
Statistics 300B Winter 2019 Final Exam
Due 24 Hours after receiving it

Directions: This test is open book and open internet, but must be done without con-
sulting other students. Any consultation of other students or people is an honor code
violation. Cite any results you use from the literature that we did not explicitly prove in
class or homework.
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Question 0.1 (Distributed minimization and inference): Consider a loss minimization problem
with loss ` : Rd ×Z → R+, where we wish to minimize the population loss (risk)

L(θ) := E[`(θ, Z)].

Assume that `(θ, z) is convex in θ for all z ∈ Z and that its first and second derivatives ∇θ`(θ, z)
and ∇2`(θ, z) are M1(z) and M2(z)-Lipschitz, respectively, where E[Mi(Z)2] < ∞.1 At the point
θ? = argminθ L(θ), we have ∇2L(θ?) � 0, that is, the Hessian is positive definite.

You are given a large sample Z1, . . . , ZN , split into equal-sized batches {Bk}mk=1 of size n =
N/m across m different computers (machines), where ∪kBk = {1, . . . , N}. To save computation
and communication you decide to construct an estimator θN of θ? by aggregating independently
computed local minimizers, for each k defining

θ̂k := argmin
θ

L̂k(θ), L̂k(θ) =
1

|Bk|
∑
i∈Bk

`(θ, Zi)

and then setting θN = 1
m

∑m
k=1 θ̂

k. You may assume that m is fixed for this problem.

(a) Give the asymptotic distributions of

√
n

 θ̂
1 − θ?

...

θ̂m − θ?

 and
√
N(θN − θ?).

(b) You decide you would like to use your subsampled estimators and θN to construct confidence
intervals for various functions of θ?. For a fixed v ∈ Rd, define σ2v := 1

m−1
∑m

k=1(v
T (θ̂k− θN ))2.

Give the asymptotic distribution of
vT (θN − θ?)

σv
.

For α ∈ (0, 1), give a confidence interval CN,v,α so that

P
(
vT θ? ∈ CN,v,α

)
→ 1− α.

(Hint: If W1, . . . ,Wm
iid∼ N(0, 1) and PmW = 1

m

∑m
i=1Wi, what is the distribution of the

normalized quantity
√
mPmW/

√
1

m−1
∑m

i=1(Wi − PmW )2?)

(c) Suppose that m < d, the dimension of the problem. For your confidence sets CN,v,α, compute

lim inf
N→∞

P(vT θ? ∈ CN,v,α for all v).

1 You may assume more moments if you wish; this is not important
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Question 0.2 (Symmetrization, Lipschitz functions, and a multiclass ULLN): Consider a mul-
ticlass classification problem with data pairs (X,Y ) ∈ X × [k], where [k] = {1, . . . , k}. Let
L : Rk × [k] → R+ be a loss function, so that for a prediction f(x) ∈ Rk with true label y,
we suffer loss L(f(X), Y ). For example, we might use the logistic loss

Llog(α, y) = log

(
k∑
i=1

exp(αi − αy)

)
.

The idea is that if αy � αi for i 6= y, then L(α, y) ≈ 0. We assume throughout this question that

L(0, y) = L(0, y′) =: L(0) for all y, y′,

that is, the all-zeros prediction suffers constant loss. We assume that L(·, y) is 1-Lipschitz w.r.t.
the `2-norm, which is the case for Llog, that is, |L(α, y)− L(β, y)| ≤ ‖α− β‖2 for α, β ∈ Rk.

(a) Let F be a collection of functions mapping X → R. Show that for any fixed {xi, yi}ni=1,

E

[
sup
f∈F

∣∣∣∣ n∑
i=1

εiL(f(xi), yi)

∣∣∣∣
]
≤ E

[∣∣∣∣ n∑
i=1

εiL(f0(xi), yi)

∣∣∣∣
]

+ CE

[
sup
f∈F

∣∣∣∣ n∑
i=1

〈wi, f(xi)− f0(xi)〉
∣∣∣∣
]
,

where εi
iid∼ Uni{±1}, wi

iid∼ N(0, Ik), and f0 is an arbitrary (fixed) element of F .

(b) Let F be the function class consisting of

fθ(x) = (〈θ1, x〉, 〈θ2, x〉, . . . , 〈θk, x〉) ∈ Rk (1)

where the vectors θi each belong to the `2-ball of radius r. That is, ‖θi‖2 ≤ r for i = 1, . . . , k.
Show that

E

[
sup
f∈F

∣∣∣∣ n∑
i=1

εiL(f(xi), yi)

∣∣∣∣
]
≤
√
nL(0) + Ckr

√√√√ n∑
i=1

‖xi‖22.

(c) Warning: This is probably the most challenging question on the exam. If the number of classes
k is very large, we may wish for somewhat sparser predictive sets. Suppose the functions f are
linear (i.e. of the form (1)), but the θi belong to the set

Θ`1/`2 :=

{
θ1, . . . , θk ∈ Rd |

k∑
i=1

‖θi‖2 ≤ r

}
.

Show that for F = {fθ | θ ∈ Θ`1/`2},

E

[
sup
f∈F

∣∣∣∣ n∑
i=1

εiL(f(xi), yi)

∣∣∣∣
]
≤
√
nL(0) + Cr

√
tr(XTX)(2 log k + 1),

where X ∈ Rn×d is the data matrix with rows xTi . Note that tr(XTX) =
∑n

i=1 ‖xi‖
2
2.

Hint: In our solution it was useful to compute E[exp(λ ‖Xw‖22)] for w ∼ N(0, In).

(d) Suppose we receive data in pairs (Xi, Yi)
iid∼ P , where E[‖Xi‖22] ≤ b2 for all i, that k ≥ 2, and

that we use the logistic loss Llog. Prove that for the same function class F as in part (c)

E

[
sup
f∈F

∣∣∣PnLlog(f(X), Y )− PLlog(f(X), Y )
∣∣∣] ≤ C [ log k√

n
+

√
r2b2 log k√

n

]
.
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Question 0.3 (Growth functions for non-convex problems): In the phase retrieval problem2,
we wish to recover a signal θ? ∈ Rn based on (noisy) observations of the magnitudes of its inner
products 〈Xi, θ〉 with a set of n vectors X1, . . . , Xn. In physical detectors, we observe a number
of photons Yi ∈ N that scale (roughly) with 〈Xi, θ

?〉2, where in fact, the distribution of Yi given
〈Xi, θ

?〉2 is
Yi ∼ Poisson(〈Xi, θ

?〉2).

Recall that Y ∼ Poisson(λ) if the p.m.f. of Y is

pλ(k) =
e−λλk

k!
.

Let us consider the (conditional) expectation of the log loss of our measurements, that is, define

ϕi(θ) := Eθ? [− log p〈Xi,θ〉2(Yi)],

where the expectation is taken over Yi ∼ Poisson(〈Xi, θ
?〉2).

(a) Suppose that Y ∼ Poisson(λ0) for some λ0 > 0. Show that

E[− log pλ(Y )]− E[− log pλ0(Y )] ≥ 1

4
min

{
|λ− λ0|,

(λ− λ0)2

λ0

}
.

(b) Now we consider the actual (conditional) losses for the parameter θ. Show that

ϕi(θ)− ϕi(θ?) ≥
1

4
min

{
|〈Xi, θ − θ?〉〈Xi, θ + θ?〉|, |〈Xi, θ − θ?〉〈Xi, θ + θ?〉|2

〈Xi, θ?〉2

}
.

(c) Suppose that the Xi ∈ Rd are random vectors satisfying

P(|〈Xi, v〉| ≥ ε ‖v‖2) ≥ 1− ε and E[〈Xi, θ
?〉2] ≤M2 ‖θ?‖22

for all ε ≥ 0 and all vectors v ∈ Rd. Show that for (numerical) constants c0, c1, for any δ ∈ (0, 1),
if √

d+ log 1
δ

n
≤ c0

then with probability at least 1− δ, simultaneously for all θ ∈ Rd,

1

n

n∑
i=1

(ϕi(θ)− ϕi(θ?)) ≥ c1 min

{
dist(θ, θ?) ·max {‖θ‖2 , ‖θ

?‖2} ,
dist(θ, θ?)2

M2

}
,

where dist(θ, θ?) = mins∈{±1} ‖θ + sθ?‖2 is the distance (ignoring sign) between θ and θ?.

2Technically, we do not work in the complex plane in this problem so we are actually addressing the sign retrieval
problem.
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Question 0.4 (Rates of convergence for sparse estimators without subgaussian noise): Assume
we have the sparse linear model

Y = Xθ? + ε

X ∈ Rn×d, where εi are independent, mean-zero, and satisfy

E[|εi|q] ≤ σq

for some 2 ≤ q <∞. Assume that the data matrix

X = [x1 · · · xd] ∈ Rn×d

has normalized columns xj satisfying 1
n

∑n
i=1 |xji|q = 1, and that it satisfies the restricted strong

convexity condition

1

n
‖X∆‖22 ≥ µ ‖∆‖

2
2 for all ∆ ∈ C3(S) :=

{
∆ ∈ Rd : ‖∆Sc‖1 ≤ 3 ‖∆S‖1

}
.

Here S ⊂ [d] denotes the support S = {j ∈ [d] : θ?j 6= 0}, and |S| ≤ k � d. Let θ̂n be the Lasso
estimator

θ̂n := argmin
θ

{
1

2n
‖Xθ − Y ‖22 + λn ‖θ‖1

}
.

Let δ > 0.

(a) Give a choice of λn and the tightest quantity

rn = rn(δ, µ, q, σ, n, k, d)

(that is, as a function of the probability δ, restricted strong convexity constant µ, moments σ
and q of the noise, and dimension/sample sizes n, k, d) and you can such that

P
(
‖θ̂n − θ?‖2 ≥ rn

)
≤ δ.

(b) How large must the moment q be so that you recover the standard Lasso guarantee (when εi
are i.i.d. σ2-sub-Gaussian) of

‖θ̂n − θ?‖2 ≤
cσ
√
k log d

δ√
n

in your rate rn?
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Question 0.5: Did you take a 5 minute walk during this exam to make sure to stretch your legs?
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