
Statistics 300B Winter 2018 Final Exam
Due 24 Hours after receiving it

Directions: This test is open book and open internet, but must be done without con-
sulting other students. Any consultation of other students or people is an honor code
violation. Cite any results you use from the literature that we did not explicitly prove in
class or homework.
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Question 1 (Asymptotics and an integrated delta method): Let Tn be an estimator satisfying

rn(Tn − θ)
d→ T ∈ Rd for some random variable T and a non-random sequence rn → ∞. Assume

Tn
a.s.→ θ. Let µ be a finite measure on a set X and for z : X → R, let

F (z) =

∫
f(x, z(x))dµ(x),

where f : X × R→ R. Let φ : Rd × X → R be twice differentiable in its first argument, where for
t, θ ∈ Rd,

φ(t, x) = φ(θ, x) + 〈∇φ(θ, x), t− θ〉+
1

2
(t− θ)T∇2φ(θ̃, x)(t− θ)

for some θ̃ ∈ [t, θ] = {λt+ (1− λ)θ | λ ∈ [0, 1]}. Assume that f satisfies the Lipschitz condition

|f(x, a)− f(x, b)| ≤ L(x)|a− b| for a, b ∈ R

where L is square integrable, that is,
∫
L(x)2dµ(x) <∞. Define the process

Zn(x) := rn(φ(Tn, x)− φ(θ, x)),

so that Zn : X → R. Assume that φ is smooth enough around θ that∫
sup
‖t−θ‖≤ε

∣∣∣∣∣∣∇2φ(t, x)
∣∣∣∣∣∣2

op
dµ(x) <∞

for all small enough ε > 0, and that
∫
‖∇φ(θ, x)‖2 dµ(x) <∞. Show that

F (Zn)
d→ Ffo(T )

where Ffo : Rd → R is defined by

Ffo(t) :=

∫
f(x, 〈∇φ(θ, x), t〉)dµ(x).

Hint: You do not need any of the empirical process results we have proved to answer this question.
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Question 2 (Logistic regression): Suppose that we observe data in pairs (x, y) ∈ Rd × {±1},
where the data come from a logistic model with X ∼ P0 and

pθ(y | x) =
1

1 + e−yxT θ
,

with log loss `θ(y | x) = log(1 + exp(−yxT θ)). Let θ̂n minimize the empirical logistic loss,

Ln(θ) :=
1

n

n∑
i=1

`θ(Yi | Xi) =
1

n

n∑
i=1

log(1 + e−YiX
T
i θ)

for pairs X,Y drawn from the logistic model with parameter θ0. Let θ̂n = argminθ Ln(θ). Assume
in addition that the data Xi ∈ Rd are i.i.d. and satisfy

E[XiX
T
i ] = Σ � 0 and E[‖Xi‖42] <∞.

That is, the second moment matrix of the Xi is positive definite.

(a) Let L(θ) = E0[`θ(Y | X)] denote the population logistic loss. Show that

∇2L(θ0) � 0.

that is, the Hessian of L at θ0 is positive definite. You may assume that the order of differen-
tiation and integration may be exchanged.

(b) Under these assumptions, argue that θ̂n is consistent for θ0, that is, that

θ̂n
a.s.→ θ0.

For the remainder of the question, assume that data are 1-dimensional and satisfy x ∈ {−1, 1}, as
it makes things simpler.

(c) Give the asymptotic distribution of
√
n(θ̂n−θ0). You may assume that θ̂n is consistent. In one

sentence or so, describe the effect of the parameter value θ0 on the efficiency of θ̂n.

(d) In many scenarios—especially large-scale prediction problems—we do not particularly care
about the value of the parameter, but we wish to make accurate predictions—with confidence—
of a label y given data x. For example, we might compare our predicted logistic model

p
θ̂n

(y | x) =
1

1 + exp(−yθ̂nx)

to the true logistic prediction pθ0(y | x). With this in mind, define the risk

R(θ) := E0 [|pθ(Y | X)− pθ0(Y | X)|]

the expected absolute error in our predictions of labels (when the true distribution is Pθ0).

What is the asymptotic distribution of
√
nR(θ̂n)? In one sentence or so, describe the effect of

the parameter value θ0 on the efficiency of θ̂n.

3



Question 3 (1 bit estimators of location): Let f be a symmetric continuous density with f(x) > 0
for all x ∈ R. Suppose we receive data Xi ∈ R drawn i.i.d. from the location family of distributions
with densities f(·−θ), θ ∈ R, where f : R→ R+ is Lipschitz continuous, and the goal is to estimate
θ. However, there is an additional wrinkle: for reasons of communication and reducing memory
and power usage, we may only observe a single bit associated with each Xi, that is, we observe
Zi ∈ {0, 1}, where each Zi is a function of Xi.

To make this a bit more concrete, we assume that each Zi is in the form of a threshold, that is,

Zi := 1 {Xi ≤ ti} (1)

where ti ∈ R is real-valued.

(a) Assume that for each i, ti ≡ t is a constant and that we observe Z1, . . . , Zn of the form (1).
Give a

√
n-consistent estimator Tn = Tn(Z1, . . . , Zn; t) of θ based on Z1, . . . , Zn and t.

(b) What is the asymptotic distribution of your estimator Tn?

(c) Now, suppose that we have a sample {Xi}Ni=1 of size N , and we divide it into two parts:
S(1) = {X1, . . . , Xn} and S(2) = {Xn+1, . . . , XN}. On the first sample S(1), let Zi = 1 {Xi ≤ t}
as in part (a). Then define

t̃n := Tn(Z1, . . . , Zn; t)

where Tn(·) is your estimator from part (a). Now, let

Zi = 1
{
Xi ≤ t̃n

}
for i ∈ {n + 1, . . . , N}. Assume that n/N → 0 as N → ∞. Construct an estimator θ̂N , a
function of Zn+1, . . . , ZN and t̃n, such that

√
N(θ̂N − θ0)

d→ N

(
0,

1

4f(0)2

)
when the data Xi are i.i.d. with density f(· − θ0). Prove that you achieve this efficiency.

Hint: The Berry-Esseen theorem may be useful. To remind (or define this) for you, the Berry-
Esseen theorem is as follows: if Yi are i.i.d. and E[|Yi − E[Yi]|3] <∞, then

sup
t∈R

∣∣∣∣∣P
(√

n(Y n − E[Y ])√
Var(Y )

≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ E[|Y − E[Y ]|3]

Var(Y )3/2
· 1√

n

where Φ is the standard normal CDF and Y n = 1
n

∑n
i=1 Yi is the sample mean.
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Question 4 (Stochastic convex optimization): Let θ ∈ Rd and define

f(θ) := E[F (θ;X)] =

∫
X
F (θ;x)dP (x)

be a function, where F (·;x) is convex in its first argument (in θ) for all x ∈ X , and P is a probability
distribution. We assume F (θ; ·) is integrable for all θ. Recall that a function h is convex

h(tθ + (1− t)θ′) ≤ th(θ) + (1− t)h(θ′) for all θ, θ′ ∈ Rd, t ∈ [0, 1].

Let θ0 ∈ argminθ f(θ), and assume that f satisfies the following ν-strong convexity guarantee:

f(θ) ≥ f(θ0) +
ν

2
‖θ − θ0‖2 for θ s.t. ‖θ − θ0‖ ≤ β,

where β > 0 is some constant. We also assume that the instantaneous functions F (·;x) are L(x)-
Lipschitz continuous over the set {θ ∈ Rd | ‖θ − θ0‖ ≤ β}, meaning that

|F (θ;x)− F (θ′;x)| ≤ L(x)
∥∥θ − θ′∥∥ when ‖θ − θ0‖ ≤ β,

∥∥θ′ − θ0

∥∥ ≤ β.
We assume the (local) Lipschitz constant is sub-Gaussian, that is,

E[L(X)] <∞ and E [exp (λ(L(X)− E[L(X)]))] ≤ exp

(
σ2

Lipλ
2

2

)
for all λ ∈ R.

We also make the following assumption on the relative errors in F (θ;X) and F (θ0;X). Define
∆(θ, x) = [F (θ;x)− f(θ)]− [F (θ0;x)− f(θ0)]. Then

log (E [exp (λ∆(θ,X))]) ≤ λ2σ2

2
‖θ − θ0‖2 for all λ ∈ R if ‖θ − θ0‖ ≤ β.

Let X1, . . . , Xn be an i.i.d. sample according to P , and define fn(θ) := 1
n

∑n
i=1 F (θ;Xi) and let

θ̂n ∈ argmin
θ∈Θ

fn(θ).

Show that there exists a numerical constant C such that for all suitably large n,

P
(
‖θ̂n − θ0‖2 ≥ C

σ2

ν2n

[
log

1

δ
+ d · Õ(1)

])
≤ δ + exp

(
−nE[L(X)]2

Cσ2
Lip

)

for all δ ∈ (0, 1), where Õ(1) hides constants logarithmic in n, E[L(X)], and ν−1. (You do not need

to show this, but n such that C σ2

ν2n
[log 1

δ + d · Õ(1)] ≤ β2 is sufficiently large.)

Hint 1: You may use the following facts, which are proved in Question 7.10.

i. For any convex function h, if there is some r > 0 and a point θ0 such that h(θ) > h(θ0) for all
θ such that ‖θ − θ0‖ = r, then h(θ′) > h(θ0) for all θ′ with ‖θ′ − θ0‖ > r.

ii. The functions f and fn are convex.

iii. The point θ0 is unique.

Hint 2: The bounded differences inequality will not work here. You should show that fn is
locally Lipschitz with high probability.
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