‖ ≥ C) ≤ E(‖Xα‖p))
Cp

≤ Mp

Cp
→ 0

as C →∞

♣
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2 Portmanteau Theorem

Theorem 2. Portmanteau Theorem Let Xn, X be random vectors, then the following are equiva-
lent.

1. Xn converges in distribution X

2. E(f(Xn)) converges in distribution to E(f(X)) for all bounded and continuous f

3. E(f(Xn)) converges in distribution to E(f(X)) for one-Lipschitz f with f ∈ [0, 1]

4. lim infn→∞ E(f(Xn)) ≥ E(f(X)) for non-negative and continuous f.

5. lim infn→∞ P(Xn ∈ O) ≥ P(X ∈ O) for all open set O

6. lim supn→∞ P(Xn ∈ C) ≤ P(X ∈ C) for all closed set C

7. limn→∞ P(Xn ∈ B) = P(X ∈ B) for all set B such that P(X ∈ δB) = 0

Remark We call a collection of function Fa determining class if E(f(Xn)) → E(f(X)) for all
f ∈ F if and only if Xn → X . For example, the characteristic function are determining class
Remark The function has to be bounded in this case. Consider the following counter example.

Let g(x) = x and

Xn =

{
n2 with probability 1

n

0 otherwise

Xn converges in probability to 0 and therefore converges in distribution to 0. However,

E(g(Xn)) = n→∞

3 Delta Method

Prompt: Suppose you have a sequence of statistics Tn that estimate a parameter θ and you know
that rn(Tn− θ) converges in distribution to T when rn →∞. (Here we understand rn as the rate )
Suppose φ is smooth in the neighborhood of θ, it is possible to say anything about φ(Tn)?

Theorem 3. Delta Method Let rn → ∞ and φ : Rd → Rk be differentiable at θ and assume that
rn(Tn − θ) in distribution to T for some random vector T , then

1. rn(φ(Tn) = φ(θ))converges in distribution to φ′(θ)T

2. rn(φ(Tn) = φ(θ))− rnφ′(θ)(Tn − θ) converges in probability to 0

Here φ′(θ) ∈ Rk×d is the Jacobian Matrix of derivatives [φ′(θ)]ij = ∂φi(θ)
∂θj
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Proof By taylor theorem, we have that

φ(t) = φ(θ) + φ′(θ)(t− θ) + o(‖t− θ‖)

as t→ θ
This is equivalent to

φ(t) = φ(θ) + φ′(θ)(t− θ) +R(|t− θ|) (1)

where R(t− θ) = o(‖t− θ‖)
we know that rn(Tn − θ) = Op(1) because of the convergence in distribution.

rnR(Tn − θ) = rnOp(‖Tn − θ‖) = Op(‖rn(Tn − θ)‖) = op(1)

which converges in probability to 0. Now put everything together and use equation i

rn(φ(Tn)− φ(θ)) + rnφ
′(θ)(Tn − θ)

p→ 0

This concludes the proof for part 2)

Now, we note that rnφ
′(θ)(Tn − θ)

d→ φ′(θ)T so we apply Slutsky lemma to get that

rn(φ(Tn)− φ(θ))
d→ φ′(θ)T

Example 2: Xi
iid∼ P ,E(X) = θ =6= 0, E(‖X‖2) ≤ ∞, Cov(X) = Γ and φ(h) = 1

2‖h‖
2 Then

√
n(

1

n

k∑
i=1

Xi − θ)
d→ N(0,Γ)

Now, assume that ∆φ(θ) = θ So

√
n(

1

2
‖ 1

n

∑
Xi‖2 −

1

2
‖θ‖2) d→ N(0, θTΓθ)

Now if ‖θ‖2 = 0, all we get is that

√
n(

1

2
‖ 1

n

∑
Xi‖2)

p→ 0

♣

Remark A generalization of the delta method to higher order problems can be done with taylor
expansion with careful use of Op and op

Remark If φ′(θ) = 0, the higher order expansion allows us to get more powerful results and
faster rate fo convergences

Theorem 4. Let rn → 0 be deterministic, Suppose that rn(Tn − θ)
d→ T , Let φ : R → R be twice

differentiable at θ such that ∇φ(θ) = 0, then we get

r2n(φ(Tn)− φ(θ))
d→ 1

2
T T∇2φ(θ)T

where ∆2φ(θ) is the Hessian Matrix
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Proof As before we will do taylor expansion

φ(t) = φ(θ) +∇φ(θ)T (t− θ) +
1

2
(t− θ)T∇2φ(θ)(t− θ) +R(t− θ)

where R(h) = o(‖h‖2) as h→∞

r2nR(Tn = θ) = r2nOp(‖Tn − θ‖2)
p→ 0

So we have

r2n(φ(Tn)− φ(θ)) =
1

2
rn(Tn − θ)T∇2φ(θ)rn(Tn − θ)) + op(1)

So
r2n(φ(Tn)− φ(θ))

d→ T T∇2φ(θ)T

by continuous mapping

Example 3: KL-divergences and likelihood for Bernoulli random variable.

Dkl (P ||Q) =

∫
p log(

p

q
)dµ

where p, q are density with respect to µ We know that

Dkl (P ||Q) ≥ 0

and
Dkl (P ||Q) = 0

if and only if p = q Here we consider the Bernoulli: Pθ where X ∈ {0, 1}

Xn =

{
1 with probabilityθ

0 with probability 1− θ

Consider the estimator

θ̂ =
1

n

n∑
i=1

Xi

By CLT, we know that
√
n(θ̂ − θ) d→ N(0.θ(1− θ))

Now, we compute the KL-distance between

Dkl

(
Pθ̂||Pθ

)
φ(t) = Dkl (Pt||Pθ) = t log(

t

θ
) + (1− t) log(

1− t
1− θ

)

φ′(t) = log(
t

1− t
)− log(

θ

1− θ
)

We know that
φ′(θ) = 0

so we try

φ′′(t) =
1

t(1− t)
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φ′′(θ) =
1

θ(1− θ)

now, take rn =
√
n,Tn = θ̂, we have that

nDkl

(
Pθ̂||Pθ

) d→ 1

2

1

θ(1− θ)
T 2 =

1

2
Z2 =

1

2
χ2
1

♣
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