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1 Background

Question 1.1: Let pn and qn be (a sequence of) densities with respect to some base measure µ.
Define the likelihood ratio as

Ln(x) :=


qn(x)/pn(x) if pn(x) > 0

1 if pn(x) = qn(x)

+∞ otherwise.

Let Xn be distributed according to the distribution with density pn. Show that Ln(Xn) is uniformly
tight.

Question 1.2: Let Xn be uniformly distributed on the set {1/n, 2/n, . . . , 1} and X be uniformly

distributed on [0, 1]. Show that Xn
d→ X as n→∞. Does Xn

p→ X?

Question 1.3: Let Fn : R→ [0, 1] be a sequence of non-decreasing functions converging uniformly
to some F : R→ [0, 1], a continuous and strictly increasing function that is onto (0, 1). Show that
for all ε ∈ (0, 1

2), we have

sup
α

{∣∣F−1
n (α)− F−1(α)

∣∣ : ε ≤ α ≤ 1− ε
}
→ 0.

Here we define G−1(α) = inf{x ∈ R : G(x) ≥ α} for any non-decreasing function G.

Question 1.4: Let Xi ∈ R be i.i.d. according to a distribution with CDF F , which for simplicity
we assume to be continuous. Let Fn be the empirical CDF given by Fn(t) = 1

n

∑n
i=1 1 {Xi ≤ t}.

Without appealing to the Glivenko-Cantelli theorem, show that

sup
t∈R
|Fn(t)− F (t)| p→ 0.

Hint: Use the fact that F and Fn are non-decreasing and consider subsets of R.

Question 1.5: Let X1, . . . , Xn be drawn i.i.d. Beta(θ, 1) for some θ > 0. Letting Xn = 1
n

∑n
i=1Xi

denote the sample mean and θ̂n = Xn

1−Xn
, give the limiting distribution of the sequence

√
n
(
θ̂n − θ

)
or demonstrate that it does not exist.

Question 1.6: Let {Xn
i }, i = 1, . . . , n and n ∈ N be a triangular array of random variables,

where Xn
i

iid∼ Bernoulli(θn) and θn = 1/
√
n. Define θ̂n = 1

n

∑n
i=1X

n
i . Is n3/4(θ̂n−θn) asymptotically

normal? If so, give the limiting mean and variance, and if not, demonstrate why not.

Question 1.7 (Moment generating function background): A mean zero random variable X is

σ2-sub-Gaussian if E[exp(λX)] ≤ exp(λ
2σ2

2 ) for all λ ∈ R.

(a) Show that if Z is mean-zero Gaussian with variance σ2, then E[exp(λZ)] = exp(λ
2σ2

2 ).

(b) Show that if Xi, i = 1, . . . , n, are i.i.d. mean zero σ2-sub-Gaussian random variables, then
E[maxi≤nXi] ≤

√
2σ2 log n.
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Question 1.8: Let ‖·‖TV be the total variation distance, that is,

‖P −Q‖TV = sup
A
|P (A)−Q(A)|

for probability distributions P and Q. Let µ be any measure such that P � µ and Q � µ, and
let p and q be the densities of P and Q with respect to µ. Show the following equalities, where ∧
denotes min and ∨ denotes max.

(a) 2 ‖P −Q‖TV =
∫
|p− q|dµ.

(b) sup‖f‖∞≤1

∫
f(x)(dP (x)− dQ(x)) = 2 ‖P −Q‖TV.

(c) 2 ‖P −Q‖TV =
∫

(p− q)+ dµ+
∫

(q − p)+ dµ.

(d) ‖P −Q‖TV =
∫

(p ∨ q)dµ− 1.

(e) ‖P −Q‖TV = 1−
∫

(p ∧ q)dµ.

Question 1.9: Let P,Q have densities p, q w.r.t. a measure µ. The Hellinger distance dhel between
P and Q is defined by (its square)

d2
hel(P,Q) :=

1

2

∫
(
√
p−√q)2dµ.

Show that

d2
hel(P,Q) ≤ ‖P −Q‖TV ≤ dhel(P,Q)

√
2− d2

hel(P,Q).

Question 1.10 (Reproducing kernel Hilbert spaces): A vector space H is a Hilbert space if it
is a complete normed vector space, with norm ‖·‖, and there is an inner product 〈·, ·〉 such that
〈u, u〉 = ‖u‖2 for u ∈ H. In this question, we will investigate the construction of one type of Hilbert
space known as a reproducing kernel Hilbert space (RKHS).

An RKHS H is a collection of functions f : X → R, where X is a measurable space, equipped
with an inner product 〈·, ·〉 on H. In addition to the inner product 〈·, ·〉, such Hilbert spaces are
equipped with what is known as the representer of evaluation, that is, a collection of functions rx
indexed by x ∈ X such that rx ∈ H for each x, i.e. rx : X → R, and

〈f, rx〉 = f(x)

for all f ∈ H and x ∈ X .
Let X be a (measurable) space. A function k : X × X → R is a kernel if it is positive definite,

meaning that for all n ∈ N and distinct xi ∈ X , the kernel (or Gram) matrix

K :=


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
. . .

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)


is symmetric and positive semidefinite (PSD) (so k(x, x′) = k(x′, x) for all x, x′). That is, for all
α ∈ Rn, we have α>Kα ≥ 0. Now, consider the class of functions H0, where f ∈ H0 maps X → R,
defined by the linear span of {k(x, ·) | x ∈ X}. (That is, if f ∈ H0 then f(x) =

∑m
i=1 αik(x, xi) for
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some m ∈ N, α ∈ Rm, xi ∈ X .) For f(·) =
∑m

i=1 αik(·, xi) and g(·) =
∑n

j=1 βjk(·, xj), define an
inner product on H0 by

〈f, g〉 =

〈
m∑
i=1

αik(·, xi),
n∑
j=1

βjk(·, zj)

〉
:=
∑
i,j

αiβjk(xi, zj).

Define H to be the completion of H0 for this inner product, that is, we define f ∈ H by

f(x) := lim
n→∞

fn(x) (1.1)

for Cauchy sequences {fn}n∈N ⊂ H0 (which are Cauchy with respect to the inner product and norm
on H0).

(a) Show that k has the reproducing property for H, that is, for f ∈ H and x ∈ X ,

〈f, k(·, x)〉 = f(x),

and that the limit (1.1) exists.

(b) Show that if H is an RKHS with representer of evaluation rx, then

k(x, z) := 〈rx, rz〉

defines a valid kernel (i.e. it is positive definite and symmetric, and 〈f, k(·, x)〉 = f(x) for all
x ∈ X ).

Another view of RKHS’s is in terms of feature maps. Let F be a Hilbert space with inner
product 〈·, ·〉F , which we call the feature space. It is a theorem (known as Mercer’s theorem) that
if k is a positive definite kernel, there is a Hilbert space F and function ϕ : X → F such that
k(x, z) = 〈ϕ(x), ϕ(z)〉F . Of course, by our construction above, given a PSD function (kernel) k and
associated RKHS H, we can always take ϕ(x) = k(·, x) and F = H directly.

(c) Let ϕ : X → F for a Hilbert (feature) space F . Show that k(x, z) = 〈ϕ(x), ϕ(z)〉F is a valid
kernel.

(d) Consider the Gaussian or Radial Basis Function (RBF), defined on Rd × Rd by

k(x, z) = exp

(
−1

2
‖x− z‖22

)
.

Exhibit a function φ : R→ C and distribution P on Rd such that

k(x, z) = EP [φ(W>x)∗φ(W>z)] for W ∼ P,

where ∗ denotes the complex conjugate. Is k a valid kernel?

(e) Consider the min function, defined on R+ by

k(x, z) = min{x, z}.

Exhibit a function φ : R2 → R such that

k(x, z) =

∫ ∞
0

φ(x, t)φ(z, t)dt.

Is k a valid kernel?
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Question 1.11: Let X be a non-negative random variable. Show that for all θ ∈ [0, 1], we have

P(X ≥ θE[X]) ≥ (1− θ)2E[X]2

E[X2]
.

It may be easier to show the stronger inequality

P(X ≥ θE[X]) ≥ (1− θ)2 E[X]2

E[X2]− θ(2− θ)E[X]2
.

Question 1.12: Consider a triangular array of random vectors {Xn
i }, i = 1, . . . , n, where for

a dimension d = d(n) we have Xn
i ∈ Rd and the dimension satisfies the limit d/n = d(n)/n →

γ ∈ (0, 1) as n → ∞. For each n ∈ N, let Pn be a distribution on Rd, where for X ∼ Pn we
have E[X] = 0d, the zeros vector in Rd, E[XX>] = Cov(X) = Id, and the coordinates of X are
independent and satisfy E[(X)4

j ] = τ4, that is, the coordinates have 4th moment τ4 < ∞. We

assume that Xn
i

iid∼ Pn for each n.

(a) Does

1√
n

n∑
i=1

Xn
i

have a limit distribution as n→∞? If so, what is it?

(b) Define the function
h(w, x, y, z) = 〈w, x〉〈y, z〉 = (w>x)(y>z).

For indices i, j, k, l ∈ N and Xm
iid∼ Pn so that X ∈ Rd, compute

E[h(Xi, Xj , Xk, Xl)].

Hint: The only cases that matter are when i = j = k = l, i = j and k = l, i = k and j = l, or
when at least one index is distinct from all the others.

(c) Define the statistic

Vn :=
1

n4

∑
i,j,k,l≤n

h(Xn
i , X

n
j , X

n
k , X

n
l ).

Show that
E[Vn] = γ2 + o(1)

as n→∞.

(d) Does ∥∥∥∥∥ 1√
n

n∑
i=1

Xn
i

∥∥∥∥∥
2

2

have a limiting distribution as n→∞ (here, do not rescale any of the quantities above)? If so,
what is it? Hint: One approach is to use the result of Question 1.11.

5



(e) Let m ∈ N be a fixed positive integer. Let {wni }mi=1 ⊂ Rd be a collection of m distinct vectors,
defined for each n, with ‖wni ‖2 = 1 and 〈wni , wnj 〉 = 0 if i 6= j.1 Give the limiting distribution
of

max
j≤m

〈
wnj ,

1√
n

n∑
i=1

Xn
i

〉
.

Hint: Use the Lindeberg central limit theorem.

1Assume n is large enough that this is possible.
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2 Convex Analysis and Statistics

Question 2.1 (One-dimensional Jensen’s inequality): Let X be a real-valued random variable
with E[|X|] <∞ and f : R→ R ∪ {+∞} be a convex function, meaning that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for x, y ∈ R, λ ∈ [0, 1].

Let dom f = {x : f(x) < +∞}, which is convex (it is an interval, a fact you may use to answer this
question). Any convex function f is continuous on the interior of its domain.

(a) Let I ⊂ R be a non-empty interval. Show that f : I → R is convex if and only if for any
x0 ∈ I, the slope function

s(x) :=
f(x)− f(x0)

x− x0

is non-decreasing on I \ {x0}. [Hint: For y ≥ x > x0, write x = λy + (1− λ)x0]

(b) Define the left and right derivatives

f ′left(x) := lim sup
t↓0

f(x)− f(x− t)
t

and f ′right(x) := lim inf
t↓0

f(x+ t)− f(x)

t
.

Show that

f ′left(x) = sup
t>0

f(x)− f(x− t)
t

and f ′right(x) = inf
t>0

f(x+ t)− f(x)

t
.

(c) Show that f ′left(x) ≤ f ′right(x).

(d) Show that if we define the subgradient set as the interval ∂f(x) = [f ′left(x), f ′right(x)], then
f(y) ≥ f(x) + g(y − x) for all g ∈ ∂f(x).

We say that f is strictly convex at the point x if for all x0, x1 6= x and λ ∈ (0, 1) such that
λx0 + (1− λ)x1 = x, we have f(x) < λf(x0) + (1− λ)f(x1).

(e) Prove the following stronger version of Jensen’s inequality: for any convex f with E[X] ∈ dom f ,
we have E[f(X)] ≥ f(E[X]). If f is strictly convex at E[X], then E[f(X)] = f(E[X]) if and
only if X = E[X] with probability 1.

Question 2.2: Let P and Q be distributions on a common measurable space X , and let µ be a
measure such that P,Q � µ (for example, µ = P + Q suffices). Let p = dP

dµ and q = dQ
dµ be the

densities of P and Q, respectively. The KL-divergence between P and Q is

Dkl (P ||Q) :=

∫
X
p(x) log

p(x)

q(x)
dµ(x).

Show that Dkl (P ||Q) ≥ 0, and Dkl (P ||Q) = 0 if and only if P = Q. [Hint: Jensen’s inequality. You
may use that if f is convex, then f ′′(t) > 0 for almost all t implies that f is strictly convex.]

Question 2.3 (Nice properties of exponential families): Let pθ be an exponential family density
(with respect to some base measure µ on X ) the form

pθ(x) = exp (〈θ, T (x)〉 −A(θ))

where A(θ) = log
∫

exp(〈θ, T (x)〉)dµ(x) and T : X → Rd. You may assume that A is infinitely
differentiable on Θ = domA := {θ ∈ Rd : A(θ) < ∞}, which is open and convex, and you may
interchange integration and expectation without comment. (This is true generally for exponential
family models.)
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(a) Prove that θ 7→ A(θ) is a convex function. [Hint: Hölder’s inequality.]

(b) Show that if∇2A(θ) � 0, that is, ∇2A(θ) is strictly positive definite for all θ, then the parameter
θ is identifiable. [Hint: Use the KL-divergence.]

Question 2.4 (Fun with projections): In this problem, you will (as I threatened in class) prove
the existence of projections in Hilbert spaces. We will use real Hilbert spaces. A real Hilbert space
is a vector space V with an inner product 〈v, w〉 that is linear in its first and second arguments,
and we define the norm ‖v‖2 = 〈v, v〉, and V is complete, meaning that Cauchy sequences in V
converge.

Let C ⊂ V be a closed convex set that does not contain 0. Define M = infx∈C ‖x‖. We will
show that this infimum is uniquely attained at a point xC satisfying

〈xC , y − xC〉 ≥ 0 for all y ∈ C.

(a) Prove the parallelogram identity, that is, that 1
2 ‖x− y‖

2 + 1
2 ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

(b) Let xn ⊂ C be a sequence with ‖xn‖2 → infx∈C ‖x‖2. Show that xn is a Cauchy sequence.

(c) Argue (in one line) that the limit xC of the sequence xn from part (b) belongs to C.

(d) Show that xC satisfies 〈xC , y − xC〉 ≥ 0 for all y ∈ C.

(e) Show that xC minimizes ‖x‖2 over C if and only if 〈xC , y − xC〉 ≥ 0 for all y ∈ C.

(f) Now, consider a general point x 6= 0. Using the results of the previous parts, argue that there
exists a unique point πC(x) := argminy∈C{‖x− y‖

2}, the projection of x onto C, which is
characterized by

〈πC(x)− x, y − πC(x)〉 ≥ 0 for all y ∈ C.
Draw a picture of your result.

Question 2.5: Let f : Rd → R be convex and λ ≥ 0. Recall that for symmetric matrices A,B, the
notation A � B means that A − B is positive semidefinite. Throughout this question, we assume
λ ≥ 0 and c > 0.

(a) Show that if

f(y) ≥ f(x) +
λ

2
‖y − x‖22

for all y such that ‖y − x‖2 ≤ c, then

f(y) ≥ f(x) +
λ

2
min {c, ‖x− y‖2} ‖x− y‖2 for all y.

(b) Assume f is twice continuously differentiable on the set {y : ‖y − x‖2 ≤ c} and that ∇2f(y) �
λI for y such that ‖y − x‖2 ≤ c. If ∇f(x) = 0, show that

f(y) ≥ f(x) +
λ

2
min {c, ‖x− y‖2} ‖x− y‖2 for all y.

(c) Assume that f is twice continuously differentiable on the set {y : ‖y − x‖2 ≤ c} and that
∇2f(y) � λI for y such that ‖y − x‖2 ≤ c. Show that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
λ

2
min {c, ‖x− y‖2} ‖x− y‖2 for all y.
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(d) What may we conclude about x in parts (a) and (b)? (Consider the cases λ = 0 and λ > 0
separately.)

Question 2.6: Let X be a measurable space and Xi
iid∼ P , where P is a probability distribution

on X . Let Θ ⊂ Rd be an open set and let ` : Θ × X → R+ be a loss function that is convex in
its first argument, that is, θ 7→ `(θ, x) is convex. Define the risk functional R(θ) := EP [`(θ,X)],
which is the expected loss of a vector θ. Let θ? = argminθ∈ΘR(θ) and assume that the Hessian
∇2R(θ?) � 0, that is, the Hessian of the risk is positive definite at the point θ?, and assume that
θ? ∈ int Θ. Make the following assumption:

(i) There is a function H : X → R+ such that E[H2(X)] <∞ and the Hessian ∇2`(θ, x) is H(x)
Lipschitz in θ, that is,∣∣∣∣∣∣∇2`(θ, x)−∇2`(θ′, x)

∣∣∣∣∣∣
op
≤ H(x)

∥∥θ − θ′∥∥ for all θ, θ′ ∈ Θ.

We will show that under these conditions, if we define the empirical risk

R̂n(θ) =
1

n

n∑
i=1

`(θ,Xi)

where Xi
iid∼ P , and θ̂n = argminθ∈Θ R̂n(θ), then we have asymptotic normality of θ̂n. You may

assume that gradients and Hessians can be passed through all expectations and integrals and as
many moments of ∇` as you need.

(a) Argue that R(θ) and R̂n are convex in θ.

(b) Using the above assumptions, show that θ̂n
p→ θ?. You may use the following result (see

Question 2.5): if a function f is convex and satisfies ∇2f(θ) � λI for all θ satisfying ‖θ − θ0‖ ≤
c, then

f(θ) ≥ f(θ0) +∇f(θ0)T (θ − θ0) +
λ

2
min

{
‖θ0 − θ‖2 , c ‖θ0 − θ‖

}
.

(c) Assuming that θ̂n
p→ θ?, use a Taylor expansion to show that

√
n(θ̂n − θ?)

d→ N
(
0, (∇2R(θ?))−1Σ(∇2R(θ?))−1

)
where Σ = Cov(∇`(θ?, X)) is the covariance matrix of the gradient of the loss.

Question 2.7 (Log-concavity, Boyd & Vandenberghe Ex. 3.54): Let F : R → R+ be a twice
continuously differentiable function with F (t) > 0 for all t ∈ (a, b). We say that F is log-concave
(on (a, b)) if t 7→ logF (t) is a concave function (on the interval (a, b)). This is equivalent to
d2

dt2
logF (t) ≤ 0 for all t ∈ (a, b).

(a) Show that F is log-concave on (a, b) if and only if F (t)F ′′(t) ≤ F ′(t)2 for all t ∈ (a, b).

Define F (t) = 1√
2π

∫ t
−∞ exp(−1

2u
2)du, the Gaussian CDF. We will verify that F is log-concave. You

may interchange the order of differentiation and integration without comment in your arguments
if needed. (It may not be needed.)

(b) Show that F ′′(t)F (t) ≤ F ′(t)2 for all t ≥ 0.
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(c) Show that for any pair t, u ∈ R, we have tu ≤ 1
2 t

2 + 1
2u

2.

(d) Show that exp(−u2

2 ) ≤ exp( t
2

2 − tu), and conclude that∫ t

−∞
e−

1
2
u2du ≤ e

1
2
t2
∫ t

−∞
e−utdu.

(e) Verify that F ′′(t)F (t) ≤ F ′(t)2 for t < 0.

Question 2.8 (Convexity of minimizers of convex functions): A function f : Rn×Rm → R∪{+∞}
is jointly convex in its arguments if for λ ∈ [0, 1],

f(λx0 + (1− λ)x1, λy0 + (1− λ)y1) ≤ λf(x0, y0)(1− λ)f(x1, y1)

for all x0, x1, y0, y1 (where if one of the arguments is not in dom f , then f = +∞ and +∞ ≤ +∞).

(a) Show that if f is convex, then

g(x) :=

{
0 if f(x) ≤ 0

+∞ otherwise

is convex.

(b) Show that if f : Rn × Rm → R ∪ {∞} is (jointly) convex, then for any convex set Y ⊂ Rm the
function g(x) := infy∈Y f(x, y) is convex.

(c) Show that for any convex f0, f1, the value functional

v(x) := inf
y
{f0(x, y) s.t. f1(x, y) ≤ 0}

is convex in x.

Question 2.9 (Subgradients): Let f : Rd → R be a convex function. The subgradient set of f at
x is

∂f(x) := {g ∈ Rd | f(y) ≥ f(x) + 〈g, y − x〉 for all y}.

If f is defined on all of Rd, this set is always non-empty; otherwise it is non-empty on the relative
interior of the domain of f . When f is differentiable, ∂f(x) = {∇f(x)}, so that ∂f(x) is simply
the gradient.

(a) Draw a picture of the subgradient of a convex function.

(b) Show that f is minimized at the point x? if and only if 0 ∈ ∂f(x?).

(c) Let f(x) = ‖x‖2. Show that

∂f(x) =

{
x/ ‖x‖2 if x 6= 0

{u ∈ Rd | ‖u‖2 ≤ 1} if x = 0.

(d) Let f(x) = h(Ax) for some A ∈ Rn×d. Show that ∂f(x) = AT ∂h(v)|v=Ax.
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(e) Let f(x) = ‖x‖1. Show that ∂f(x) consists of vectors v ∈ [−1, 1]d satisfying

vj ∈


{1} if xj > 0

[−1, 1] if xj = 0

{−1} if xj < 0.

Question 2.10 (Growth of convex functions): Let h : Rd → R be convex.

(a) Let θ0, θ1 ∈ Rd, and for t ∈ R+ define θt = θ0 + t(θ1 − θ0). Show that h(θt) − h(θ0) ≥
t[h(θ1)− h(θ0)] for all t ≥ 1. Hint: For t ≥ 1, you have θ1 = 1

t θt + (1− 1
t )θ0.

(b) Suppose for some r > 0 that h(θ) > h(θ0) for all θ satisfying ‖θ − θ0‖2 = r, that is, in a sphere
around h(θ0). Show that h(θ) > h(θ0) for all θ such that ‖θ − θ0‖2 > r.

Question 2.11 (Growth of an absolute loss): Consider the loss function `(t) = |t|. We will show
that under various types of (random) smoothing, it still exhibits reasonable growth properties. In
particular, we will consider functions of the form

ϕ(t) := E[`(t+ Z)− `(Z)],

where Z is a symmetric random variable with various distributions.

(a) Argue that ϕ(t) is 1-Lipschitz and convex in t and that ϕ(t) ∈ [0, |t|] for all t ∈ R.

(b) Let Z have density π, where π(z) ≥ pmin for all z ∈ [−τ, τ ], where pmin, τ > 0 are both positive.
Define the Huber loss

hτ (t) :=

{
1
2 t

2 for |t| ≤ τ
τ |t| − 1

2τ
2 for |t| > τ.

Show that
ϕ(t) ≥ 2pminhτ (t).

Hint. It may be useful to consider derivatives via Lemma 7.14.1.

(c) Assume Z has a point mass at Z = 0, that is, P(Z = 0) = p0 > 0. Show that ϕ(t) ≥ p0|t|.
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3 Asymptotic Efficiency

Question 3.1: Consider estimating the cumulative distribution function P(X ≤ x) at a fixed

point x based on a sample X1, . . . , Xn
iid∼ P , the distribution of X. A standard non-parametric

estimator is Tn := n−1
∑n

i=1 1 {Xi ≤ x}.

(a) What is the asymptotic distribution of Tn?

(b) Suppose we know that Xi
iid∼ N(θ, 1) for some unknown θ. Letting Φ(x) = P (Z ≤ x) be the

standard normal CDF, another possible estimator is Gn := Φ(x−Xn) where Xn = 1
n

∑n
i=1Xi.

What is the asymptotic distribution of Gn?

(c) What is the asymptotic relative efficiency of Gn with respect to Tn?

(d) Suppose that the data are non-normal. Show that Gn is not consistent.

(e) Again, assume that the data are normal N(θ, 1). Give a consistent estimator θ̂n of θ based on
Tn. What is the asymptotic distribution of your estimator? What is its efficiency relative to
the mean Xn?

Question 3.2 (One-step estimators): Let {Pθ}θ∈Θ be a family of models where Θ ⊂ Rd is

open and let Xi
iid∼ Pθ0 , where Pθ has density pθ w.r.t. the measure µ as usual. Assume that

`θ(x) = log pθ(x) is twice continuously differentiable in θ and ∇2`θ(x) is M(x)-Lipschitz, where
Eθ[M2(X)] < ∞ for all θ ∈ Θ. You may assume that the order of differentiation and expectation
can be exchanged.

Suppose that θ̂n is a
√
n-consistent estimator, that is,

√
n(θ̂n − θ0) = OPθ0 (1).

Let Ln(θ) =
∑n

i=1 log pθ(Xi), where Xi
iid∼ Pθ0 . Consider the one-step estimator δn that solves the

first-order approximation to ∇Lθ(θ) = 0 given by

∇Ln(θ̂n) +∇2Ln(θ̂n)(δn − θ̂n) = 0.

(a) What is the asymptotic distribution of δn?

Suppose that the family {Pθ}θ∈R is the Cauchy family, with densities

pθ(x) =
1

π

1

1 + (x− θ)2
.

Let Xi
iid∼ Pθ and define θ̂n = Median(X1, . . . , Xn).

(b) Show that
√
n(θ̂n − θ) = OPθ(1).

(c) Let δn be the one-step estimator for this family. What is its asymptotic distribution?

Question 3.3 (Super-efficiency): In class, we saw the Hodges estimator of the normal mean,
which based on a sample {Xi}ni=1 is

Tn :=

{
Xn if |Xn| ≥ n−1/4

0 otherwise.
(3.1)

12



In this question, you will simulate the Hodges estimator (3.1) to study its performance. Repeat
the following experiment N = 500 times. For n ∈ {50, 100, 200, 400}, generate i.i.d. samples

Xi
iid∼ N(θn, 1), i = 1, . . . , n, where you set θn to be the “local” perturbation from θ = 0 given by

θn = 0 +
h√
n
, h ∈ {−5,−4.9,−4.8, . . . , 4.9, 5.0} = {−k/10 | k ∈ {−50, . . . , 50}}.

(Thus, you will generate a total of N × 4× 101 different samples.) For each sample you generate,
compute Tn and θ̂n = Xn, the sample mean.

(a) Generate three plots, one each for n = 50, 100, 200, and plot the (sampled/simulated) mean
squared error Eh[(θ̂n− θn)2] and Eh[(Tn− θn)2] over your simulations as h varies. What do you
see? Include your plots in your homework submission.

(b) Using the same errors as before, plot the rescaled mean squared error n · Eh[(θ̂n − θn)2] and
n · Eh[(Tn − θn)2] as h varies on the same plot. What do you see? Which estimator do you
prefer? Include your plots in your homework submission.

Question 3.4 (Corrupted observations, or the data processing inequality): Let {Pθ}θ∈Θ, where
Θ ⊂ Rd is open and convex (or whatever nice properties you want of it) be a family of models, and
assume that we have Fisher information Iθ = Eθ[∇`θ∇`Tθ ] = −Eθ[∇2`θ]. Suppose that instead of

observing a sample Xi
iid∼ Pθ, there is a channel Q(· | x), which given X = x draws Y | X = x and

outputs Y according to the distribution Q(· | x). Let

I
(Q)
θ

be the Fisher information associated with the observation of Y according to this corrupted obser-
vation. That is, the process is that X ∼ Pθ, and then Y ∼ Q(· | X), and we observe Y . You may
assume for simplicity that Q has a density for all x or has a p.m.f. for all x (that is, Y is discrete
with common support for all x) and ignore other measurability issues. Assume that {Pθ} have
densities pθ = dPθ

dµ w.r.t. a measure µ.

(a) Show that I
(Q)
θ � Iθ in the positive semidefinite order, meaning that vT I

(Q)
θ v ≤ vT Iθv for all

vectors v.

(b) Consider randomized response, in which we wish to estimate the parameter θ ∈ [0, 1] of a

Bernoulli random variable Xi
iid∼ Bernoulli(θ), but instead of observing Xi we observe Yi with

corrupted conditional distribution

Q(Yi = x | X = x) =
1 + ε

2
, Q(Yi = 1− x | X = x) =

1− ε
2

where ε ∈ (0, 1). What are Iθ and I
(Q)
θ in this case?

(c) Based on a sample Y1, . . . , Yn in the setting of part (b), give a consistent estimator of θ based
on Y1, . . . , Yn. Is your estimator efficient?

(d) Give a situation in which such a procedure might be useful.

13



Question 3.5 (An average treatment effect estimator): In the Neyman-Rubin (potential out-
comes) approach to causal estimation, one treats estimation as a missing data problem. Let
A ∈ {0, 1} be an action (often called the treatment or intervention). The potential outcomes
are the pair (Y (0), Y (1)) ∈ R, where Y (0) is the response when action A = 0 is chosen and Y (1)
the response when A = 1 is chosen. Thus, for any individual, we observe a single response: under
action A = a, we observe Y (a) but never Y (1− a). The average treatment effect is the difference

τ := E[Y (1)]− E[Y (0)],

where the expectation is taken over the population of individuals we might intervene on. Here,
A = 1 is the treatment, while A = 0 indicates the control (untreated) action, and we may use the
notation Y 1 {A = a} = Y (a)1 {A = a}.

The “gold standard” approach is a randomized experiment, where for individuals i = 1, 2, . . . , n,
one chooses Ai ∈ {0, 1} uniformly and observes Yi(Ai) ∈ R. We assume that individuals are i.i.d.

(a) Show that for a ∈ {0, 1}, we have E[Yi(a)1 {Ai = a}] = 1
2E[Y (a)] in the randomized experiment

setting, and hence that τ = 2(E[Y (1)1 {A = 1}]− E[Y (0)1 {A = 0}]).

We consider two mean-based estimators. For a ∈ {0, 1}, define the sets Sa = {i ∈ [n] | Ai = a} (i.e.
the treatment and control groups). The basic estimator is

τ̂n :=
1

n

∑
i∈S1

2Yi −
1

n

∑
i∈S0

2Yi

(b) Give the asymptotic distribution of τ̂n. (That is, give the limit distribution of
√
n(τ̂n − τ).)

We also consider the slightly more nuanced mean-based estimator, which normalizes by the sample
sizes,

τ̂norm
n :=

1

|S1|
∑
i∈S1

Yi −
1

|S0|
∑
i∈S0

Yi.

(c) For a ∈ {0, 1}, give the asymptotic distribution of

√
n

(
n

2|Sa|
− 1

)
.

(d) Give the asymptotic distribution of the mean-based estimator τ̂norm
n . Hint: it may be useful to

split the quantities by considering the means τa = E[Y (a)] for a ∈ {0, 1} separately.

(e) In the preceding parts, you have shown that

√
n(τ̂n − τ)

d→ N(0, σ2),
√
n(τ̂norm

n − τ)
d→ N(0, σ2

norm).

Show that if the means τa = E[Y (a)] satisfy τ0 6= −τ1, then σ2 > σ2
norm.

Question 3.6 (A weighted average treatment effect estimator): We consider the same setting
as in problem 3.5, but take an alternative approach, where we may differentially sample individuals
based on their covariates X. To that end, consider a propensity score (the propensity for being
treated)

e(x) := P(A = 1 | X = x). (3.2)

Now, we assume that given an individual with covariates X = x, we assign treatment A con-
sidtionally according to the propensity score (3.2), that is, P(A = a | X = x) = e(x), so that
(Y (0), Y (1)) ⊥ A | X, that is, the potential responses (Y (0), Y (1)) are independent of A given X.
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(a) Show that the average treatment τ = E[Y (1)]− E[Y (0)] also equals

τ = E
[
Y (A)1 {A = 1}

e(X)

]
− E

[
Y (A)1 {A = 0}

1− e(X)

]
.

(b) Define the conditional second moments v2(x, a) :=
√
E[Y (a)2 | X = x], and consider the propen-

sity weighted estimator

τ̂ps
n :=

1

n

n∑
i=1

[
Yi1 {Ai = 1}

e(Xi)
− Yi1 {Ai = 0}

1− e(Xi)

]
.

Compute the asymptotic variance σ2
ps in

√
n (τ̂ps

n − τ)
d→ N

(
0, σ2

ps

)
as a function (with appropriate expectations) of v2(x, a) and e(x).

(c) What choice of propensity score e(x) minimizes the asymptotic variance σ2
ps? Give a one-

sentence (heuristic) intuition for this choice. When does this improve over the “gold standard”
approach of the pure randomized experiment in part (b) in Q. 3.5?

Question 3.7 (A constrained risk inequality (Brown and Low [4])): In this question, we develop
some results that help to show the penalties in estimation rates for super-efficient estimators. We
begin with the most abstract setting, specializing it presently. Let Θ ⊂ Rd and P be a collection
of probability distributions. We are given a loss function L : Θ× P → R+ with the property that

inf
θ∈Θ

L(θ, P ) = 0

for all P ∈ P, that is, the minimal value of L is 0. We will develop various lower bounds on the
expected loss of estimators θ̂, that is, for distributions P on a space X , on the quantity

EP [L(θ̂, P )] = EP [L(θ̂(X), P )]

for θ̂ : X → Θ, where the expectation is taken over X ∼ P . Given such a loss, the separation
between distributions P0, P1 the loss induces is

dL(P0, P1) := inf
θ∈Θ
{L(θ, P0) + L(θ, P1)} ,

that is, the minimal value a parameter θ can achieve simultaneously on P0 and P1.

(a) Consider estimating a parameter θ : P → R of a distribution and using the squared error
Lsq(θ, P ) = 1

2(θ − θ(P ))2. Show that for L = Lsq and Θ = R, we have

dL(P0, P1) =
1

4
(θ(P0)− θ(P1))2.

Now we argue that if one achieves small loss on a distribution P0, one must achieve a loss on
P1 that scales as the separation dL(P0, P1). Define the χ2-affinity between distributions P , Q by

ρ (P ||Q) := EP
[
dP

dQ

]
=

∫
dP 2

dQ
=

∫
p(x)2

q(x)
dµ(x),

where the last equality holds whenever P,Q have densities p, q w.r.t. a base measure µ. We say
ρ (P ||Q) = +∞ whenever P 6� Q.
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(b) Using the Cauchy-Schwarz inequality and that
√
a+ b ≤

√
a +
√
b for all a, b ≥ 0, show that

for any distributions P0, P1, any estimator θ̂, and any loss function L : Θ× P → R+,√
dL(P0, P1) ≤

√
E1[L(θ̂, P1)] +

√
ρ (P1||P0)

√
E0[L(θ̂, P0)],

where Ei denotes expectation under Pi.

(c) Conclude for any pair of distributions P0, P1 that we have the constrained risk inequality

E1

[
L(θ̂, P1)

]
≥
(√

dL(P0, P1)−
√
ρ (P1||P0)E0[L(θ̂, P0)]

)2

+

. (3.3)

We now develop an application of the constrained risk inequality to super-efficient estimation
of a normal mean. Suppose that θ̂n : Rn → R is an estimator of a Gaussian mean such that

E0[(θ̂n − 0)2] = E0[(θ̂n − E0[X])2] ≤ δn
n

under i.i.d. sampling from P0 = N(0, 1), where δn ≥ 0 is a sequence with δn → 0.

(d) Show that for two Gaussian distributions P0 = N(θ0, 1) and P1 = N(θ1, 1) we have

ρ (Pn1 ||Pn0 ) = exp
(
n(θ1 − θ0)2

)
.

(e) Give a sequence of means θn such that under i.i.d. sampling Xi
iid∼ N(θn, 1), i = 1, . . . , n, we

have
n · Eθn [(θ̂n − θn)2]→∞ as n→∞.

That is, θ̂n does not uniformly enjoy the 1/n rate of convergence (for squared error) that we
might expect, e.g., from the sample mean. Hint: in our solution, we get a lower bound that
scales as log 1

δn
.

Question 3.8 (An application of the constrained risk inequality): Let P denote the location
family of Laplace distributions, that is, probabilities with densities

pθ(x) =
1

2
exp(−|x− θ|)

on R. In this question, you will show that a super-efficient estimator of the location at a single
point θ must be inaccurate at a large collection of alternative locations θ′ with probability tending
to 1. We use the notation of Question 3.7.

(a) Show that for θ ≥ 0, the χ2-affinity between Laplace distributions is

ρ (Pθ||P0) =
1

3
(2eθ + e−2θ)

(?)
= 1 + θ2 +O(θ3),

where equality (?) holds as θ ↓ 0. (By appropriate shifts, one therefore immediately obtains
ρ (Pθ1 ||Pθ0) = 1

3(2e|θ1−θ0| + e−2|θ1−θ0|).)
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(b) Show that if θ̂n is rate super-efficient for estimating the location at P0, meaning that there
exists some sequence δn ≥ 0 with δn → 0 such that

Pn0

(
|θ̂n| ≥

1√
n

)
≤ δn,

then for any 2 ≤ C <∞, we have

lim inf
n→∞

inf
2√
n
<θ≤ C√

n

Pnθ

(
|θ̂n − θ| ≥

1√
n

)
= 1.

That is, the asymptotic probability of being within 1/
√
n of the true location is zero for a large

collection of locations θ. Hint: Consider the (sequence) of loss functions Ln : R× P → {0, 1},
indexed by n, defined by by

Ln(t, Pθ) := 1
{√

n|t− θ| ≥ 1
}
.

Apply the technique in Question 3.7.
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4 U- and V-statistics

Question 4.1 (Signed rank statistics, cf. Van der Vaart Ex. 12.4 and q. 12.9): Let h(x1, x2) =
1 {x1 + x2 > 0} and define the U -statistic

Un =

(
n

2

)−1 ∑
|β|=2,β⊂[n]

h(Xβ),

which is useful for testing symmetry (and continuity) of the distribution of the random variable X
with CDF F (x) = P(X ≤ x), that is, that F (x) = 1− F (−x).

(a) Show that if X has a density that is symmetric about 0, then θ = E[Un] satisfies θ = 1
2 , and

√
n(Un − θ)

d→ N(0, 1/3)

independently of the distribution of X as long as it is symmetric and X has a density.

The Wilcoxon signed rank test is defined as follows. Let R+
1 , . . . , R

+
n denote the ranks of the absolute

values |X1|, . . . , |Xn| where R+
i = k means that |Xi| is the kth smallest of the absolute values in

the sample, R+
i =

∑n
j=1 1 {|Xj | ≤ |Xi|}. Then we define W+ :=

∑n
i=1R

+
i 1 {Xi > 0}.

(b) Show that if no observations are tied, then

W+ =

(
n

2

)
Un +

n∑
i=1

1 {Xi > 0} .

Question 4.2 (U-statistics, the information, ranking models, and probit regression): Suppose

we have a standard linear regression problem with Yi = xTi θ + εi, εi
iid∼ N(0, 1), and xi ∈ Rd are

drawn i.i.d. from a distribution with E[xi] = 0 and Cov(xi) = Σ. Assume that for all n ≥ d we
have 1

n

∑n
i=1 xix

T
i is invertible (this will occur if the xi have a density). Let Y1, . . . , Yn be a sample

according to this process, n ≥ d.

(a) Let θ̂n = argminθ
1

2n

∑n
i=1(xTi θ − Yi)2 be the least-squares minimizer. What is the asymptotic

distribution of θ̂n?

One model of ranking relative values of items posits that while humans are very bad at assigning
numerical scores, we are quite good at performing relative evaluations (i.e. is something more or
less than something else). As a consequence, suppose that you do not actually trust the true values
of the Yi, but you do trust their relative values, so you wish to base your estimate of θ on the
ordering Yi ≶ Yj . Consider the U -statistic-based “log-likelihood”

Ln(θ) :=

(
n

2

)−1 ∑
i,j≤n

1 {Yi > Yj} logPθ(Yi > Yj | xi, xj).

(b) Show that Ln(θ) is concave in θ. Hint: Write it in terms of the Gaussian CDF. You may use
the results of Question 2.7.

(c) Let θ̂n = argmaxθ Ln(θ). You may assume that θ̂n is consistent for θ0 under the true distribution
θ0. What is the asymptotic distribution of θ̂n?
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(d) Which estimator of parts (a) and (c) do you prefer?

Question 4.3 (Mean-differences in Hilbert spaces): Recall Question 1.10, which defined repro-
ducing Kernel Hilbert spaces (RKHSs). Let k : X × X → R be a kernel with associated RKHS
H. Assume that X is compact. We call k universal if it is dense in C(X ), the space of continuous
functions on X . That is, for any ε > 0 and any continuous function f : X → R, there exists a
function h ∈ H such that supx∈X |f(x)− h(x)| < ε.

Define ϕ(x) = k(·, x). (Thus k(x, z) = 〈ϕ(x), ϕ(z)〉, and ϕ(x) is the representer of evaluation
at x, i.e., 〈h, ϕ(x)〉 = h(x) for all h ∈ H.) Let P be the collection of distributions on X for which
EP [

√
k(X,X)] <∞.

(a) Using the Riesz representation theorem for Hilbert spaces, argue that the mean mapping
µ(P ) := EP [ϕ(X)] exists and is a vector in H. Hint: Letting ‖·‖ denote the norm on H,
the Riesz representation theorem for Hilbert spaces says that if L : H → R is a bounded linear
functional, meaning that L(f) ≤ C · ‖f‖ for some constant C, then there exists some hL ∈ H
such that L(f) = 〈hL, f〉 for all f ∈ H.

(b) Assume that X is compact and that k is universal. Show that the mean embedding

P 7→ EP [ϕ(X)] =

∫
X
ϕ(x)dP (x)

is one-to-one, that is, if P 6= Q then EP [ϕ(X)] 6= EQ[ϕ(X)].

(c) For distributions P and Q, show that

sup
f∈H,‖f‖≤1

{EP [f(X)]− EQ[f(X)]} =
√
E[k(X,X ′)] + E[k(Z,Z ′)]− 2E[k(X,Z)],

where X,X ′
iid∼ P and Z,Z ′

iid∼ Q.

Question 4.4 (A kernel two-sample test: basic theory): Consider the classical two-sample testing
problem, in which we receive two samples

X1, . . . , Xn
iid∼ P and Z1, . . . , Zn

iid∼ Q

(we assume the samples are the same size for simplicity). We would like to test the null

H0 : P = Q

(against the alternative P 6= Q). Now, consider the U -like two-sample statistic

Un :=

(
n

2

)−1∑
i<j

k(Xi, Xj) +

(
n

2

)−1∑
i<j

k(Zi, Zj)−
2

n2

n∑
i=1

n∑
j=1

k(Xi, Zj),

where k is a kernel function with associated reproducing kernel Hilbert space H. (Recall Ques-
tions 1.10 and 4.3.) We define the kernel mean discrepancy as in Question 4.3 (c) by

∆(P,Q) := E[k(X,X ′)] + E[k(Z,Z ′)]− 2E[k(X,Z)]

for X,X ′
iid∼ P and Z,Z ′

iid∼ Q.
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(a) Show that Un is unbiased for ∆(P,Q).

(b) Argue that under the null H0 we have

Un = OP

(
1

n

)
.

Hint: In the definition of Un, replace the kernel k with k̂(x, x′) := 〈ϕ(x)− µ, ϕ(x′)− µ〉 for an
appropriate vector µ ∈ H. Does this change Un? Then bound E[U2

n].

(c) Assume that k is a universal kernel (so that ∆(P,Q) > 0 whenever P 6= Q). Give a pointwise
consistent test Tn of the null P = Q against the alternative P 6= Q, that is,

lim
n→∞

P(Tn rejects) = 0

if P is the joint distribution of P and Q when P = Q, and otherwise,

lim
n→∞

P(Tn rejects) = 1.

Question 4.5 (A kernel two-sample test: performance questions): We consider the performance
of a kernel two-sample test with the “favorite” kernel of machine learning, the RBF (Gaussian)
kernel, defined on Rd × Rd by

kτ (x, z) = exp(− 1

2τ2
‖x− z‖22),

which is a universal kernel. Suppose that we have distributions P and Q that are known to be
Gaussian on Rd with identity covariance, where

P = N(0, I) and Q = N(θ, I).

We compare the performance of two tests of the null H0 : P = Q, one based on kernel mean
discrepancy (Question 4.4) and the other based on a standard normal test. Let

Xi
iid∼ P, Zi

iid∼ Q, i = 1, . . . , n

and P denote the joint distribution of (X,Z).

(a) Let Tn be the standard test that θ 6= 0, that is

Tn =

{
reject if

∥∥∥ 1√
n

∑n
i=1 Zi

∥∥∥ ≥ t
accept otherwise.

Give the value t so that Tn is a level α test, that is, under the null H0 : P = Q, so that
P(Tn rejects) = α.

(b) Another possible test is based on the U -type statistic of problem 4.4,

Un :=

(
n

2

)−1∑
i<j

kτ (Xi, Xj) +

(
n

2

)−1∑
i<j

kτ (Zi, Zj)−
2

n2

n∑
i=1

n∑
j=1

kτ (Xi, Zj),
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which is mean zero under the null H0 : P = Q and OP(n−1) under this null (by Q. 4.4). Define
the test

Ψn =

{
reject if |Un| ≥ u
accept otherwise.

For the choice τ = 1 in the kernel kτ , let the values of the dimension vary over d = 1, 2, 4, 8, 16, 32, 64, 128
and sample size vary over n = 4, 8, 16, 32, 64, 128, 256, 512 (i.e. 2k for k ∈ {2, . . . , 9}). Use
simulation to estimate the thresholds un,d such that under the null (in our Gaussian family)
H0 : P = Q,

P(Ψn rejects) = α.

Report your thresholds.

(c) Let us now do a power simulation for the tests Tn and Ψn. Let Pθ be the joint distribution of
P and Q when Q = N(θ, I). Define the power values

πTn (θ) := Pθ(Tn rejects) and πΨ
n (θ) := Pθ(Ψn rejects)

(leaving the dimension d implicit). For dimensions d = 2, 16, 128 and for each n ∈ {4, 8, . . . , 512},
use your thresholds t from part (a) and (b) to define the tests Tn and Ψn, and let θn,d ∈ Rd be
an arbitrary vector with ‖θn,d‖ = 3/

√
n. Plot (based on simulation) the powers πTn (θn,d) and

πΨ
n (θn,d) for these n and d.

(d) Explain, in one or two sentences, the behavior in part (c).

Question 4.6 (Relative efficiencies for signed rank tests): Define the kernel function h(x, y) =

1 {x+ y > 0} and U -statistic Un =
(
n
2

)−1∑
|β|=2 h(Xβ). Consider a null hypothesis H0 that X

has a continuous symmetric density, so that θ := E[h(X1, X2)] = 1
2 . (See [7, Example 12.4]

for asymptotics of this U -statistic.) The signed rank test allows us to test the null that X has
symmetric continuous density, and rejects if the null if Un is large. In this question, we investigate
its asymptotic power under local alternatives.

(a) Let P0 satisfy the null, and suppose that {Pt}t∈R is quadratic mean differentiable at P0 with
score g. Show that for C0 = Cov0(F (X), g(X)), where F denotes the CDF of X under P0,(

√
n(Un − θ), log

dPn
t/
√
n

dPn0

)
d→
P0

N

([
0

−(t2/2)P0g
2

] [
1/3 2t · C0

2t · C0 t2P0g
2

])
.

(b) Argue (in about one line) that for any t ∈ R,

√
3n

(
Un −

1

2
− 2tC0√

n

)
d→

Pt/
√
n

N(0, 1).

Under the null H0 that X has a symmetric density, we have limit
√
n(Un − θ)

d→ N(0, 1/3) (where
θ = 1

2). The natural signed rank test of asymptotic level α thus rejects if

√
n(Un − θ) ≥

1√
3
z1−α

where z1−α is the 1− α quantile of the standard Gaussian. Let

πn(t) := Pt

(√
n(Un − θ) ≥

1√
3
z1−α

)
denote the power of this test under an alternative Pt.
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(c) As above, let {Pt}t∈R be QMD at t = 0 and P0 satisfy the null H0. Show that

lim
n→∞

πn(t/
√
n) = Φ

(
zα + t · 2

√
3 · C0

)
,

where Φ is the standard Gaussian CDF.

Now, answer at least one of the following parts (d) or (e) (the integrals are a bit tedious):

(d) Let Pt = N(t, 1) be a mean t Gaussian with unit variance. Show that in this case, the limiting
power under local alternatives of the signed rank test is

lim
n→∞

πn(t/
√
n) = Φ

(
zα + t

√
3

π

)
.

(e) Let Pt denote a Laplace distribution with mean t, that is, Pt has density 1
2 exp(−|x− t|). Show

that

lim
n→∞

πn(t/
√
n) = Φ

(
zα + t

√
3

4

)
.

(f) Extra credit: Is the signed rank test asymptotically most powerful against local alternatives
t/
√
n, where t > 0, for testing symmetry in either the Gaussian or Laplace location families?

If not, what is its relative (Pitman) efficiency to an optimal test?
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5 Testing

Question 5.1 (Uniform testing vs. pointwise testing): Let {Pθ}θ∈Θ be the collection of normal
distributions parameterized by θ = (µ, σ2) for µ ∈ R and σ2 > 0. Let Θ0 = {θ = (µ, σ2) | µ = 0}
be the collection of mean-zero Gaussian distributions. Let Tn : Rn → {0, 1} be a test, where 1
indicates rejection of the null, that takes a sample (X1, . . . , Xn) and makes a decision. Define

πn(θ) := Pθ(Tn = 1)

to be the power function (where Xi
iid∼ Pθ) of the test.

(a) Let α ∈ [0, 1] and assume the uniform level guarantee

sup
θ∈Θ0

πn(θ) ≤ α.

Show that for all ε > 0 and for all µ ∈ R, there exists a variance σ2 such that for θ = (µ, σ2),

πn(θ) ≤ α+ ε.

That is, uniform guarantees are impossible in this setting of testing a Gaussian mean.

Hint: Note that for any distributions P and Q, |P (Tn = 1) − Q(Tn = 1)| ≤ ‖P −Q‖TV, and
use Question 1.9. What is the Hellinger distance between the n-fold product of N(µ, σ2) and
N(0, σ2)?

(b) Exhibit a test ψn : Rn → {0, 1} for which

sup
θ∈Θ0

lim sup
n→∞

Pθ(ψn = 1) ≤ α and inf
θ 6∈Θ0

lim inf
n→∞

Pθ(ψn = 1) = 1.

Question 5.2 (Asymptotics and tests): Let {Pθ}θ∈Θ be a model family as is standard. For a
test statistic Tn with rejection region Kn, meaning we reject the null H0 if Tn ∈ Kn, we define
the power function πn(θ) := Pθ(Tn ∈ Kn), so that for a null H0 : θ ∈ Θ0, the test is level α if
supθ∈Θ0

πn(θ) ≤ α and asymptotically of level α if

lim sup
n

sup
θ∈Θ0

πn(θ) ≤ α.

Given a sample X1, . . . , Xn ∈ R we consider the sign and mean statistics

Tn :=
1

n

n∑
i=1

Xi and Sn :=
1

n

n∑
i=1

sign(Xi).

Consider the normal location family with Pθ = N(θ, 1) and consider testing H0 : θ = 0 against
H1 : θ > 0, so Θ = [0,∞) and we let Θ0 = {0} and Θ1 = Θ \Θ0 = (0,∞).

(a) Give rejection regions KT
n for Tn and KS

n for Sn that yield asymptotically level α tests.

(b) Let πTn : Θ→ [0, 1] and πSn : Θ→ [0, 1] be the power functions for the two tests. Give formulae
for

lim
n→∞

πTn (θ) and lim
n→∞

πSn (θ) for all θ ∈ Θ.
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(c) Based on your answer to part (b), which of the test statistics Tn and Sn should you prefer?

(d) Consider a more uniform power calculation using infθ∈Θ1 πn(θ). Give formulae for

lim inf
n→∞

inf
θ∈Θ1

πTn (θ) and lim inf
n→∞

inf
θ∈Θ1

πSn (θ).

(e) Suppose now that the family includes a nuisance parameter of variance, so we have the model
{N(θ, σ2), θ ≥ 0, σ2 > 0}. Now the null is the composite null H0 : {θ = 0, σ2 > 0}. (We abuse
notation and write P ∈ H0 to say that P = N(0, σ2) for some σ2 > 0.) Using the same rejection
regions KT

n and KS
n you developed in part (a), evaluate

lim sup
n

sup
P∈H0

P (Tn ∈ KT
n ) and lim sup

n
sup
P∈H0

P (Sn ∈ KS
n ).

(f) Give formulae for limn→∞ P (Tn ∈ KT
n ) and limn→∞ P (Sn ∈ KS

n ) for each P 6∈ H0. Which test
do you prefer?

We consider a last comparison. Repeat the following N = 500 times. For n ∈ {50, 100, 200, 400},
generate i.i.d. samples Xi

iid∼ N(θn, 1), i = 1, . . . , n, setting θhn to be the local perturbation

θhn = 0 +
h√
n
, h ∈ {0, .1, . . . , 4.9, 5.0} = {k/10 | k ∈ {0, 1, . . . , 50}}.

(A total of N × 4× 51 different samples.) For each sample you generate, compute Tn and Sn.

(g) Using your sampled data and rejection regions (with α = .05) Kn from above, approxi-
mate πTn (θhn) and πSn (θhn) as h and n vary. Plot the function h 7→ πn(θhn) for each n ∈
{50, 100, 200, 400}. Which of the tests Tn and Sn do you prefer?

Question 5.3: We have a family of distributions P on a space X and a parameter of interest
θ : P → R, that is, we would like to test the value of θ(P )—a nonparametric testing problem.
We consider (local) perturbations of a fixed distribution P0 ∈ P, where we assume the parameter
is differentiable in L2(P0) for a collection of models around P0. What this means is that for a
bounded function φ : R→ R+ with φ(0) = φ′(0) = 1, continuously differentiable in a neighborhood
of 0, there exists a bounded linear functional D0 : L2(P0) → R such that for any P0-mean-zero
g ∈ L2(P0), if we define the tilted distributions around P0 by

dPt(x) =
1

C(t)
φ(tg(x))dP0(x), C(t) =

∫
φ(tg)dP0,

then

lim
t↓0

θ(Pt)− θ(P0)

t
= D0(g),

where we take g implicitly in the definition of Pt. (We roughly think of dPt = (1 + tg)dP0.) By
the Riesz representation theorem, it is necessarily the case that there exists a mapping θ̇0 : X → R
with θ̇0 ∈ L2(P0) such that

D0(g) =

∫
g(x)θ̇0(x)dP0(x),

and as the tilts are defined only for g satisfying P0g = 0, it is no loss of generality (by shifting) to
assume P0θ̇0 = 0.
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(a) Abusing notation to define Pn by the density dPn = φ(g/
√
n)dP0/C(1/

√
n) for n ∈ N, g ∈

L2(P0) with P0g = 0 as above, use the results of Question 10.5 to show that

lim
n→∞

d2
hel(P

n
n , P

n
0 ) = 1− exp

(
−1

8
P0g

2

)
.

(b) With the same abuse of notation, use the variation/Hellinger bounds in Question 1.9 to show
that

lim inf
n→∞

inf
Tn
{Pnn (Tn 6= 1) + Pn0 (Tn 6= 0)} ≥ 1−

√
1− exp

(
−1

4
P0g2

)
,

where the infimum is taken over all tests Tn : X n → {0, 1}. That is, the difficulty of testing the

null H0 : Xi
iid∼ P0 against the (sequence of) alternative(s) H1 : Xi

iid∼ Pn is non-trivial, where

Pn denotes the product distribution of X1, . . . , Xn
iid∼ Pn.

(c) Show that if θ : P → R is differentiable in L2 at P0 as above and c <∞, then for any sequence
of tests Tn : X n → {0, 1} of

H0 : θ(P ) = θ(P0) versus H1,n : θ(P ) ≥ θ(P0) + c
‖θ̇0‖L2(P0)√

n
,

there exist sequences of distributions satisfying H0, H1,n for all large enough n such that

lim inf
n

{
PnH0

(Tn 6= 0) + PnH1,n
(Tn 6= 1)

}
≥ 1−

√
1− e−c2/4 > 0.

That is, the tests must have asymptotically non-negligible Type I plus Type II error, and
as p is independent of all other problem parameters, the scaling ‖θ̇0‖L2(P0)/

√
n is the “best”

possible. Hint: let g(x) = hθ̇0(x)/(P0θ̇
2
0)1/2 for some h > c, and consider densities defined by

dPn = φ(g/
√
n)dP0/C(1/

√
n).

25



6 Concentration inequalities

Question 6.1 (Sub-Gaussianity of bounded R.V.s): Let X be a random variable taking values in
[a, b] with probability distribution P . You may assume w.l.o.g. that E[X] = 0. Define the cumulant
generating function ϕ(λ) := logEP [eλX ], and let Qλ be the distribution on X defined by

dQλ(x) :=
eλx

EP [eλX ]
dP (x).

You may assume that differentiation and computation of expectations may be exchanged (this is
valid for bounded random variables).

(a) Show that Var(Y ) ≤ (b−a)2

4 for any random variable Y taking values in [a, b].

(b) Show that ϕ′(λ) = EQλ [X] and ϕ′′(λ) = VarQλ(X).

(c) Show that ϕ(λ) ≤ λ2(b−a)2

8 for all λ ∈ R.

With these three parts, you have shown that if X ∈ [a, b], then X is (b−a)2

4 sub-Gaussian.

Question 6.2: Let Xi be independent mean-zero random variables with E[Xi] = 0 and E[|Xi|k] <
∞ for some k ≥ 1. Let Sn =

∑n
i=1Xi.

(a) Prove that

E[|Sn|k] ≤ CkE

( n∑
i=1

X2
i

) k
2


for a constant Ck that depends only on k.

Show the following consequences of this inequality, which apply when k ≥ 2:

(b) E[|Sn|k] ≤ Ck · 1
n

∑n
i=1 E[|Xi|k] · nk/2.

(c) If E[|Xi|k] ≤ σk for some σ < ∞ for all i, then P(|n−1Sn| ≥ t) ≤ Ck(
σ2

nt2
)
k
2 . How does this

compare to Chebyshev’s inequality?

The following exercises require basic knowledge of martingales. If you have not seen martingales,
we give a workable definition here that should allow solutions of the exercises. Let X1, X2, . . . be a
sequence of random variables, and let Z1, Z2, . . . be another sequence of random variables, where
Zk is a function of X1, . . . , Xk. Then {Zk} is a martingale sequence adapted to {Xk} if

E[Zk | X1, . . . , Xk−1] = Zk−1

for all k. Given a martingale {Zk}, we say that ∆k = Zk − Zk−1 is the associated martingale
difference sequence. Any sequence of random vectors or variables {∆k} that is adapted to {Xk},
meaning that ∆k is a function of X1, . . . , Xk, is a martingale difference sequence if

E[∆k | X1, . . . , Xk−1] = 0 for all k.

Question 6.3 (Azuma’s inequality): Let Fk = {X1, . . . , Xk}. We say a martingale {Zk} adapted
to {Xk} is σ2

k-sub-Gaussian if for ∆k = Zk − Zk−1, we have for each k that

E [exp (λ∆k) | Fk−1] ≤ exp

(
λ2σ2

k

2

)
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with probability 1 over the randomness in X1, X2, . . .. Let ∆k be a σ2
k-sub-Gaussian martingale

difference sequence with Zk =
∑k

i=1 ∆i. Show that Zk is
∑k

i=1 σ
2
i -sub-Gaussian, and hence

P (Zk ≥ t) ∨ P (Zk ≤ −t) ≤ exp

(
− t2

2
∑k

i=1 σ
2
i

)
for t ≥ 0.

Question 6.4 (Doob martingales and the bounded-differences inequality): Let f : X n → R be
an arbitrary function and let X1, X2, . . . , Xn be a sequence of independent random variables taking
values in X . The Doob martingale associated to f is

Zk := E[f(X1, . . . , Xn) | X1, . . . , Xk].

(a) Show that Zk is a martingale adapted to {Xk} and that Zn = f(X1, . . . , Xn).

Now, suppose the function f satisfies bounded differences with parameters ci, meaning that

sup
x1,...,xn,x′i∈Xn+1

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci for all i.

(b) Show that the associated Doob martingale has bounded differences with |Zk − Zk−1| ≤ ck.

(c) Prove the bounded differences inequality (also known as McDiarmid’s inequality): if X1, . . . , Xn

are independent, then for all t ≥ 0,

P (|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

Question 6.5 (Orlicz norms): Let ψ : R+ → R+ be a convex increasing function with ψ(0) = 0.
(Note that ψ(t) > 0 for all t > 0 as ψ is increasing.) Then for an R-valued random variable X, the
Orlicz norm of X is

‖X‖ψ := inf {t ∈ R+ | E[ψ(|X|/t)] ≤ 1} .

In this question, we identify a few properties of these norms, including that they actually are norms.

(a) Show that if ψ(x) = xp, then the Orlicz norm is the standard Lp norm of a random variable,
that is, ‖X‖ψ = E[|X|p]1/p.

(b) Show that quantity ‖X‖ψ is convex in the random variable X. Hint: You may use that the
perspective transform of a convex function f : Rn → R, given by

g(x, t) :=

{
tf (x/t) if t > 0

+∞ otherwise,

is jointly convex in its arguments. Use Question 2.8.

(c) Let h be a function on some vector space X . Show that the following conditions are equivalent.

(i) h is convex, symmetric (so that h(x) = h(−x)), and positively homogeneous, meaning
that h(λx) = λh(x) for λ ≥ 0.

(ii) h is a seminorm on X .
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(d) Show that the Orlicz norm ‖·‖ψ is indeed a norm on the space of random variables.

Question 6.6 (Orlicz norms and moment generating functions): Let the function

ψq(v) := exp(|v|q)− 1

for q ∈ [1, 2]. We consider the associated Orlicz norms ‖X‖ψq .

(a) Show that for all t ≥ 0,
P(|X| ≥ t) ≤ 2 exp(−tq/ ‖X‖qψq).

Thus random variables with Orlicz norms enjoy strong concentration properties.

(b) Show that if X1, . . . , Xn are random variables with maxj ‖Xj‖ψq <∞, then

E[max
j≤n
|Xj |q] ≤ max

j≤n
‖Xj‖qψq log(2n) and E[max

j≤n
|Xj |] ≤ max

j≤n
‖Xj‖ψq log1/q(2n).

Recall that a mean zero X is σ2-sub-Gaussian if E[exp(λX)] ≤ exp(λ2σ2/2).

(c) Show that if X is σ2-sub-Gaussian and mean-zero, then

E[exp(λX2)] ≤ 1√
(1− 2λσ2)+

for λ ≥ 0.

Hint: If Z ∼ N(0, τ2), then E[exp(λZ)] = exp(λ2τ2/2), and it is possible to exactly calculate
E[eλZ

2
]. Use the quantity E[eλXZ ].

(d) Show that if X is σ2-sub-Gaussian and mean-zero, then ‖X‖ψ2
≤ Cσ for some C ≤

√
8/3.

(e) Show that if ‖X‖ψ2
≤ σ and X is mean zero, then X is Cσ2-sub-Gaussian for some constant

C. Hint: You may cite results from Section 2.3 of Vershynin [8].

Question 6.7 (Orlicz norms: properties): In this question, we enumerate a few properties of
Orlicz norms. Let ψq(t) = et

q − 1 as in Question 6.5.

(a) Show that if X and Y are sub-Gaussian random variables, which may be dependent, then

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
.

(b) Show that for any random variable X and any increasing convex ψ : R+ → R+ with ψ(0) = 0,
‖X − E[X]‖ψ ≤ 2 ‖X‖ψ.

(c) Show that the inequality in part (b) is tight, that is, show that for all ε > 0 there is a random
variable X and ψ such that ‖X − E[X]‖ψ ≥ (2 − ε) ‖X‖ψ. (Note that for ψ(t) = t2, then
‖X‖ψ ≥ ‖X − E[X]‖ψ, so there are indeed ψ such that the inequality holds with constant 1.)

Question 6.8 (Variance of norms under finite moment assumptions, Vershynin [9], Ex. 3.1.6): Let
X = (X1, . . . , Xn) ∈ Rn be a random vector with independent coordinates satisfying E[X2

i ] = 1
and E[X4

i ] ≤ σ4. Show that
Var(‖X‖2) ≤ C · σ4
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for a numerical constant C.
Hint: First check (by expansion) that E[(‖X‖22 − n)2] ≤ σ4n. Show that this yields E[(‖X‖2 −√

n)2] ≤ σ4, then replace
√
n by E[‖X‖2].

Question 6.9: Let Zi, i = 1, . . . , n, be independent standard Gaussians. Show that E[maxi Zi] ≥
(1− o(1))

√
2 log n as n ↑ ∞.

Hint: You may use the inequality for the Gaussian CDF that

1− 1√
2π

1

t
e−t

2/2 ≤ Φ(t) ≤ 1− 1√
2π

t

t2 + 1
e−t

2/2

valid for all t ≥ 0. (Try to prove these if you like!)
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7 Uniform laws of large numbers and related problems

7.1 Uniform laws of large numbers

Question 7.1: Let the pairs z = (x, y) ∈ Rd × {−1, 1}, and consider the logistic loss mθ(z) =
log(1 + exp(−yθTx)), with population expectation M(θ) := E[mθ(X,Y )] for (X,Y ) ∼ P .

(a) Show that if Θ ⊂ Rd is a compact set and E[‖X‖] <∞ for some norm ‖·‖ on Rd, then

sup
θ∈Θ
|Pnmθ(X,Y )−M(θ)| p→ 0.

(b) Assume that Θ is contained in the norm ball {θ ∈ Rd : ‖θ‖ ≤ r} and that X is supported on
the dual norm ball {x ∈ Rd : ‖x‖∗ ≤ M}.2 Show that there is a numerical constant C < ∞
such that for all δ ∈ (0, 1),

P
(

sup
θ∈Θ
|Pnmθ(X,Y )−M(θ)| ≥ εn(δ)

)
≤ δ where εn(δ) = C

√
r2M2

n

(
d log n+ log

1

δ

)
.

Question 7.2 (Rademacher complexities): In this question, we explore a way to provide finite-
sample uniform convergence guarantees. Let F be a collection of functions f : X → R, and let
εi ∈ {−1, 1} be an i.i.d. random sign sequence, (known as Rademacher variables). For a distri-
bution P on (independent) random variables X1, . . . , Xn, we define the (normalized) Rademacher
complexities

Rn(F | X1:n) :=
1

n
E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣ | X1:n

]
and Rn(F) = E[Rn(F | X1:n)].

Let Pn denote the empirical expectation function given a sample X1, . . . , Xn.

(a) Show that E[supf∈F |Pnf − Pf |] ≤ 2Rn(F).

(b) Assume that F satisfies the envelope condition supx∈X supf∈F |f(x) − Pf | ≤ M . Show that
h(X1, . . . , Xn) := supf∈F |Pnf − Pf | has bounded differences and specify its parameters ci.

(c) Show that for some numerical constant c > 0, for all t ≥ 0 we have

P

(
sup
f∈F
|Pnf − Pf | ≥ 2Rn(F) + t

)
≤ 2 exp

(
−cnt

2

M2

)
.

Question 7.3 (Rademacher complexities of some function classes): For this question, use the
normalized Rademacher complexity as in Q. 7.2.

(a) Let Xi be independent with support {x ∈ Rd : ‖x‖2 ≤ M}. Let F be functions of the form
x 7→ 〈θ, x〉 for θ ∈ Θ := {θ ∈ Rd : ‖θ‖2 ≤ r}. Give an upper bound on Rn(F).

(b) Let Xi be independent with support {x ∈ Rd : ‖x‖∞ ≤ M}. Let F be functions of the form
x 7→ 〈θ, x〉 for θ ∈ Θ := {θ ∈ Rd : ‖θ‖1 ≤ r}. Give an upper bound on Rn(F).

2Recall that for a norm ‖·‖ on Rd, the dual norm is ‖y‖∗ = supx{xT y : ‖x‖ ≤ 1}.
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[Hint: Do not use chaining.]

Question 7.4 (Margin-based model fitting): Consider a binary classification problem with data
in pairs (x, y) ∈ Rd×{−1, 1}, and let φ : R→ R+ be a 1-Lipschitz non-increasing convex function.
(For example, we might take φ(t) = log(1 + e−t) or φ(t) = (1− t)+.) Let mθ(x, y) = φ(yθ>x), and
given an i.i.d. sample {Xi, Yi}ni=1, consider the empirical risk minimization procedure

θ̂n = argmin
θ∈Θ

1

n

n∑
i=1

mθ(Xi, Yi) = argmin
θ∈Θ

Pnmθ. (7.1)

The following result, known as the Ledoux-Talagrand Rademacher contraction inequality, may
be useful for this question. Let φ ◦ F = {h : h(x) = φ(f(x)), f ∈ F} denote the composition of φ
with functions in F . If ϕ is an L-Lipschitz function with ϕ(0) = 0, then Rn(ϕ ◦ F) ≤ LRn(F).

(a) In one word, is the procedure (7.1) likely to give a reasonably good classifier? You may assume
φ(t) is strictly decreasing on t ∈ [−1, 1].

(b) Let Θ ⊂ {θ ∈ Rd : ‖θ‖2 ≤ r} and let Xi be supported on the `2-ball {x ∈ Rd : ‖x‖2 ≤ M}.
Give the smallest εn(δ, d, r,M) you can—ignoring numerical constants—such that

P
(

sup
θ∈Θ
|Pnmθ − Pmθ| ≥ εn(δ, d, r,M)

)
≤ δ.

How does your εn compare with Question 7.1?

(c) Let Θ ⊂ {θ ∈ Rd : ‖θ‖1 ≤ r} and let Xi be supported on the `∞-ball {x ∈ Rd : ‖x‖∞ ≤ M}.
Give the smallest εn(δ, d, r,M) you can—ignoring numerical constants—such that

P
(

sup
θ∈Θ
|Pnmθ − Pmθ| ≥ εn(δ, d, r,M)

)
≤ δ.

How does your εn compare with Question 7.1?

Question 7.5 (Dvoretzky-Kiefer-Wolfowitz inequality): Let F = {1 {x ≤ t} | t ∈ R} be the
collection of indicator functions for x ≶ t. Let the L2(P ) metric on F be defined by ‖f − g‖2L2(P ) =∫

(f(x)− g(x))2dP (x).

(a) Show that the covering numbers for F in L2(P )-norm satisfy

sup
P

logN(F , L2(P ), ε) ≤ C log

(
1 +

1

ε

)
,

where the supremum is over all probability distributions and C is a numerical constant.

For the next two parts of the question, the following notation and quantity may be helpful. For a
sample X1, . . . , Xn with empirical distribution Pn, let ‖f‖2L2(Pn) =

∫
f(x)2dPn(x) = 1

n

∑n
i=1 f(Xi)

2.

(b) Show that Rn(F) ≤ C√
n

, where C is a universal (numerical) constant.

(c) Prove a (weaker) version of the Dvoretzky-Kiefer-Wolfowitz inequality, that is, that

P
(

sup
t∈R
|Pn(X ≤ t)− P (X ≤ t)| ≥ C√

n
+ ε

)
≤ 2e−cnε

2
,

where c, C are absolute constants. (In fact, c = 2 is possible using tools we have covered.)
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Question 7.6 (Smallest eigenvalue of a random, possibly heavy-tailed matrix): Let Xi be i.i.d.
Rd-valued random vectors, mean zero, where Cov(Xi) = Σ for a positive definite Σ. Assume also
that E[|〈v,X〉|] ≥ κ

√
vTΣv for any vector v ∈ Rd, where κ > 0 is a constant.

(a) Show that for any vector v ∈ Rd,

P
(
|〈v,X〉| ≥ κ

2

√
vTΣv

)
≥ κ2

4
.

(b) Let Σ̂n = 1
n

∑n
i=1XiX

T
i denote the empirical second-moment matrix of the Xi, and for a

symmetric matrix A, let

λmin(A) := inf
v

{
vTAv | v ∈ Sd−1

}
denote the minimum eigenvalue of A, where Sd−1 = {v ∈ Rd | ‖v‖2 = 1} denotes the sphere in
Rd. Show that there exist constants C1, C2, C3 ∈ (0,∞), which may depend on κ, such that

P

(
λmin(Σ̂n) ≥

(
C1 − C2

√
d

n
− C3t

)
+

λmin(Σ)

)
≥ 1− e−nt2

for all t ≥ 0.

Question 7.7: Let (T, d) be a bounded metric space and let (P, `) be a collection of labeled nested
partitions as in class. That is, P = {Pk}k∈Z, and within each level k, we have A ∈ Pk implies
diam(A) ≤ 2−k, where k0 is the smallest integer such that diam(T ) ≤ 2k0 . Recall the γq(T, d)
functional, defined as

γq(T, d) := inf
P,`

sup
t∈T

∑
k∈Z

2−k log
1
q `(Ak(t)).

Show that for some numerical constant C,

γq(T, d) ≤ C
∫ ∞

0
log

1
q N(T, d, ε)dε,

where N denotes the covering number for the set T in metric d.

Question 7.8 (Covering numbers for low-rank matrices): Let Mr,d be the collection of rank r
matrices A ∈ Rd×d with ‖A‖Fr = 1, where we recall that the Frobenius norm ‖A‖2Fr =

∑
i,j A

2
ij =

tr(ATA) is the usual Euclidean norm applied to the entries of A. Show that the covering numbers
N(Mr,d, ‖·‖Fr , ε) of Mr,d in the Frobenius norm satisfy

logN(Mr,d, ‖·‖Fr , ε) ≤ 2rd log

(
1 +

4r

ε

)
.

Hint: Our solution uses the singular value decomposition that A = UΣV T =
∑r

i=1 uiσiv
T
i , where

Σ � 0 is diagonal and U = [u1 · · ·ur] and V = [v1 · · · vr] ∈ Rd×r are orthogonal, i.e., UTU = Ir
and V TV = Ir. Note: It is possible to get slightly sharper bounds than these, but we won’t worry
about that.

Question 7.9 (Low-rank matrix sensing): In this question, we consider the problem of recovering a
low-rank matrix from linear observations, showing that (with high probability) this is possible under
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a Gaussian random measurement model. We assume we observe triples (Xi, Zi, Yi) ∈ Rd ×Rd ×R
where

Yi = 〈XiZ
T
i ,Θ

?〉 = tr(ZiX
T
i Θ?) = XT

i Θ?Zi (7.2)

for Xi and Zi
iid∼ N(0, Id) and independent, where Θ? ∈ Rd is an unknown rank r matrix. (Here we

use the standard notation on matrices that 〈A,B〉 = tr(ATB).) There is no noise in this observation
model. We would like to recover Θ? from n such measurements.

(a) Show that for any d× d matrix A,

E[|XTAZ|] ≥ 2

π
‖A‖Fr and E[|XTAZ|2] = ‖A‖2Fr .

Hint: To prove the first inequality, first condition on Z. Then note that for any norm ‖·‖ and
random vector W , E[‖W‖] ≥ ‖E[|W |]‖, where |W | is the elementwise absolute value of W .

Recognize that ‖w‖ :=
√∑d

i=1 σ
2
iw

2
i is a norm on w ∈ Rd.

(b) Argue that there exist numerical constants c0, c1 > 0 such that for any fixed matrix A ∈ Rd×d,
we have

P

(
1

n

n∑
i=1

|〈XiZ
T
i , A〉| ≤ c0 ‖A‖Fr

)
≤ exp (−c1n) .

Hint: For a constant c > 0, define the random variables Bi = 1 if |〈XiZ
T
i , A〉| ≥ c ‖A‖Fr and

Bi = 0 otherwise. Use the Paley-Zygmund inequality (Ex. 1.11) to show that P(Bi = 1) ≥ p,
where p > 0 is a numerical constant, and then bound P(Bn ≤ E[B]/2).

(c) Using the covering number bounds in Ex. 7.8, show there exist numerical constants 0 < c0, c1

and C <∞ such that with probability at least 1− e−c1n,

1

n

n∑
i=1

|XT
i AZi| ≥ c0 ‖A‖Fr (7.3)

for all rank r matrices A ∈ Rd×d as long as n ≥ Cdr log(dr). You may assume dr is large if
that is convenient. You may also use that

1

n

n∑
i=1

∥∥ZiXT
i

∥∥
Fr

=
1

n

n∑
i=1

‖Zi‖2 ‖Xi‖2 ≤
1

n

n∑
i=1

(
1

2
‖Zi‖22 +

1

2
‖Xi‖22

)
(?)

≤ 2d

where inequality (?) holds with probability at least 1− e−c0dn. Hint: note that inequality (7.3)
is homogeneous in A.

(d) Assume that Θ? is rank r in the sensing model (7.2). Argue that there exist numerical constants
0 < c0, c1 and C <∞ such that with probability at least 1− e−cn,

1

n

n∑
i=1

|XT
i ΘZi − Yi| ≥ c0 ‖Θ−Θ?‖Fr

simultaneously for all rank r matrices Θ as long as n ≥ Cdr log(dr).

(e) For loss `(t) = |t|, explain what part (d) tells us about the empirical minimizer

Θ̂n := argmin
Θ∈Rd×d

{
Pn`(〈XZT ,Θ〉 − Y ) | rank(Θ) ≤ r

}
.

In one sentence, compare the sample size n versus the number of parameters in Θ? ∈ Rd×d.
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7.2 Rates of Convergence

Question 7.10: Let Rn : Θ → R be a sequence of (random) criterion functions and R(θ) =
E[Rn(θ)] be the associated population criterion. Let d : Θ × Θ be some distance on Θ. Let
θ0 = argminθ R(θ), and for δ < ∞, define Θδ = {θ : d(θ, θ0) ≤ δ}. Let α ∈ (0, 2), σ < ∞, and
D > 0, and assume we have the continuity bound

E

[
sup
θ∈Θδ

|(Rn(θ)−R(θ))− (Rn(θ0)−R(θ0))|

]
≤ σδα√

n

for all δ ≤ D. Assume in addition that for some parameters β ∈ [1,∞) and ν > 0, we have the
growth condition

R(θ) ≥ R(θ0) + νd(θ, θ0)β

for d(θ, θ0) ≤ D. Let θ̂n = argminθ∈ΘRn(θ) and assume that θ̂n
p→ θ0. Give the largest rate rn

(i.e. a function of n, α, β, ignoring other constants) you can for which

rnd(θ̂n, θ0) = OP (1) as n→∞.

Question 7.11: In some applications (such as imaging), we may often observe noiseless mea-
surements of a linear system, though sometimes (due to sensor failures) we observe simply noise.
We would like to estimate the parameters of such a system. More precisely, suppose that we have
X ∈ Rd, and we observe

Yi = XT
i θ0 + εi, where εi = BiZi.

Here Bi ∈ {0, 1} is a Bernoulli variable, independent of Zi and Xi, indicating failed measurements
(though we do not observe this), where P(Bi = 0) = p > 1

2 and P(Bi = 1) = 1 − p (so we are
more likely to see a good observation than not). The variables Zi have arbitrary distribution,
independent of Xi, and E[|Zi|] < ∞. Because of its nice median-like estimating properties, we
decide to estimate θ0 using the absolute loss, `(θ;x, y) = |xT θ − y|, choosing θ̂n by

θ̂n ∈ argmin
θ

Rn(θ) where Rn(θ) :=
1

n

n∑
i=1

`(θ;Xi, Yi).

Let R(θ) := E[`(θ;X,Y )] = E[|XT θ− Y |] be the population risk (so that Rn is the empirical risk).

(a) Show that for any θ ∈ Rd, we have

R(θ)−R(θ0) ≥ (2p− 1)E[|XT (θ − θ0)|].

(b) Let V ∈ R be any random variable, where |V | ≤ D with probability 1, and let E[V 2] = σ2.
Show that

P(|V | ≥ c) ≥ σ2 − c2

D2 − c2
for all c ∈ [0, σ].

Now (and for the remainder of the question) we assume that there is a constant D <∞ such that
‖X‖2 ≤ D with probability 1, i.e. X is supported on the `2-ball of radius D in Rd. We also assume
that the second moment matrix E[XXT ] = Σ where Σ � 0, i.e. Σ is positive definite (full rank).

(c) Show that for any vector v ∈ Rd,

E[|XT v|] ≥ ρ · ‖v‖2 ,

where ρ > 0 is a constant that depends on the distribution of X but is independent of v.
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(d) Show that there exists a constant σ <∞, which may depend on the diameter D of the support
of X and dimension d, such that for all δ ≥ 0,

E

[
sup

θ:‖θ−θ0‖≤δ
|Rn(θ)−R(θ)− (Rn(θ0)−R(θ0))|

]
≤ σδ√

n
.

(e) Based on your answers to parts (c) and (d) and question 7.10, at what rate does θ̂n converge
to θ0? Can you explain this behavior? (You may assume that θ̂n is consistent for θ0; you may
also prove that it is consistent if you like.)

Question 7.12: We wish to estimate the median of the distribution of a random variable X on
R, where we assume E[|X|] <∞. Let the loss function ` be defined by

`(θ, x) = |θ − x|.

We consider minimizers of the population and empirical risks for the preceding loss, defined by

R(θ) := E[`(θ,X)] and Rn(θ) :=
1

n

n∑
i=1

|θ −Xi|,

where Xi are i.i.d. We let θ̂n = argminθ Rn(θ) denote the empirical minimizer of the absolute loss.

(a) Show that the risk functional R is minimized at θ0 = Med(X).

(b) Suppose that X has a density f in a neighborhood of θ0, its median. Show that

√
n(θ̂n − θ0)

d→ N

(
0,

1

4f(θ0)2

)
.

Hint: see van der Vaart [7, Theorem 5.23 and Example 5.24], and feel free to cite the results.

Now we consider the problem when X does not have a density at its median θ0. Indeed, assume
that

min {P (X ≥ θ0), P (X ≤ θ0)} ≥ 1

2
+ p0 (7.4)

for some p0 > 0.

(c) Show that under the conditions (7.4),

R(θ) ≥ R(θ0) + p0|θ − θ0| for all θ ∈ R.

(d) What is the asymptotic distribution of
√
n(θ̂n − θ0) under condition (7.4)?

(e) Give the largest rate rn you can (only as a function of n) such that rn|θ̂n − θ0| = OP (1).

Question 7.13 (Moduli of continuity and high probability rates of convergence): In this question,
we show how convexity can be extremely helpful for many reasons in estimation and proving rates
of convergence, including (more or less) free guarantees of consistency, as well as high-probability
convergence possibilities. Let θ ∈ Rd and define

f(θ) := E[F (θ;X)] =

∫
X
F (θ;x)dP (x)
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be a function, where F (·;x) is convex in its first argument (in θ) for all x ∈ X , and P is a probability
distribution. We assume F (θ; ·) is integrable for all θ. Recall that a function h is convex

h(tθ + (1− t)θ′) ≤ th(θ) + (1− t)h(θ′) for all θ, θ′ ∈ Rd, t ∈ [0, 1].

Let θ0 ∈ argminθ f(θ), and assume that f satisfies the following ν-strong convexity guarantee:

f(θ) ≥ f(θ0) +
ν

2
‖θ − θ0‖2 for θ s.t. ‖θ − θ0‖ ≤ β,

where β > 0 is some constant. We also assume that the instantaneous functions F (·;x) are L-
Lipschitz with respect to the norm ‖·‖.

Let X1, . . . , Xn be an i.i.d. sample according to P , and define fn(θ) := 1
n

∑n
i=1 F (θ;Xi) and let

θ̂n ∈ argmin
θ

fn(θ).

(a) Show that for any convex function h, if there is some r > 0 and a point θ0 such that h(θ) > h(θ0)
for all θ such that ‖θ − θ0‖ = r, then h(θ′) > h(θ0) for all θ′ with ‖θ′ − θ0‖ > r.

(b) Show that f and fn are convex.

(c) Show that θ0 is unique.

(d) Let
∆(θ, x) := [F (θ;x)− f(θ)]− [F (θ0;x)− f(θ0)] .

Show that ∆(θ,X) (i.e. the random version where X ∼ P ) is 4L2 ‖θ − θ0‖2-sub-Gaussian.

(e) Show that for some constant σ <∞, which may depend on the parameters of the problem (you
should specify this dependence in your solution)

P
(
‖θ̂n − θ0‖ ≥ σ ·

1 + t√
n

)
≤ C exp

(
−t2
)

for all t ≤ σ′
√
nβ, where σ′ > 0 is a constant depending on the parameters of the problem and

C <∞ is a numerical constant. Hint: The quantity ∆n(θ) := 1
n

∑n
i=1 ∆(θ,Xi) may be helpful,

as may be the bounded differences inequality in Question 6.4.

Question 7.14 (Uniform convergence in a quantile regression problem): Let pairs z = (x, y) ∈
Rd × R and for a fixed q ∈ (0, 1) consider the “pinball” loss

`(θ, z) = `(θ, x, y) = q
(
θTx− y

)
+

+ (1− q)
(
y − θTx

)
+
− q (−y)+ − (1− q) (y)+ , (7.5)

where (a)+ = max{a, 0} is the positive part of its argument. (One uses this loss to fit models that
predict quantiles.) Define the population expectation L(θ) := EP [`(θ,X, Y )].

(a) Show that if Θ ⊂ Rd is compact and E[‖X‖] <∞ for some norm ‖·‖ on Rd, then

sup
θ∈Θ
|Pn`(θ,X, Y )− L(θ)| p→ 0.

(b) Explain why we must normalize the losses (7.5) by subtracting q (−y)+ +(1−q) (y)+ to achieve
the preceding convergence. (This should only take a sentence or two.)
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Now, we derive asymptotics of the empirical minimizer θ̂n of Ln(θ) := Pn`(θ,X, Y ), that is,
θ̂n ∈ argminθ∈Θ Ln(θ). You may use the following result:

Lemma 7.14.1 (Bertsekas [3]). If H : Rd × Z → R is a convex function with EP [|H(θ, Z)|] < ∞
and ∇θH(θ, x) exists for P -almost all x, then h(θ) := EP [H(θ, Z)] is differentiable with gradient

∇h(θ) = EP [∇H(θ, Z)] =

∫
∇H(θ, z)dP (z) =

∫
z∈Z:∇H(θ,z) exists

∇H(θ, z)dP (z).

Assume that conditional on X = x, the random variable Y has cumulative distribution Fx(·)
with continuous bounded positive density fx(·) on R. Assume additionally that Cov(X) � 0,
that is, X has full rank covariance with E[‖X‖22] < ∞, and that the population minimizer θ? =
argminθ∈Θ L(θ) ∈ int Θ.

(c) Show that θ̂n is consistent for θ?. Hint: argue that the Hessian ∇2L(θ) is positive definite
in a neighborhood of θ?. Then apply van der Vaart [7, Thm. 5.7]. You may assume you can
exchange the order of expectation and differentiation in any integrals you desire. (It is possible
to use dominated convergence to prove this valid in any case.)

(d) Show that
√
n(θ̂n − θ?)

d→ N
(
0,∇2L(θ?)−1Cov(∇`(θ?, X, Y ))∇2L(θ?)−1

)
.

In addition, express the covariance Cov(∇`(θ?, X, Y )) and Hessian ∇2L(θ?) in terms of expec-
tations involving q and the random variables X, fX(〈θ?, X〉), and FX(〈θ?, X〉). Hint: you may
use van der Vaart [7, Thm. 5.23] to show the claimed convergence.

(e) Suppose there exists θ0 ∈ int Θ such that

Fx(θT0 x) = 1− q

for P -almost all x, and that the density fx(θT0 x) = ρ > 0 for P -almost all x. This would occur,
for example, in the model

Y = 〈β?, X〉+ ε, ε
iid∼ N(0, 1)

so long as x includes the intercept term that x1 = 1 (feel free to convince yourself of this!).
Show that your result in part (d) simplifies to

√
n(θ̂n − θ?)

d→ N

(
0,
q(1− q)
ρ2

E[XXT ]−1

)
.

7.3 Comparison inequalities and applications

Question 7.15: We consider a few different contraction inequalities and complexities, relating
Gaussian to Rademacher complexities. For this problem, define the Rademacher and Gaussian
complexities of a set T ⊂ Rn by

Rn(T ) := E[sup
t∈T
|〈ε, t〉|] and Gn(T ) := E[sup

t∈T
〈g, t〉]

where εi
iid∼ Uni{±1} and g ∼ N(0, In). Note the lack of an absolute value in the Gaussian complex-

ity.
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(a) Let X ∼ N(0,Σ) be a Gaussian vector. Argue that for any index i0,

E[max
i,j
|Xi −Xj |] = 2E[max

i
Xi] and E[max

i
|Xi|] ≤ 2E[max

i
Xi] + E[|Xi0 |].

(b) Show that for any3 set T ⊂ Rn,

Rn(T ) ≤
√

2πGn(T ) +

√
π

2
inf
t0∈T

E[|〈g, t〉|].

If T is symmetric (so T = −T ) show that Rn(T ) ≤
√

π
2Gn(T ).

(c) Let φi : R → R, i = 1, . . . , n, be a M -Lipschitz functions, meaning |φi(x)− φi(y)| ≤ M |x− y|
for x, y ∈ R, and define φ(t) = (φi(ti))

n
i=1 to be the elementwise application of φ. Using the

result of part (b), show that

Rn(φ(T )) ≤M
√

2πGn(T ) +

√
π

2
inf
t∈T

E[|〈g, φ(t)〉|].

(d) For a function class F ⊂ {Rd → R}, define the Rademacher and Gaussian complexities

Rn(F | xn1 ) = E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]

and Gn(F | xn1 ) = E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(xi)

∣∣∣∣∣
]

for any collection xn1 = {xi}ni=1 ⊂ Rd. Let the function class F = {f(x) = 〈θ, x〉 | ‖θ‖1 ≤ 1},
and let φ be 1-Lipschitz with φ(0) = 0. Show that for σ2

n,j =
∑n

i=1 x
2
i,j (the sum of squares of

the jth component of the vectors xi ∈ Rd),

Rn(φ ◦ F | xn1 ) ≤ C
√

max
j≤d

σ2
n,j log(2d)

for a numerical constant C.

Question 7.16 (Peeling and normalizing losses): We will investigate a situation in which we
can show that a has deviation that (roughly) scales with its expected deviation, allowing us to give
a “self-normalizing” high-probability concentration result. For data (x, y) ∈ Rd, consider losses

`(θ, x, y) = |〈θ, x〉 − y|.

The population loss of interest is L(θ) := P`(θ,X, Y ), where we assume that θ? = argminθ L(θ).4

Then we have y = 〈x, θ?〉 + ξ, though we do not necessarily have that the “noise” ξ is mean
zero, symmetric, or independent of x. For empirical loss Ln = Pn`(·, X, Y ), we would like to give
(uniform) deviation bounds on the quantity

(Ln(θ)− Ln(θ?))− (L(θ)− L(θ?)) .

3ignoring measurability issues, and assuming that for any random vector X and function f we require that
E[supt∈T f(t,X)] = supk∈N sup|T0|≤k,T0⊂T E[maxt∈T0 f(t,X)]

4 If Y is not integrable, we could normalize by considering losses |〈θ, x〉 − y| − |y|; you should convince yourself
this would not change the results of this problem, so these concentration guarantees hold no matter Y ’s distribution.
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(a) For r ≥ 0, consider the function class

Fr := {(x, y) 7→ `(θ, x, y)− `(θ?, x, y) | ‖θ − θ?‖2 ≤ r} ,

that is, all functions of the form

f(x, y) = `(θ, x, y)− `(θ?, x, y) = |〈θ, x〉 − y| − |〈θ?, x〉 − y| = |〈θ − θ?, x〉 − ξ| − |ξ|,

where ξ = y − 〈x, θ?〉, as θ ranges over ‖θ − θ?‖2 ≤ r. Show that the conditional Rademacher
complexity

Rn(F | xn1 , yn1 ) := E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi, yi)

∣∣∣∣∣
]

satisfies

Rn(Fr | xn1 , yn1 ) ≤ 2r

√√√√ n∑
i=1

‖xi‖22.

(b) Let Θr := {θ ∈ Rd | ‖θ − θ?‖2 ≤ r}. Assume that under the distribution P , we have ‖Xi‖2 ≤ b
with probability 1. Show that for some numerical constant c <∞ (i.e., c should be independent
of all other parameters in your problem),

P
(

sup
θ∈Θr

|(Ln(θ)− Ln(θ?))− (L(θ)− L(θ?))| ≥ crb(1 + t)√
n

)
≤ e−t2

for all r, t ≥ 0.

(c) Let 0 < ε ≤ r <∞, and define the ratio

ρn(r, ε) := sup
θ

{
|(Ln(θ)− Ln(θ?))− (L(θ)− L(θ?))|

‖θ − θ?‖2
s.t. ε ≤ ‖θ − θ?‖2 ≤ r

}
. (7.6)

Show that there exists a numerical constant c <∞ (again, independent of all parameters) such
that for any r <∞ and ε > 0 with r/ε > exp(1),

P

(
ρn(r, ε) ≥ cb

√
1 + log log r

ε + u

n

)
≤ e−u

for all u ≥ 0. Hint. In the notation of part (b), consider parameter sets of the form Θr(k),

where r(k) = 2kε and k ranges over {0, . . . , log2
r
ε}. You can assume log2

r
ε ∈ N.

Question 7.17 (Using a normalized concentration inequality): In this question, you will use
the results of Question 7.16 to show a few convergence guarantees for empirical minimizers of the
robust loss `(θ, x, y) = |〈θ, x〉 − y|. Throughout this question, we will make the assumption that

Y = 〈X, θ?〉+ σξ,

where ξ is a symmetric random variable, independent of X, with strictly positive density in a
neighborhood of zero (recall Question 2.11), that is, ξ has density π with π(z) ≥ pmin for z ∈ [−τ, τ ],
where pmin, τ > 0 are positive. (By a change of variables, this means that σξ has a density πσ with
πσ(z) ≥ pmin

σ for z ∈ [−τσ, τσ].) We will also assume for simplicity that X ∼ Uni(
√
dSd−1), that is,
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X is uniform on the sphere {x ∈ Rd | ‖x‖2 =
√
d}. In this question, you will develop finite sample

convergence rates of the empirical minimizer

θ̂n ∈ argmin
θ
{Ln(θ) := Pn`(θ,X, Y )}

to the population minimizer θ? = argminθ L(θ), where L(θ) = P`(θ,X, Y ) as usual.
You may assume that E[|Y |] <∞, though as in footnote 4, we could simply normalize by using

losses |〈θ, x〉 − y| − |y|. You may also use (without proof or citation) that if X ∼ Uni(
√
dSd−1),

there exists a numerical constant c0 > 0 such that for any fixed vector v, we have |〈X, v〉| ≥ c0 ‖v‖2
with probability at least 1

2 .

(a) Let σ > 0. Show that for a numerical constant c > 0, we have

L(θ)− L(θ?) ≥ cpmin

σ
min

{
‖θ − θ?‖22 , στ ‖θ − θ

?‖2
}
.

Hint: Use Question 2.11.

(b) Let ρn(r, ε) be defined as in Eq. (7.6). Show that

Ln(θ)− Ln(θ?) ≥ L(θ)− L(θ?)− ρn(r, ε) ‖θ − θ?‖2

simultaneously for all θ satisfying ‖θ − θ?‖2 ∈ [ε, r].

(c) Let r be small enough that r ≤ στ (recall that τ is a parameter of the density π of ξ). Argue
that there exists a numerical constant C <∞ such that on the event

C
ρn(r, ε)σ

pmin
< r,

we have
Ln(θ)− Ln(θ?) > 0

for all θ satisfying ‖θ − θ?‖2 > C · ρn(r, ε) σ
pmin

. Hint: Use Question 2.10 and parts (a)–(b).

(d) Show that there exists a numerical constant C <∞ such that for any ν > 0, for large enough
n (which you may feel free to specify), we have

‖θ̂n − θ?‖22 ≤ C
d

n

σ2

p2
min

· ν log n with probability ≥ 1− 1

nν
.

Question 7.18 (A weakened Sudakov-Fernique inequality; Ledoux and Talagrand [6]): In this
question, we will develop a weakened version of the Sudakov-Fernique inequality. The standard
version is as follows. Let X = {Xi}ni=1 and Y = {Yi}ni=1 be mean-zero Gaussian vectors, where

E[(Xi −Xj)
2] ≤ E[(Yi − Yj)2] (7.7)

for all i, j. Then
E[max

i≤n
Xi] ≤ E[max

i≤n
Yi].

We will demonstrate a weaker version of this, which follows from Slepian’s inequality; we will show
that under the hypothesis (7.7)

E[max
i≤n

Xi] ≤ 2E[max
i≤n

Yi]. (7.8)
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(a) Argue that E[maxi≤n(Xi−X1)] = E[maxi≤nXi] and similarly E[maxi≤n(Yi−Y1)] = E[maxi≤n Yi],
so that without loss of generality we may assume X1 = Y1 = 0.

For the rest of the problem, assume that X1 = Y1 = 0; note that this means maxi≤nXi ≥ 0,
maxi≤n Yi ≥ 0, and maxi |Yi| ≤ maxi,j |Yi − Yj |.

(b) Define σ2 := maxi≤n E[Y 2
i ] and consider the perturbed random variables

X ′i = Xi + σZ and Y ′i = Yi + (σ2 + E[X2
i ]− E[Y 2

i ])1/2Z

where Z ∼ N(0, 1) is standard normal. Show that E[(X ′i)
2] = E[(Y ′i )2] and that

E[max
i≤n

X ′i] ≤ E[max
i≤n

Y ′i ].

(c) Show that σ2 ≤ 2πE[maxi≤n Yi]
2.

(d) Show inequality (7.8).
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8 High-dimensional problems

Question 8.1: Consider the sub-Gaussian sequence model

Y = θ + σε, (8.1)

where ε ∈ Rn consists of independent mean-zero 1-sub-Gaussian components (for θ ∈ Rn). The
soft-thresholding operator, defined for v ∈ R by

Sλ (v) := sign(v) (|v| − λ)+ =


v − λ if v ≥ λ
0 if v ∈ [−λ, λ]

v + λ if v ≤ −λ,

gives the soft-thresholding estimator (when applied elementwise)

θ̂ := Sλ (Y ) = argmin
θ

{
1

2
‖θ − Y ‖22 + λ ‖θ‖1

}
.

In this question, we give high-probability bounds on the error of θ̂ for the sub-Gaussian sequence
model (8.1) when θ is k-sparse, meaning that ‖θ‖0 = card{j ∈ [n] | θj 6= 0} ≤ k.

(a) Show that if λ ≥ σ ‖ε‖∞, then

‖θ̂ − θ‖22 ≤ 4kλ2.

(b) Show that if
λ = λ(t) :=

√
2σ2 log(2n) + 2σ2t,

where t ≥ 0, then

sup
‖θ‖0≤k

P
(
‖θ̂ − θ‖2 ≥ 2

√
kλ(t)

)
≤ e−t.

Conclude that probability at least 1− 1
2n , in the sub-Gaussian sequence model (8.1), the soft-

thresholding estimator with λ = 2
√
σ2 log(2n) satisfies ‖θ̂ − θ‖22 ≤ 16kσ2 log(2n).

Question 8.2: A matrix A ∈ Rn×d, A = [a1 · · · ad], where ai ∈ Rd are the columns of A, is
µ-pairwise incoherent if

δpw(A) :=

∥∥∥∥ 1

n
ATA− Id×d

∥∥∥∥
∞

satisfies δpw(A) ≤ µ, where ‖·‖∞ denotes the entrywise `∞ norm (maximum absolute value). Recall
that for a set S ⊂ [d], we define AS = [ai]i∈S ∈ Rn×|S| to be the matrix whose columns are indexed
by S.

(a) Let S ⊂ [d] have cardinality |S| = k. Show that if δpw(A) ≤ µ, then the minimal eigenvalue
λmin of 1

nA
T
SAS satisfies

λmin(n−1ATSAS) ≥ 1− kµ.

(b) Show that if δpw(A) = µ < 1
2k , then A satisfies the restricted nullspace property with respect

to any set S ⊂ [d] with |S| ≤ k. That is, if

C(S) := {x ∈ Rd | ‖xSc‖1 ≤ ‖xS‖1},

then null(A) ∩ C(S) = {0}.
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Question 8.3 (The square root Lasso): The square-root Lasso chooses the estimator θ̂ via

θ̂ ∈ argmin
θ∈Rd

{
1√
n
‖y −Xθ‖2 + γ ‖θ‖1

}
.

Assume that y = Xθ? + ε for some vector θ? with support S = {j : θ?j 6= 0} and ε ∈ Rn.

(a) Show that the square-root Lasso is equivalent to choosing

θ̂ ∈ argmin
θ∈Rd

inf
λ≥0

{
1

2n

‖y −Xθ‖22
λ

+
λ

2
+ γ ‖θ‖1

}
.

What value does λ take on at θ = θ?? Why might this be a valuable quantity?

(b) Let θ? have support S = supp θ? = {j ∈ [d] : θ?j 6= 0}. Show that

1√
n
‖Xθ̂ − y‖2 −

1√
n
‖Xθ? − y‖2 ≤ γ (‖∆S‖1 − ‖∆Sc‖1) ,

where θ̂ = θ? + ∆.

(c) Show that if y = Xθ? + ε, then

‖Xθ̂ − y‖2 ≥ ‖Xθ? − y‖2 −
∥∥XT ε

∥∥
∞

‖ε‖2
‖∆‖1 .

(d) Letting
C3(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ 3 ‖∆S‖1}

denote (a scaled version of) the critical cone, show that ∆ ∈ C3(S) whenever γ ≥ 2
‖XT ε‖∞√
n‖ε‖2

.

(e) Show that any solution θ̂ to the square-root Lasso satisfies

1
nX

T (Xθ̂ − y)
1√
n
‖Xθ̂ − y‖2

+ γz = 0

for some z ∈ ∂‖θ̂‖1, the subdifferential of the `1-norm at θ̂.

(f) Using the previous part, derive the following extension of the basic inequality for the square
root lasso:

1

n
‖X∆‖22 ≤

1

n
〈∆, XT ε〉+

γ√
n
‖X∆− ε‖2 (‖∆S‖1 − ‖∆Sc‖1)

≤ 1

n
〈∆, XT ε〉+

γ√
n
‖ε‖2 ‖∆S‖1 + γ2 ‖∆S‖21 .

(You should prove both inequalities.)

(g) Suppose that X satisfies the restricted strong convexity condition that 1
n ‖X∆‖22 ≥ µ ‖∆‖

2
2 for

all ∆ ∈ C3(S) and γ ≥ 2‖X
T ε‖∞√
n‖ε‖2

. Show that if k = |S|, then

(µ− kγ2) ‖∆‖2 ≤ 3
γ ‖ε‖2

√
k√

n
.
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(h) Assume X ∈ Rn×d has columns with norm ‖Xi‖22 = n and satisfies restricted strong convexity as
in part (g); assume also that εi are independent, mean zero, Cσ2-sub-Gaussian, and E[ε2

i ] = σ2.

Argue that if γ = C
√

log d√
n

for a constant C, then ‖θ̂ − θ?‖22 . σ2 k log d
n with high probability.

(i) What advantages does this have (in one sentence) over the standard Lasso program?

Question 8.4 (`∞ bounds on the Lasso): Consider the sparse linear regression model Y = Xθ?+ε,
X ∈ Rn×d, where ε ∈ Rn consists of independent σ2-sub-Gaussian noise and supp(θ?) = S ⊂ [d].
Let Σ̂ := 1

nX
TX, and assume that the diagonal diag(Σ̂) ≤ 1 (i.e. the entries are uniformly bounded

by 1) and that we have the `∞ growth condition

‖Σ̂∆‖∞ ≥ µ ‖∆‖∞ for all ∆ ∈ C3(S), (8.2)

where we recall that C3(S) = {∆ ∈ Rd | ‖∆Sc‖1 ≤ 3 ‖∆S‖1}.

(a) Show that with regularization parameter λn = 4σ
√

log d
n , any Lasso solution satisfies the `∞

bound

‖θ̂ − θ?‖∞ ≤ C
σ

µ

√
log d

n

with high probability, where C is a numerical constant.

(b) Under the same conditions, show that if |S| ≤ k, we have the `1 bound

‖θ̂ − θ?‖1 ≤ C ′
σ

µ
k

√
log d

n

for a numerical constant C ′.

Hint: Use the subdifferential optimality condition for convex optimization that x minimizes f(x)
if and only if 0 ∈ ∂f(x).

Question 8.5 (Verifying the `∞ growth condition): Let X ∈ Rn×d have i.i.d. N(0, 1) entries.
Show that with high probability, Σ̂ := 1

nX
TX satisfies

‖Σ̂∆‖∞ ≥ µ ‖∆‖∞ for all ∆ ∈ C3(S)

with high probability as long as n ≥ Ck2 log d, where 0 < µ,C < ∞ are numerical constants and
k = |S|.

Hint: Do not use chaining or anything like that.

Question 8.6: Perform the following simulation, doing each experiment a total of T = 20 times.
Draw a data matrix X ∈ Rn×d, where n = 50 and d = 200, and k = 5, and choose θ? ∈ Rd uniformly
at random from k-sparse vectors with ‖θ?‖2 = 1. For values of σ2 ∈ {10−3, 10−2, 10−1, 1, 102, 103},
set

Y = Xθ? + σε, ε ∼ N(0, In).

Then solve the following two lasso problems:

[Square-root] minimize
θ

1√
n
‖Xθ − Y ‖2 + λn ‖θ‖1

[Standard] minimize
θ

1

2n
‖Xθ − y‖22 + λn ‖θ‖1 ,
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where λn = 2
√

log d
n for both.

For each value of σ2, plot the mean error ‖θ̂ − θ?‖2 for each of the square-root and standard
lassos as well as the variance across your experiments. Explain your results in a few sentences.

Hint: You may wish to use the CVX package, available for R (https://rviews.rstudio.
com/2017/11/27/introduction-to-cvxr/), Julia (https://github.com/JuliaOpt/Convex.jl),
Python (https://cvxopt.org/), or Matlab (http://cvxr.com/cvx/).
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9 Convergence in Distribution in Metric Spaces and Uniform CLTs

Question 9.1: Let F be the collection of cumulative distribution functions on the real line, and
let ‖F −G‖∞ = supt |F (t)−G(t)| be the usual sup-norm on F . Recall that a functional γ : F → R
is continuous in the sup-norm at F if for all ε > 0 there exists δ > 0 such that ‖G− F‖∞ ≤ δ
implies |γ(F )− γ(G)| ≤ ε.

(a) Let Fn be the empirical distribution of an i.i.d. sample X1, . . . , Xn drawn from distribution
with CDF F . Show that if γ is continuous in the sup-norm, then

γ(Fn)
p→ γ(F ).

(b) Which of the following functionals are sup-norm continuous? Prove or give a counterexample.

(i) The mean functional F 7→
∫
xdF (x).

(ii) The Cramér-von Mises functional F 7→
∫

(F (x)− F0(x0))2dF0(x).

(iii) The quantile functional Qp(F ) := inf{t ∈ R | F (t) ≥ p}.

Question 9.2: We consider estimation of median-like quantities in dimension d ≥ 1. Let ‖·‖2
denote the typical `2-norm, defined by ‖x‖22 =

∑d
j=1 x

2
j , and consider the loss function

`θ(x) := ‖x− θ‖2

and risk R(θ) := E[`θ(X)] for X ∼ P . We will consider the asymptotics of the minimizer

θ̂n := argmin
θ∈Rd

Rn(θ) =
1

n

n∑
i=1

`θ(Xi).

We assume that E[‖X‖22] <∞ for simplicity, though this is not strictly necessary. In this exercise,
you may use the following facts (see, for example, the paper of Bertsekas [3]): if `θ(x) is convex in
θ for all x and for P -almost every x is differentiable in a neighborhood of a point θ0 with derivative
˙̀
θ(x) = ∇θ`θ(x), then

∇R(θ) = E[ ˙̀
θ(X)].

Similarly, if the Hessian ῭
θ = ∇2

θ`θ exists with P -probability 1 near θ0, then ∇2R(θ) = E[῭θ(X)].

(a) Show that the set argminθ R(θ) = {θ0 ∈ Rd | R(θ0) ≤ infθ R(θ)} is non-empty.

For the remainder of the question, we will assume that P has a density f(x) for x in a neighborhood
(i.e. some ball in Rd) of a point θ0 ∈ argminθ R(θ).

(b) Show that θ0 is unique. Hint: Question 7.13.(c) may be useful, as `θ is convex in θ.

(c) Give an asymptotic expansion of θ̂n, that is, show that

θ̂n − θ0 =
1

n

n∑
i=1

ψ(Xi) + oP (n−
1
2 ),

and specify the functions ψ : Rd → Rd.

(d) What is the asymptotic distribution of
√
n(θ̂n − θ0)?
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(e) Suppose that the vectors Xi are i.i.d. N(0, I), Gaussian with identity covariance I and the

dimension d ≥ 3. Show that θ0 = 0 and that
√
n(θ̂n − θ0)

d→ N(0, cdI), where cd is a constant
that you should specify.

(f) Compare the asymptotic distribution of ‖θ̂n‖22 to that of
∥∥Xn

∥∥2

2
, the sample mean, when

Xi
iid∼ N(0, I). What sample size m(n) is required (as a function of n) for θ̂m(n) to have the

same asymptotic performance as Xn?

Question 9.3 (Elliptical classes are Donsker): Recall that a collection F of functions is P -Donsker
if the process Gn :=

√
n(Pn − P ), viewed as a mapping Gn : F → R via Gnf = 1√

n

∑n
i=1(f(Xi)−

Pf), converges to a tight Gaussian process G in L∞(F). For this, it is sufficient (by our arguments
in class and asymptotic stochastic equi-continuity) that F be totally bounded for the L2(P ) metric,
and for the localized class

Fδ :=
{

(f − g) | f, g ∈ F , ‖f − g‖L2(P ) ≤ δ
}
,

where we recall ‖f − g‖2L2(P ) = P (f − g)2, we have

lim
δ↓0

lim sup
n

E

[
sup

(f−g)∈Fδ
Gn(f − g)

]
= 0

and that each f ∈ F has a second moment under P so that finite-dimensional convergence holds.
Let {ϕi}i∈N be a collection of functions ϕi : X → R with Pϕiϕj = 0 for all i 6= j and∑∞
i=1 Pϕ

2
i <∞. Define the elliptical class of functions

F :=

{ ∞∑
i=1

ciϕi |
∞∑
i=1

c2
i ≤ 1 and the series converges pointwise

}
.

We will show that F is P -Donsker.

(a) Show that
∑∞

i=1 ciϕi converges in L2(P ).

(b) Show that for any f ∈ F and ε > 0, there exists some m ∈ N, α ∈ Rm, and g =
∑m

i=1 αiϕi
such that

P (f − g)2 ≤ ε2.

Argue that F is totally bounded for L2(P ).

(c) Show that for any pair f, g ∈ F , there exists a numerical constant C < ∞ such that for all
k ∈ N,

|Gn(f)−Gn(g)|2 ≤ C

[
P (f − g)2

k∑
i=1

G2
n(ϕi)

Pϕ2
i

+

∞∑
i=k+1

G2
n(ϕi)

]
.

(d) Argue that for any ε > 0, we can choose δ > 0 such that

E

[
sup

(f−g)∈Fδ
G2
n(f − g)

]
≤ ε,

whence the ellitical class F is Donsker.
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Question 9.4: Consider a multiple hypothesis testing problem, where we observe a number n of
statistics of interest, and wish to test whether and how many of them are significant. One approach
to this is to use a Kolmogorov-Smirnov-type test (or an Anderson-Darling test [1]), which proceeds
as follows: under the null H0, the p-values of each of our statistics are independent and uniform;
call them U1, U2, . . . , Un. Then for empirical CDF Fn(t) := 1

n

∑n
i=1 1 {Ui ≤ t}, we can consider

Kn := sup
t∈[0,1]

√
n |Fn(t)− t| .

Then we might hope that if there is a departure from the (known) limit distribution, we would
detect it. In this problem, we consider more nuanced departures from the null

H0 : Ui
iid∼ Uni([0, 1]).

In particular, we consider a situation where a few of the p-values may be drawn from an alternative
distribution Qn instead of the null Uni([0, 1]), but this may be a very small number. As motivation,
one might consider testing for contamination in a part of a city’s water supply: one does not know
where to look for the contamination, so that one needs to perform tests of many individuals, but
if enough have elevated levels of some contaminant, one knows to do a more careful investigation.

To that end, consider the following sequence of alternative distributions indexed by n:

H1,n : Ui
iid∼ (1− εn)Uni([0, 1]) + εnQn,

that is, with probability (1− εn) the Ui are drawn from Uni([0, 1]) as in the null H0 and otherwise
Ui ∼ Qn, where Qn is some other distribution. We shall assume throughout that

εn = n−β

for some β ∈ (1
2 , 1), so that the number of observations off the null is much smaller than the typical

1/
√
n scaling one needs for central limit theorems.

(a) Argue that for F (t) = t, the empirical process

√
n(Fn(·)− F (·))

(indexed by t ∈ [0, 1]) has the same limit under both the i.i.d. null H0 and the alternative H1,n.

(b) Show that the KS statistic Kn has the same limit distribution under both H0 and H1,n.

Hint. You should not need to check any asymptotic stochastic equicontinuity or tightness of the
empirical process to do (a)–(b).

We now develop an example to show it may be possible to detect small contaminants, though
we cannot necessarily reject individual null hypotheses. To that end, consider the hypotheses

H0 : Xi
iid∼ N(0, 1) and H1,n : Xi

iid∼ (1− εn)N(0, 1) + εnN(µn, 1),

where the mean µn =
√

2r log n for some r < 1.5 Define the Bernoulli random variables

Bn
i := 1 {Xi ≥ µn}

for all i ≤ n and n ∈ N. For simplicity, assume that 1
2 < β < r < 1.

5To obtain p-values, simply invert the Gaussian CDF. Our choice of r < 1 prevents a naive test that simply looks
at the maximum of the Xi to distinguish H0 and H1,n, as even under H0 we would expect maxiXi ≈

√
2 logn.
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(c) Develop a test statistic Tn based on
∑n

i=1B
n
i and threshold tn such that

P0(Tn ≥ tn)→ 0 and P1,n(Tn ≥ tn)→ 1 (9.1)

as n → ∞, where P1,n denotes sampling under the alternative H1,n. Prove that your statistic
satisfies the desiderata (9.1). Hint. There are many ways to do this, including via concentration
inequalities, Chebyshev inequalities, or multiplicative Hoeffding bounds. Your value tn may
not need to depend on n, but it’s fine if it does.

As a piece of fun culture, there are tests that can distinguish H0 and H1,n with high probability,
while also being adaptive to the contamination rate εn and distribution Qn. Deriving this is well
beyond the scope of this course, but one prominent example is Donoho and Jin’s “Higher Criticism,”
which for a given level α (typically α = .05) uses

HCα := sup
t∈[0,α]

√
n(Fn(t)− t)√
t(1− t)

.

The statistic actually diverges even under the null H0 of i.i.d. uniform sampling, but not by much:
the correction HCα/

√
2 log log n

p→ 1 as n→∞. Thus, while we may not be able to reject the null
in a classical p ≤ .05 Fisherian sense, we can recognize “something is funny.”
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10 Contiguity and Quadratic Mean Differentiability

Question 10.1: Let Pn and Qn be sequences of probability measures with ‖Pn −Qn‖TV → 0.
Show that Pn and Qn are mutually contiguous.

Question 10.2: Recall that a family {Pθ}θ∈Θ of distributions on X is quadratic mean differentiable
(QMD) at θ ∈ Rd if there exists a score function ˙̀

θ : X → Rd such that∫ (
√
pθ+h −

√
pθ −

1

2
h> ˙̀

θ
√
pθ

)2

dµ = o(‖h‖2).

Let Pn denote the n-fold product of P (i.e. n i.i.d. observations from P ).

(a) Show that

lim
n→∞

d2
hel(P

n
θ0 , P

n
θ0+h/

√
n) = 1− exp

(
−1

8
h>Iθ0h

)
.

(b) Give conditions on h (and prove them) such that for any sequence of tests ψn : X → {0, 1}, we
have the asymptotically non-negligible error guarantee that

lim inf
n

{
Pnθ0(ψn 6= 0) + Pnθ0+h/

√
n(ψn 6= 1)

}
> 0.

Question 10.3: Let Pθ denote the uniform distribution on [0, θ], defined whenever θ > 0. Let
θ > 0 and consider the “local” alternatives Pθ+h/

√
n, where h ∈ R. Letting ψn : R → {0, 1} be a

sequence of tests, give upper and lower bounds on the limit infimum

lim inf
n→∞

inf
ψn

{
Pnθ+h/

√
n(ψn 6= 1) + Pnθ (ψn 6= 0)

}
.

Explain your result in the light of Question 10.2.

Question 10.4 (Extending Lemma 7.6 of van der Vaart [7]): Let Θ ⊂ Rk be open and pθ be a
µ-probability density on X . Assume that θ 7→ sθ(x) :=

√
pθ(x) is absolutely continuous for all x,

and that for each θ, we have

µ({x ∈ X : ṗθ(x) fails to exist}) = 0.

Assume additionally that the elements of Iθ :=
∫

(ṗθ/pθ)(ṗθ/pθ)
T pθdµ are continuous in θ. Prove

that the map θ 7→ √pθ is differentiable in quadratic mean with ˙̀
θ = ṗθ/pθ, that is,∫ (√

pθ+h(x)−
√
pθ(x)− 1

2
hT ˙̀

θ(x)
√
pθ(x)

)2

dµ(x) = o(‖h‖2) as h→ 0.

Question 10.5 (Non-parametrics and Hellinger Divergences): Recall that the Hellinger distance
between distributions P and Q is

d2
hel(P,Q) =

1

2

∫
(
√
p−√q)2dµ,

where p = dP/µ, q = dQ/dµ, and µ is any measure dominating P and Q. Let P0 be a probability
distribution on a measurable space X .
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(a) For a bounded function g with mean zero under P0, that is, such that P0g = 0 and ‖g‖∞ =
supx∈X |g(x)| <∞, define the tilted distributions

dPt(x) = (1 + tg(x))dP0(x),

which are evidently valid distributions whenever t ≤ 1
‖g‖∞

. Show that as t ↓ 0,

d2
hel(Pt, P0) =

1

8
t2P0g

2 +O(t3).

Hint: the expansion
√

1 + a = 1 + a
2 −

a2

8 ± |a|
3, valid for |a| ≤ 1

2 , may be useful.

We now give a more advanced variant of this expansion, including (roughly) a derivative of√
dPt in L2(P0), showing that this mapping is quadratic mean differentiable (though the particular

concept is not necessary for this exercise). Let φ : R → R+ be bounded, continuous, continuously
differentiable in a neighborhood of 0 and satisfy φ(0) = φ′(0) = 1. (For example, the functions
φ(t) = 2

1+e−2t and φ(t) = min{(1 + t)+ , 2} satisfy these conditions.) Let g ∈ L2(P0), that is,

P0g
2 <∞ and assume P0g = 0. Define

dPt(x) =
1

C(t)
φ(tg(x))dP0(x), where C(t) :=

∫
φ(tg(x))dP0(x).

(b) Show that C(t) = 1 + o(t) as t ↓ 0.

(c) Show that as t ↓ 0, for all x we have

ht(x) :=
1

t2

(√
φ(tg(x))/C(t)− 1− 1

2
tg(x)

)2

→ 0.

(d) Give a dominating function for ht(x) and argue that limt↓0
∫
ht(x)dP0(x) = 0, and so∫ (√

dPt −
√
dP0 −

1

2
tg
√
dP0

)2

= o(t2).

(e) Use the preceding result to show that

d2
hel(Pt, P0) =

1

8
t2P0g

2 + o(t2).
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11 Local Asymptotic Normality, Efficiency, and Minimaxity

Question 11.1: Let P0 and P1 be arbitrary distributions. Show Le Cam’s first lemma, that

inf
T
{P0(T 6= 0) + P1(T 6= 1)} = 1− ‖P0 − P1‖TV ,

where the infimum is taken over all tests T : X → {0, 1}.

Question 11.2 (Estimating a non-differentiable function): Let P be a collection of distributions
on a space X and ψ : P → R be a functional of interest that we wish to estimate. Let {Pt}t≥0 ⊂ P
be a sub-model of P, and assume that it is a QMD sub-model in the sense that there is a score
g : X → R, P0g = 0, P0g

2 <∞ with∫ (√
dPt −

√
dP0 −

1

2
tg
√
dP0

)2

= o(t)2.

We illustrate some of the difficulties in estimation of ψ(P ) along a path t 7→ Pt for which ψ(Pt) is
not differentiable. For simplicity, we assume that ψ(P0) = 0 (this is no loss of generality) and that
the path is such that

lim
h↓0

sup
t∈[0,h]

|ψ(Pt)− ψ(P0)|
h

= +∞.

Though the results will hold under this assumption, you may instead assume that the limit is
actually infinite:

lim
t↓0

|ψ(Pt)− ψ(P0)|
t

= +∞.

(a) Letting Pn denote the n-fold product of P , give the limit limn→∞ d
2
hel(P

n
t/
√
n
, Pn0 ), where t ∈ R+.

(b) Show that for any t, we have

inf
T
{Pnt (T 6= 0) + Pn0 (T 6= 1)} ≥ 1− dhel(P

n
t , P

n
0 )
√

2− d2
hel(P

n
t , P

n
0 ).

(c) Show that for any sequence εn ↓ 0, we have

inf
0≤t≤εn/

√
n

inf
T
{Pnt (T 6= 0) + Pn0 (T 6= 1)} → 1.

(d) Show that we have the local minimax lower bound

lim
ε↓0

lim inf
K→∞

lim inf
n→∞

sup
0≤t≤ ε√

n

inf
ψ̂n

max
s∈{0,t}

Pns

(
|ψ̂n − ψ(Ps)| ≥

K√
n

)
≥ 1

2
.

(e) Give a one-sentence description of this result.

Question 11.3 (Score and influence functions for regression): Consider the prediction problem
of finding θ to best predict a scalar y from x ∈ Rd via the model ŷ = θ>x. We study the local
asymptotic minimax risk for estimation of the parameter

θ(P ) := argmin
θ

EP [(Y −XT θ)2],

where (X,Y ) ∼ P , but the standard linear regression model need not hold. You may assume that
E[‖X‖4] <∞ and E[Y 2 ‖X‖2] <∞ for simplicity.
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(a) What is θ(P )?

(b) Let the function φ(t) = min{2,max{1 + t, 0}}, and let g : Rd × R → R satisfy Pg = 0 and
Pg2 <∞. For t ≥ 0, define

dPt(x, y) = c(t)φ(tg(x, y))dP (x, y),

where c(t) is a normalizing function. Show that as t ↓ 0,∫ (√
dPt −

√
dP − 1

2
tg
√
dP

)2

= o(t2).

(c) Give the limit

lim
t→0

θ(Pt)− θ(P )

t
.

(d) Let G be the collection of functions g : Rd × R→ R, Pg2 <∞, and Pg = 0. Let L : Rd → R+

be a symmetric quasi-convex, bowl-shaped and Lipschitz loss. For functions g1, . . . , gk ∈ G and
h ∈ Rk, define the distributions

dPh(x, y) ∝ φ(h>g(x, y))dP (x, y),

normalized appropriately, where g(x, y) = [g1(x, y) · · · gk(x, y)]>. Let θh = θ(Ph) for short-
hand. Construct an influence function for the parameter θh, that is, a function ψInf : Rd×R→
Rd such that

θ(Ph)− θ(P ) = EP
[
ψInf(X,Y )g(X,Y )>

]
h+ o(‖h‖).

(You may do this for g mapping into R rather than Rk.)

(e) Let πn,c,k be a uniform distribution on {h ∈ Rk | ‖h‖ ≤ c/
√
n}. Let θh = θ(Ph) for shorthand.

Give a (tight) lower bound on

sup
k∈N,g1,...,gk∈G

lim inf
c→∞

lim inf
n

inf
θ̂n

∫
EPnh

[
L(
√
n(θ̂n − θh))

]
dπn,c(h).

What does your lower bound become when the model y = x>θ+ε holds, where ε is a mean-zero
independent noise with Pε2 = σ2?

Question 11.4 (Anderson’s Lemma): In this question, we derive a more general version of
Anderson’s lemma from the Prékopa-Leindler (PL) inequality, a deep result in functional analysis
and convex geometry (see, e.g. Ball [2] or Gardner [5] for discussions of the inequality and attendant
results). The PL inequality is as follows. Suppose that for some λ ∈ [0, 1], functions f, g, h : Rn →
R+ satisfy

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ for all x, y ∈ Rn.

Then ∫
h(x)dx ≥

(∫
f(x)dx

)1−λ(∫
g(x)dx

)λ
. (11.1)

Consequences of this inequality include the Brunn-Minkowski inequality, which Anderson first used
to prove his eponymous inequality. We will give an alternative approach using inequality (11.1).
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A function f : Rn → R+ is log concave if log f is concave, meaning that

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ

whenever λ ∈ [0, 1] and x, y ∈ dom f . (We treat f(x) = 0 when x 6∈ dom f , so that log f(x) = −∞,
and assume dom f is a convex set.)

(a) Let f, g be log-concave. Show that the convolution

c(x) = (f ∗ g)(x) :=

∫
f(x− y)g(y)dy

is log-concave in x.

(b) Let C be a convex set and g(x) = 1 {x ∈ C} (i.e. g(x) = 1 if x ∈ C and 0 otherwise). Show
that g is log-concave.

(c) Let f be a log-concave density, meaning
∫
f(x)dx = 1, and let X be a random variable with

density f . Show that the function h(v) = P(X + v ∈ C) is log concave for any convex set C.

With these preliminaries, we now come to Anderson’s lemma. Recall that a function L : Rk → R+

is quasiconvex if the sublevel sets {x ∈ Rk : L(x) ≤ t} are convex for each t ∈ R, and that L is
symmetric if L(x) = L(−x) for each x. The basic Anderson’s lemma presented in the text is the
following:

Lemma 11.4.1. Let X ∼ N(0,Σ) and L : Rk → R+ be quasiconvex and symmetric. Then for any
matrix A,

inf
v
E[L(AX − v)] = E[L(AX)].

The extension that we will prove is the following:

Lemma 11.4.2 (Anderson’s lemma). Let X ∈ Rd be a random vector with a symmetric log-concave
density f , and let L : Rk → R+ be quasiconvex and symmetric. Then

inf
v
E[L(AX − v)] = E[L(AX)]

for any matrix A ∈ Rk×d.

(d) Prove Lemma 11.4.2.

Question 11.5 (The influence function in stochastic optimization): In this problem, we develop
the (nonparametric) influence function for stochastic optimization, or M-estimation, problems,
assuming sufficient smoothness and convexity.

We will develop the idea via the implicit function theorem, a variant of which follows. To
state the theorem, let f : Rn × Rm → Rm be a C1 function in a neighborhood of the point
(u0, v0) ∈ Rn × Rm, where f(u0, v0) = 0. Let Duf(u, v) ∈ Rm×n be the Jacobian (derivative
matrix) of f with respect to u (i.e. its first n coordinates) and Dvf(u, v) ∈ Rm×m that with respect
to v (i.e. its last m coordinates), so that

f(u+ ∆u, v + ∆v) = f(u, v) +Duf(u, v)∆u +Dvf(u, v)∆v + o(‖∆u‖+ ‖∆v‖).

We then have the implicit function theorem.
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Theorem 11.5.1 (Implicit function theorem). Let f : Rn×Rm → Rm satisfy the above conditions.
Then there exists an open neighborhood U ⊂ Rn of u0 and a C1 function h : U → Rm such that
h(u0) = v0, and for all u ∈ U we have both f(u, h(u)) = 0 and

ḣ(u) = −(Dvf(u, h(u)))−1Duf(u, h(u)) ∈ Rm×n.

We use Theorem 11.5.1 to develop the influence function of M-estimators. Let P be a family of
distributions on X and ` : Θ× X → R a loss function convex in its first argument, where Θ ⊂ Rd
is an open convex set. Define the population losses LP (θ) := P`(θ,X) and let

θ(P ) := argmin
θ∈Θ

{LP (θ) = P`(θ,X)}

be the parameter of interest. Fix P0 ∈ P, and for a bounded function g : X → R with P0g = 0,
define the tilted distributions Pt by

dPt(x) := (1 + tg(x))dP0(x),

as in, e.g., Question 10.5 or [7, Example 25.16]. Assume that ∇`(θ, x) and ∇2`(θ, x) are M1(x)-
and M2(x)-Lipschitz in θ, respectively, meaning that (for a norm ‖·‖ whose choice is immaterial)∥∥∇`(θ′, x)−∇`(θ, x)

∥∥ ≤M1(x)
∥∥θ − θ′∥∥∥∥∇2`(θ′, x)−∇2`(θ, x)

∥∥ ≤M2(x)
∥∥θ − θ′∥∥ , all θ, θ′,

where M1 and M2 are P0-integrable, and that the Hessian ∇2LP0(θ(P0)) � 0, is positive definite.
Assume also that the objective ` is locally Lipschitz around θ0 = θ(P0), or, what is simpler and
sufficient, that M0(x)2 := ‖∇`(θ0, x)‖2 is P0-integrable. Construct the influence function θ̇0 : X →
Rd of θ(·), that is, give a square-integrable function θ̇0 such that

lim
t↓0

θ(Pt)− θ(P0)

t
= P0θ̇0g =

∫
θ̇0(x)g(x)dP0(x).

An interpretation of this is that we may view θ(Pt) (asymptotically) as a linear function of the
parameter t in the model family {Pt}t∈R.

You may assume that integrals and derivatives may be exchanged without comment (they can!
We just don’t require a proof). Hint. The minimizers θ(P ) satisfy ∇LP (θ(P )) = L̇P (θ(P )) = 0.

Question 11.6 (Asymptotic efficiency with different losses in regression): Consider data gener-
ated according to

Yi = 〈Xi, θ〉+ εi, εi
iid∼ Q, Xi

iid∼ µ, (11.2)

where Q has a continuous density q with respect to Lebesgue measure, t 7→
√
q(t) is absolutely

continuous, and q(t), q̇(t) → 0 as t → ±∞. Assume also that for a(t) = log q(t), the Fisher
information Jq = Qȧ2 = Q(q̇/q)2 for location under q exists. You should not need to assume that
q has any monotonicity properties. Assume also that EµXXT = Σ � 0.

(a) Give the Fisher information for θ in this model and argue that the family is QMD.

(b) Give the local asymptotic minimax lower bound for estimation in the family (11.2).

Let Pθ denote the joint distribution over (X,Y ) in model (11.2). Now we consider the question
of estimating θ without knowing the distribution Q of the noise using different loss functions. In
particular, for different symmetric convex functions f : R → R+, we consider M-estimators of the
form

θ̂n := argmin
θ

Fn(θ) = Pnf(Y −XT θ).

55



(c) Let f(t) = |t| and assume that the density q(0) > 0. Give an asymptotically linear expansion
of θ̂n, that is, write θ̂n − θ = PnZ + oP (1/

√
n) and specify the random vectors Z. Give the

asymptotic distribution of θ̂n under local alternatives in model (11.2), that is, under Pθ+hn/
√
n

for hn → h ∈ Rd.

(d) Give a density q for which the absolute loss in part (c) is arbitrarily inefficient.

(e) Let fu(t) be the Huber loss with threshold u > 0, that is,

fu(t) =

{
1

2u t
2 if |t| ≤ u

|t| − u/2 if |t| > u
.

Repeat the same analysis, mutatis mutandis, as in part (c).

(f) Give a loss function f : R → R+ such that whenever the preceding conditions on q hold, we
have the locally uniform convergence

√
n
(
θ̂n − (θ + hn/

√
n)
)

d→
Pθ+hn/

√
n

N(0, σ2(q)Σ−1),

where σ2(q) <∞ may depend on q and the loss.

Question 11.7: Consider the setting of Question 11.6. The results of the question guarantee
that there exists a

√
n-consistent estimator. Give sufficient conditions on the density q of the noise

that you may construct one-step estimator δn, of the form in Question 3.2, which is asymptotically
optimal and regular. That is, give an explicit one-step estimator δn such that

√
n(δn − θ0) =

1

n

n∑
i=1

I−1
θ0

˙̀
θ0(Xi, Yi) + oP0(1),

where ˙̀ is the score function in the model (11.2). Conclude that we have the locally uniform
convergence

√
n(δn − (θ0 + hn/

√
n))

d→
θ0+hn/

√
n
N(0, I−1

θ0
)

under local alternatives hn → h.
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