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1 Introduction

In this note, we give a presentation showing the importance, and relationship between, the modulis
of continuity of a stochastic process and certain growth-like properties of the (population) quantity
being modeled or optimized. Our treatment roughly follows van der Vaart and Wellner [1, Chapter
3.2], though we make a few simplifications in attempt to make the approach somewhat cleaner.

To set notation, let Θ be some parameter space with distance d, and let Rn : Θ → R be a
sequence of (random) risk functionals with expectation R(θ) := E[Rn(θ)]. A typical example of
such a process is when we have data Xi ∈ X and a loss function ` : Θ× X → R, for example, the

loss may be the negative log likelihood − log pθ(x) for some model pθ. We then draw Xi
iid∼ P , and

we define

Rn(θ) :=
1

n

n∑
i=1

`(θ,Xi) and R(θ) := E[`(θ,X)].

We would like to understand the convergence rate properties of θ̂n = argminθ∈ΘRn(θ) to θ0 :=
argminθ∈ΘR(θ), the population minimizer.

It is natural, based on a Taylor expansion, to assume that in a neighborhood of θ0, the population
risk grows at least quadratically (because ∇R(θ0) = 0). Thus, throughout this note, we assume
that there is a constant η > 0 and a growth constant ν > 0 such that

R(θ) ≥ R(θ0) + νd(θ, θ0)2 for θ ∈ Θ s.t. d(θ, θ0) ≤ η. (1)

With such a condition, it is possible to give rates of convergence of θ̂n to θ0, at least so long as the
random functions Rn do not have so much variability in a neighborhood of θ0 that they swamp the
quadratic growth away from θ0.

2 Rates of convergence and comparison of functions

Because we would like to understand minimizing the population risk R and finding θ0, we do not
particularly care if R(θ) and Rn(θ) are close. While having Rn(θ) ≈ R(θ) uniformly is sufficient to
guarantee that θ̂n → θ0, it is not necessary. Indeed, all we really care about is that Rn(θ) > Rn(θ0)
for θ sufficiently far from θ0. That is, as we expect to have roughly Rn(θ)−Rn(θ0) ≈ R(θ)−R(θ0),
where R(θ) ≥ R(θ0) + νd(θ, θ0)2, so that we hope that Rn(θ) > Rn(θ0) whenever d(θ, θ0)2 is large
enough that it swamps the stochastic error in Rn(θ) − Rn(θ0). Moreover, as long as θ̂n is close
enough to θ0, we can give stronger convergence guarantees, because we expect Var(Rn(θ)−Rn(θ0))
to be smaller than Var(Rn(θ)) by itself. A bit more precisely, we must have deviations roughly
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1√
n

√
Var(`(θ,X)) in any uniform estimate of R(θ), by the central limit theorem. However, if θ is

near θ0, then

Rn(θ)−Rn(θ0) = R(θ)−R(θ0) +OP

(
n−

1
2

√
Var(`(θ;X)− `(θ0;X))

)
,

and the latter variance may be substantially smaller than Var(`(θ,X)) when d(θ, θ0) is small.
With the above motivation in mind, as we wish to compare Rn(θ) − Rn(θ0) to R(θ) − R(θ0),

our first step in providing rates of convergence is to understand the modulus of continuity of the
process θ 7→ Rn(θ) in a neighborhood of θ0. We make the following definition.

Definition 2.1. Let Θδ := {θ ∈ Θ : d(θ, θ0) ≤ δ}. The expected modulus of continuity of the
process Rn in a radius δ around θ0 is

E

[
sup
θ∈Θδ

|(Rn(θ)−R(θ))− (Rn(θ0)−R(θ0))|

]
.

For notational convenience, we also define the error processes

∆(θ, x) := (`(θ, x)−R(θ))− (`(θ0, x)−R(θ0)) and

∆n(θ) := (Rn(θ)−R(θ))− (Rn(θ0)−R(θ0)).
(2)

Both of these processes are evidently mean zero.
We are most often concerned with upper bounds on the modulus of continuity relative to

1/
√
n—the typical central limit theorem rate. That is, we consider functions φ of the form that

E

[
sup
θ∈Θδ

|(Rn(θ)−R(θ))− (Rn(θ0)−R(θ0))|

]
≤ φ(δ)√

n

Often, these functions satisfy φ(δ) ≤ σδ, where σ is a type of standard deviation/variance measure
(though for fuller generality, we will consider functions φ(δ) = σδα for parameters α ∈ (0, 2)). An
example makes this more apparent.
Example 1: Let ` be L-Lipschitz in Θ ⊂ Rd and take the norm ‖·‖ as the distance function, that
is, |`(θ;x)− `(θ′;x)| ≤ L ‖θ − θ′‖. Recalling the comparison process (2), we then have

E [exp (λ∆(θ,X))] ≤ exp

(
λ2L2 ‖θ − θ′‖2

2

)
by the standard sub-Gaussian inequality for bounded random variables. Thus, letting N(Θδ, ‖·‖ , ε)
be the covering number of Θδ for the norm ‖·‖, we have

logN(Θδ, ‖·‖ , ε) ≤ d log

(
1 +

2δ

ε

)
and logN(Θδ, ‖·‖ , ε) = 0 for ε ≥ δ. Thus, a standard entropy integral calculation, using that√
n
L ∆n(θ) is a ‖·‖-sub-Gaussian process, yields

E

[
sup
θ∈Θδ

|∆n(θ)|

]
≤ c L√

n

∫ δ

0

√
logN(Θδ, ‖·‖ , ε)dε ≤ c

L
√
d√
n

∫ δ

0

√
log

(
1 +

2δ

ε

)
dε ≤ cL

√
d√
n
δ,

where c is a numerical constant. That is, we have modulus of continuity bound with φ(δ) = L
√
dδ,

or σ = L
√
d. ♣
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2.1 For intuition: non-stochastic bounds on differences in empirical risk

Because we would like to understand the relative differences between Rn and R, we begin for
intuition by assuming that we have the unconditional bound that

|∆n(θ)| ≤ φ(δ)√
n

whenever d(θ, θ0) ≤ δ.

Then intuitively, we must have d(θ̂n, θ0) small whenever the quadratic growth νd(θ, θ0)2 in R(θ)
away from θ0 dominates (or overcomes) the “stochastic” error φ(δ)/

√
n in our estimation.

Let us make this rigorous, and begin by assuming that d(θ, θ0) ≤ η, that is, θ is in the region
of quadratic growth (1) of R away from R(θ0), and let ν = 1 for simplicity and w.l.o.g. Now, let
δ = d(θ, θ0), and assume that Rn(θ) ≤ Rn(θ0), that is, θ has smaller empirical risk than θ0. Then
we have

Rn(θ) ≤ Rn(θ0) = Rn(θ0)−R(θ0) +R(θ) +R(θ0)−R(θ)︸ ︷︷ ︸
≤−d(θ,θ0)2

≤ Rn(θ0)−R(θ0) +R(θ)− d(θ, θ0)2,

where we have used the condition (1). Rearranging, we find that

d(θ, θ0)2 ≤ Rn(θ0)−R(θ0) +R(θ)−Rn(θ) ≤ |∆n(θ)| ≤ φ(δ)√
n
.

That is, we have the key inequality

δ2 ≤ φ(δ)√
n
. (3)

This inequality is the key insight to all of our considerations of moduli of continuity: if φ(δ) does
not grow as fast as δ2 and δ were large, this would contradict inequality (3), so δ = d(θ, θ0) must be
small. Said differently, for suitably large δ (“suitably large” will decrease as n grows), the quadratic
growth δ2 will eventually swamp the stochastic error φ(δ)/

√
n based on inequality (3).

More carefully, suppose that
φ(δ) ≤ σδα

for some α ∈ (0, 2). Then inequality (3) implies

δ2 ≤ σδα√
n
, or δ ≤

(
σ2

n

) 1
2(2−α)

.

2.2 Moduli of continuity and convergence guarantees

We now show how to make the (non-stochastic) heuristic argument of the preceding section rigorous.
Assume that we have the modulus of continuity bound

E

[
sup
θ∈Θδ

|∆n(θ)|

]
= E

[
sup
θ∈Θδ

|(Rn(θ)−R(θ))− (Rn(θ0)−R(θ0))|

]
≤ φ(δ)√

n
(4)

for all δ ≤ η, where η > 0 is the region of strong convexity of R (inequality (1)). Assume additionally
that φ(δ) ≤ σδα for some variance parameter σ and a power α ∈ (0, 2). Then we choose the rate
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δn to be the point at which the quadratic growth “dominates” the stochastic error in the modulus
of continuity (4), that is,

δ∗n := inf

{
δ ≥ 0 : δ2 ≥ φ(δ)√

n

}
. (5)

Noting that φ(δ) ≤ σδα, then we certainly have that

δ?n =

(
σ2

n

) 1
2(2−α)

is sufficient to satisfy this domination condition, that is, we have δ?n ≥ δ∗n. Moreover, we have
φ(δ∗n)/((δ∗n)2√n) ≤ 1, and similarly for δ?n.

Thus, at least intuitively, we expect that the rate of convergence of θ̂n to θ0 should be roughly of
order δ∗n ≤ δ?n, because this is the point at which the curvature of the risk dominates the stochastic
error in its estimation. We may formalize this in the following theorem.

Theorem 1 (Rates of convergence). Let δ∗n be the smallest dominating radius (5), where the
empirical risk Rn satisfies the modulus condition (4) and φ(δ) ≤ σδα. Assume also that θ̂n =

argminθ Rn(θ) is consistent, that is, θ̂n
p→ θ0. Then

d(θ̂n, θ0) = OP (δ∗n) = OP (δ?n) = OP

((
σ2

n

) 1
2(2−α)

)
.

Proof Our proof builds off of a so-called peeling argument, where we argue that the behavior of
the local relative errors ∆n(θ) is nice on shells around θ0. Indeed, for each n and all j ∈ N, define
the shells

Sj,n :=
{
θ ∈ Θ : δ∗n2j−1 ≤ d(θ, θ0) ≤ δ∗n2j

}
.

Recall the definition η > 0 of the radius in the quadratic growth condition (1). Now, fix any t ∈ R+,
and consider the event that d(θ̂n, θ0) ≥ 2tδ∗n. Then either d(θ̂n, θ0) ≥ η or we have θ̂n ∈ Sj,n for
some j with j ≥ t but 2jδ∗n ≤ η. In particular,

P
(
d(θ̂n, θ0) ≥ 2tδ∗n

)
≤

∑
j:j≥t,2jδ∗n≤η

P(θ̂n ∈ Sj,n) + P(d(θ̂n, θ0) ≥ η). (6)

The final term is o(1), so we may ignore it in what follows.
Now, consider the event that θ̂n ∈ Sj,n. This implies that there exists some θ ∈ Sj,n such that

Rn(θ) ≤ Rn(θ0), in turn implying

Rn(θ) ≤ Rn(θ0)−R(θ0) +R(θ) +R(θ0)−R(θ) ≤ Rn(θ0)−R(θ0) +R(θ)− νd(θ, θ0)2,

where we have used the growth condition (1) that R(θ) ≥ R(θ0) + νd(θ, θ0)2, which holds for
θ ∈ Sj,n as d(θ, θ0) ≤ η. Noting that d(θ, θ0)2 ≥ (δ∗n)222j−2, we rearrange the preceding inequality

to obtain that θ̂n ∈ Sj,n implies

ν(δ∗n)222j−2 ≤ Rn(θ0)−R(θ0)− (Rn(θ)−R(θ)) ≤ sup
θ∈Sj,n

|∆n(θ)|.

Returning to the probability sum (6), we thus have

P(θ̂n ∈ Sj,n) ≤ P

(
sup
θ∈Sj,n

|∆n(θ)| ≥ ν(δ∗n)222j−2

)
≤

E[supθ∈Sj,n |∆n(θ)|]
ν(δ∗n)222j−2

.
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But of course, by assumption (4), this in turn has the bound

P(θ̂n ∈ Sj,n) ≤ 22−2j

ν

φ(2jδ∗n)

(δ∗n)2
√
n
≤ 22−2j · 2jα

ν
· φ(δ∗n)

(δ∗n)2
√
n
≤ 22−2j · 2jα

ν

by the definition (5) of the critical radius for δ∗n.
Summing inequality (6), we thus obtain

P
(
d(θ̂n, θ0) ≥ 2tδ∗n

)
≤ 4

ν

∑
j≥t

2−j(2−α) + o(1).

For any ε > 0, we may take t sufficiently large that
∑

j≥t 2−j(2−α) ≤ ε, which is the definition of

d(θ̂n, θ0) = OP (δ∗n).
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